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Abstract – In mesh networks, the sender machine is connected to 

the receiver machine via multiple paths. Efficient transmissions 

along these paths require proper link choice so as to quickly 

deliver the packets the destination. Poor link selection can lead to 

overutilization of some links while the other redundant links 

remain underutilized. Over-utilized links experience heavy 

congestions under peak hours. The transmission control protocol 

(TCP) employs         congestion control algorithms to prevent 

transmitters from   overloading the network with data. These 

algorithms include slow start, congestion avoidance, fast 

retransmit and fast recovery. The slow start algorithm is utilized 

during the initial communication phase while congestion 

avoidance, fast retransmit and fast recovery are reactionary 

algorithms one packet loss is detected. This paper aimed to 

analyze the behavior of TCP under these congestion control 

algorithms in wired mesh networks. The dimensions that were 

used for this analysis included three way handshake, packet loss, 

duplicate acknowledgements, segment retransmissions, recovery, 

I/O plots and time-sequence plots. The objective of this study was 

to practically understand how the TCP protocol detects and 

handles network congestions in mesh networks. To achieve this 

objective, an experimental research design was employed. It 

involved the practical design of experimental setups that were 

used to collect data that was analyzed to provide an explanation 

of the TCP congestion control mechanisms. The results obtained 

indicate that the TCP first carries out a three handshake before 

data transmission can take place. It was also observed that the 

receipt of three duplicate acknowledgements is interpreted by 

TCP to be packet loss caused by network congestion. Moreover, it 

was established that TCP initiates fast retransmit and fast 

recovery when packet loss is detected. The contribution of this 

paper lies in the fact that it provided a practical understanding of 

how TCP detects and reacts to mesh network congestion, a 

concept that is critical to network administrators in their quest for 

packet loss prevention over the TCP architecture. Towards the 

end of the paper, suggestions for developing better ways of 

congestion handling in mesh networks by use of round trip times 

as a basis for adaptive congestion detection and control are 

elaborated. 

Index Terms – TCP, Congestion, Throughput, Bandwidth, 

Algorithm. 

1. INTRODUCTION 

All TCP connections employ the congestion window as one of 

the dynamics that dictate the number of byte that the sender can 

transmit without receiving acknowledgments. In [1], it is 

explained that this window serves to thwart the communication 

link between the communicating nodes from getting 

overwhelmed by traffic. Overwhelmed networks lead to packet 

losses, which according to [2] may be caused by malicious 

packet dropping and link error. 

When connections are established, the congestion window is 

set to miniature multiple of the maximum segment size (MSS) 

permitted on those connections. In situations where all the data 

segments are received and acknowledged, the congestion 

window is increased by one MSS [3]. This constitutes the slow 

start phase and     it keeps on increasing the congestion window 

exponentially until     a timeout happens or the receiver’s 

window size reaches its limit, called the slow start threshold 

value (ssthresh). 

In their study,[4] noted that the receipt of three duplicate 

acknowledgements in a TCP communication is interpreted as 

being due to packet loss caused by overcrowded links. 

Therefore TCP reacts by adjusting the number of bytes that can 

be sent downwards and the communication enters the 

congestion avoidance phase. In this stage, the congestion 

window enlarges linearly at the rate of one MSS per congestion 

window packets for each acknowledgement. The consequence 

of this is that the congestion window is incremented by one 

segment on condition that all segments are acknowledged. 
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Unfortunately, using this TCP congestion window adjustment, 

a malicious node may increase its congestion window hence its 

bandwidth at the expense of other network nodes. As such, in 

their study, [5] proposed a dynamic approach for malicious 

node detection for internet traffic analysis. This is based on the 

analysis of the node behavior as a basis for allowing or denying 

connections from a node by computing the posterior 

probabilities of the factors peculiar to that node. 

In TCP Tahoe, in the event of a loss, fast retransmit is entered 

[6]. In this phase, the slow start threshold value is set to half of 

the current congestion window while the value of the 

congestion window is set to one MSS and the communicating 

parties revert to slow start phase. 

Fast recovery is implemented in a variant of TCP known as 

TCP Reno. In this algorithm, when a packet loss occurs, the 

slow start threshold value is set to half of the current congestion 

window while the value of the congestion window is set to one 

MSS, just like in TCP Tahoe [7]. However, this algorithm 

omits the slow start phase and enters directly into congestion 

avoidance phase. 

2. MESH NETWORKS COMMUNICATIONS 

A mesh network refers to a network where each of the network 

computers is directly connected to other network computers 

(fully mesh) or connects indirectly to others (partial mesh) as 

shown in Figure 1. According to [8], wireless mesh networks 

offer low up-front cost, reliable coverage, easy network 

maintenance, dynamic self-organization and self-

configuration. These features are superlative for the next 

generation wireless communication systems since they offer 

seamless broadband access. Mesh networks are highly fault-

tolerant. This so because every computer has multiple possible 

connections paths to the other computers on the network, so a 

single cable break will not stop network communication 

between any two computers. 

 

 

 

 

 

 

 

 

Figure 1: Full Mesh Conceptual Set Up 

This figure shows that for machine A to transfer data packets 

to machine D, there is one direct link that it can use and two 

indirect links that are still viable for traffic transmissions. The 

direct link connects A to D through a straight line. Indirect links 

occur through C and B. All these links are feasible candidates 

for packet data communication. 

In situations where hop count is used as the only criteria for 

path selection, then since path A---D has less hops than both 

paths A—B—D AND A—C—D, path A—D will always be 

chosen for traffic that is meant to  traverse A and D. This 

effectively leads to over-utilization of this route while other 

rotes lie idle. It is the way the TCP congestion algorithms 

handles this form of mesh network congestion that this paper 

sought to investigate and analyze. 

For efficient traffic transmission, link A—D should be able to 

detect and deal with any congestion in an efficient adaptive 

version. 

3. MOTIVATION 

In their paper, [9] proposed an energy efficient routing (EER) 

for reducing congestion and time delay in wireless sensor 

networks. This approach could lessen the transmission time 

and time delays for forwarding the packets. This was 

accomplished using an energy efficient routing protocol, where 

a discrete delay function is employed to establish new 

transitional node and then forwarding the network packets 

through that best intermediate node. 

In [10] it is explained that network congestion happens when a 

network traffic is greater that the network capacity. It can be 

necessitated by having many data transmitters sending large 

amounts of data at a very high transmission rate. Network 

delays cause elongated packet delays and may even cause 

packet loss as a result of buffer overflow [11]. 

To address these shortcomings, congestion control algorithms 

have been developed and implemented in TCP. The congestion 

control techniques can be viewed as measures to contain 

network clogging and keep overall data load well below the 

link capacity [12]. 

Figure 2 (a) and 2 (b) provide an illustration of the delay and 

throughput as some of the network congestion performance 

measures. 

 

Figure 2 (a): Delay: Network Congestion Performance 

Measures [3] 
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Figure 2 (b): Throughput: Network Congestion Performance 

Measures [3] 

Figure 2(a) shows that there is an exponential increase in 

network transmission delays as the traffic advances towards 

network capacity. On its part, Figure 2(b) demonstrates that   

there is exponential reduction in data throughput as the traffic 

exceeds the network capacity. 

In circumstances where a data segment is delayed, the sender 

fails to receive acknowledgements in time and therefore ends 

up retransmitting the packets [13]. The effects of these 

retransmissions is that there will be the data queues longer and 

causes further delays, which is in essence, congestion of data 

at the receiver.  

On the other hand, when the traffic becomes more than the 

network capacity, the queues become jam-packed and the 

network devices have to discard some packets [14]. 

This can be demonstrated by Figure 3. As illustrated by this 

figure, the receiver has a maximum capacity of 4K (4 x 210= 

4096 bytes). This means that it will receive data up to the 

capacity of 4K, after which it will be forced to drop the 

incoming packets.  

 

Figure 3: Receiver Buffer Full 

Note that acknowledgement number 4096 is accompanied by a 

window size of 0, which informs the sender that the receiver 

window is full and therefore it should not transmit any packet. 

However, if the sender ignores this instruction, then the 

receiver will be forced to drop the transmitted packets. 

When packets are dropped, they will never be acknowledged 

and the sender will enter fast retransmit and fast recovery to 

deliver the lost packets [15]. A novel idea will be for the 

transmitter to wait till the receiver passes the transmitted data 

to the applications, after which this data will be moved from 

the buffer, hence creating more space in the buffer. 

This is illustrated by the last acknowledgement, where the 

receiver creates a window size of 1K (IK=210=1024 bytes). 

This is why it is now advertising a window of 1024 bytes. 

4. PROCEDURE 

In a mesh network, computers are connected directly to one 

another. This network has high redundancy as a packet can take 

one of the many routes from the source to the destination.  To 

investigate how TCP handles congestion control in a mesh 

network, two sets of experiments were carried out.  

The first set up involved the transfer of a text file between two 

laptop computers via the hypertext transfer protocol (HTTP). 

The second experiment involved the downloading of a 243 MB 

video file located in a Wamp server of one of the laptops. 

Figure 4 shows part of the mesh network that was employed in 

this study. 

 

Figure 4: Experimental Set Up 

The set up consisted of four laptops labeled A, B, C and D, 

connected via an Ethernet cable, through a four-port switch. 
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Conceptually, this resembles the conceptual full mesh network 

given in Figure 1.   

The file to be transferred, named ‘Server’ was created in Wamp 

server and stored in a folder called 

ADAPTIVE_TCP_CONGESTION_CONTROL_ALGORITH. 

The machine hosting this Wamp server was given IP address of 

192.168.1.1. Figure 5 shows this file residing in a server. 

 

Figure 5: File Residing in Wamp Server 

The laptop to which the file was to be transferred to was given 

an IP address of 192.168.1.10. After this, the file URL was 

entered in the browser of the receiver upon which the file was 

clicked and the ‘save’ option was selected to start the download 

process. The wireshark network analyze software was 

employed to capture the transfer of this file between the two 

laptops. 

It was realized that file transfer through HTTP took a very short 

duration and the analysis of the required parameters could not 

be possible. Therefore, a 243 MB video, which took a little 

longer duration, was downloaded while wireshark was used to 

monitor the packet transfer between the two laptops. Figure 6 

shows the video downloading in progress. 

 

Figure 6: Video Download via HTTP 

The downloading speed was 222 KB per second, which meant 

that the video took an average of [243 x1000/222] = 18 minutes 

to complete. This was enough time to finish all the required 

analysis. 

5. EXPERIMENTAL RESULTS 

The sub-sections below give a detailed description of the data 

that was obtained from the experimentations that were carried 

out. This include the verification that TCP employs three way 

handshake, slow start, congestion avoidance, fast retransmit 

and fast recovery algorithms as reactionary measure to network 

congestions. 

5.1. TCP Three Way Handshake 

The sender starts the conversation with the receiver by sending 

a SYN packet, sequence number 10200. The receiver responds 

with a SYN +ACK packet, sequence number 10201, indicating 

that it is ready for the data exchange. The receiver receives this 

acknowledgement and proceeds to make a request for the video 

that is to be downloaded. This constitutes the three way 

handshake as illustrated by Figure 7. 

 

Figure 7: Three Way Handshake 

This information was obtained by clicking on the ‘Analyze’ 

menu and selecting ‘Expert Info’. This confirms the fact that 

indeed the communicating systems must initially have a three 

way handshake before any data communication can take place 

between them. 

5.2. Slow Start Phase 

After the three way handshake, the connection has been 

established and the TCP begins to slowly establish the network 

bandwidth in order to avoid transmitting too much data on the 

network that might be dropped. It was observed that for packet 

number 12, its sequence number was 1(relative sequence 

number) and the bytes in flight were 1460. In slow start phase, 

each time an acknowledgement is received, the congestion 

window is incremented by 1 MSS (where 1 MSS=1460 bytes). 

This was confirmed by observing packet number 12 and packet 

number 13 in Figure 8. 
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Figure 8: TCP Slow Start Phase 

 

Figure 9: Congestion Window after ACK for Packet 12 

It was observed that the advertised window size by the receiver 

was 254 while the bytes in flight were 1460. The current 

sequence number is 1, the source port is 80 while the 

destination port is 1198. Since for slow start phase: Congestion 

window=congestion window +MSS, then it is expected that 

when packet 12 is acknowledged, the total bytes in flight will 

be 2920. Figure 9 shows the details obtained for packet 13. 

This Figure 9 illustrates that for packet 13, the total number of 

bytes in flight is now 2920. The current sequence number is 

1461 while the next sequence number is 2921. This is actually 

in agreement with the calculated value for the new congestion 

window of 2920.  

Therefore, it is expected that for packet 14, the congestion 

window will be 2920+1460, giving a value of 4380 for the 

bytes in flight. This is confirmed by Figure 10. 

Once again, the values agree with the theoretical values of 4380 

for the bytes in flight, current sequence number of 2921, and 

next sequence number of 4381. It was observed that the value 

of the congestion window continued to rise up to a value of 

65011 for the calculated window size for packet number 297 

shown in Figure 11. 

 

Figure 10: Congestion Window after ACK for Packet 13 

After this, the value of bytes in flight went down to 1460 bytes 

for packet number 298, confirming the fact that the TCP had 

entered into congestion avoidance phase similar to that of TCP 

Tahoe, where the congestion window is set to 1 MSS when 

congestion occurs. During the slow start phase, the source can 

send data up to the least of the value of the congestion window 

and the receiver advertised window. This is the lower bound of 

the sender’s TCP window size. 
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Figure 11:  Determination of the Slow Start Threshold Value 

After packet number 297, there is drop of byte in flight to a 

value of 1460. Therefore, the calculated window size for packet 

number 297, which s 65011 bytes, is the slow start threshold 

value (ssthresh). This is a close approximation to the theoretical 

value of 65535 bytes.  

Indeed as shown in Figure 12, the value of bytes in flight 

dropped to a value of 1460, which is equivalent to 1 MSS. The 

receiver advertised window also falls down to 254 bytes, down 

from 65011 bytes further confirming that congestion avoidance 

phase has been entered. 

 

Figure 12: Onset of Congestion Avoidance Phase 

5.3. I/O For Congestion Window Determination 

When the congestion window reaches 65535 bytes (slow start 

threshold value), the TCP window is at full capacity as shown 

in Figure 13. At this window size, the sender is effectively 

blocked and the receiver cannot accept any data. This is 

confirmed by the statement, ‘previous segment not captured’, 

meaning that this segment was dropped and therefore need to 

be retransmitted. A plot of amount of data that the sender has 

in flight against time can be used to approximate the value of 

the congestion window. 

 

Figure 13: Congestion Window Full 
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This is because this window size cannot be determined directly 

from the Wireshark traces. The trace of bytes in flight against 

time is shown in Figure 14. 

In essence, the I/O graph displays the TCP receiver advertised 

window size over a given period of time. It has already been 

established that the ssthresh value is nearly 65535 bytes. Using 

a scale of 1 to 1000 puts this figure to a value of 655.35 bytes 

as shown in the graph above.  

Therefore in situations where the amount of data that is 

transmitted across the network reaches the size of the receive 

window, the slow start algorithm is abandoned and the flow of 

data is influenced by the receiver using the advertised window 

size. 

 

Figure 14: I/O Graph 

5.4. Fast Retransmit Phase 

The fast retransmission occurs when packet loss is detected. 

This is normally prompted by the receipt of three duplicate 

acknowledgments.  Figure 15 shows that indeed there was 

duplicate acknowledgments, indicated by ‘Duplicate 

ACK(#1)’, ‘Duplicate ACK(#2)’ and ‘Duplicate ACK(#3)’. 

Upon collapsing the first duplicate, the information in Figure 

16 was obtained. This figure shows that among others, packet 

66692, 66696 and 66798 were duplicate acknowledgements. 

To get more information on the first duplicate 66692, this 

packet number was double clicked to reveal the information in 

Figure 17. 

 

Figure 15: Duplicate Acknowledgements 

This Figure 17 gives much information concerning which 

particular frame has received duplicate acknowledgement. 

 

Figure 16: Duplicated ACK Packet Numbers 

For this case, it is indicated that frame 66691 has received a 

duplicate acknowledgement. The expected sequence number is 

58362081. After three acknowledgements (Packets numbers 

66691, 66692, 66693) for the same sequence number are 

received at the sender, the transmitter carries out an immediate 

retransmission of the missing segment with packet 66697 as 

shown in Figure 18. 
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Figure 17: Details of Duplicated Acknowledgements 

Interesting to note is that  the Selective Acknowledgements 

(SACKS) option is set by the receiver, indicating that the 

sender is informed of the data that has been received out of 

order, by use of left edge and right edge SACKs (SLE and 

SRE). From this figure SLE=58389821 while SRE =58391281. 

The start of a block is indicated by SLE (Left edge) while the 

end of a block is indicated by SRE (Right edge). Consequently, 

the data source can only retransmit the missing data segments. 

Other packets were also retransmitted as shown by Figure 19. 

This figure demonstrates that packets 666697, 66700, 66702 

among others were fast retransmitted by the sending laptop. 

These are the packets that arrived out of order or lost and were 

therefore received duplicate acknowledgments, prompting 

their retransmissions. 

When TCP enters the fats retransmit phase, the missing 

segments are retransmitted before the retransmission timer 

expires. 

This algorithm also sets the value of ssthresh to half the current 

congestion window, as well setting the current congestion 

window to a value that is 3MSS more than ssthresh. Since TCP 

with SACK is an extension of the TCP Reno algorithm, it does 

retain the slow start and retransmit features of Reno. 
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Figure 18: Retransmission of Packet with Sequence Number 58362081 

 

Figure 19: Retransmission of More Packets 

5.5. Fast Recovery 

This phase controls the transmission of new data, after the 

retransmission of missing segments, until the first non-

duplicate acknowledgement has been received at the sender. 

Figure 20 shows massive retransmissions of missing segments.  

After the acknowledgements of all these retransmissions, fast 

recovery takes control until the new segments send are 

acknowledged. This means that when packet number 66723 is 

acknowledged, fats recovery steps in. packets number 66724 to 

66727 all acknowledge previously retransmitted packets. 

However, packet number 66743 is an accumulative 

acknowledgement and it acknowledges all pending packets up 

to packet number 66730. 

 

Figure 20: Massive Segment Retransmissions 
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Therefore after packet number 66731 is ACKed, fast recovery 

is initiated. This happens at packet number 66746, which 

acknowledges both packets number 66731 and 66732. 

Therefore after packet number 66746, TCP brings into effect 

the congestion avoidance algorithm. 

5.6. Time-Sequence Graph (TCP Trace) 

This graph is a plot of sequence numbers against time. It is used 

to show the maximum bandwidth for the communication link 

during the period when communication is taking place between 

end systems. The gradient of this curve gives the network data 

rates. 

It is clear from the graph displayed in Figure 21 that the 

network bandwidth is not uniform. The implication of this is 

that the bandwidth keeps changing over time. During the initial 

stages (Time 0 to 32 seconds), the gradient is low, indicating 

the transmission of a small number of packets. However, 

between 32 seconds and 90 seconds Time- duration, the 

gradient rises steeply clearly indicating high network 

bandwidth ( slow start phase that doubles MSS values). The 

gradient slags gain between 90 and 110 seconds duration, 

indicating the congestion avoidance phase. 

 

Figure 21: Time – Sequence Graph 

6. PROPOSED ROUND TRIP TIME - BASED 

ADAPTIVE CONGESTION CONTROL 

The evaluation of the current TCP congestion control 

algorithms has revealed that most of them are reactive in nature 

and involve massive retransmission of packets deemed to have 

been lost. The criterion for the activation of congestion control 

is the receipt of three duplicates. In this paper, a novel 

congestion control mechanism employing round trip times is 

suggested as the possible solution to address the shortcomings 

of the current congestion control algorithms. 

Four parameters are crucial in this proposed algorithm: the 

retransmission timer (RT), round trip time (RTT), receiver   

congestion window (cwnd) and the receiver advertised window 

(rwnd) as shown in Figure 22.  

Normally, TCP maintains a Retransmission Timer (RT) for 

each connection. This timer is started during a transmission. A 

timeout of the RT causes a retransmission. The rwnd dictates 

the value of cwnd, which is equivalent to the size of the current 

receiver buffer window. 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Round Trip-Based Adaptive Congestion Control 

6.1. Parametric Selection 

The size of cwnd determines the number of data packets that 

could be sent through a given path. The round trip time (RTT) 

refers to the duration taken by a probe packet to travel from the 

source to the destination and back. 

6.2. Link Selection 

In this proposed congestion control algorithm, communication 

links are evaluated statistically using the RTT value as criteria. 

A path with the least cost (PLC) in terms of RTT will be the 

suitable candidate for data packet transmission. In Figure 22, 

the total RTT values for the possible links in this mesh network 

are computed as follows: 

Path A—D: Total RTT value = RTT- 5,  

Where RTT-5 is the RTT value for a direct link between A and 

D. 

Path A—B--D: Total RTT value = RTT- 1 + RTT- 2,  

Where RTT-1 is the RTT value for a direct link between A and 

B and RTT-2 is the RTT value for direct link between B and D. 
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Path A—C--D: Total RTT value = RTT- 4 + RTT-3,  

Where RTT-4 is the RTT value for a direct link between A and 

C and RTT-3 is the RTT value for direct link between C and D. 

Path A—C—B---D: Total RTT value = RTT- 4 + RTT- 6 + 

RTT- 2,  

Where RTT-4 is the RTT value for a direct link between A and 

C , RTT- 6 is the RTT value for direct link  between C and B, 

and RTT –2 is the RTT value for a direct link between B and 

D. 

6.3. Routing Table Updates 

In ideal circumstances, the routing table stores numerous paths 

which the packet can utilize as it traverses the network. This 

proposed algorithm will require that the routers maintain 

optimum paths based on the shortest Total RTT values. 

Obviously, congestion in a given link will result in longer total 

RTT values and these changes should be recorded as path 

updates in the routing table. 

6.4. Mode Of Operation 

The intent of this paper was to evaluate the modus operand of 

TCP congestion control algorithms in mesh networks. Due to 

the limitations noted in the current TCP implementation of 

congestion control such as heavy packet retransmissions due to 

the receipt of three duplicates, some of which may be 

occasioned by network delays (which may ultimately lead to 

packet re-ordering) rather than packet loss, an adaptive 

congestion control based on round trip times (RTT) values 

rather than three duplicates is suggested. 

In this new algorithm, the total RTT values will be cached in 

the routers’ memory. Any network delays cause the elongation 

of RTT values. Suppose a given path is currently selected as 

the optimum link. If excessive traffic flows though this link, 

congestion may occur, leading to higher RTT values.  

Therefore, a re-calculation of new RTT values may be selected 

another different path as the optimum one for data 

transmission. Since these RTT computations will be 

accomplished statistically at the start and during transmissions, 

all the mesh network paths will have a better chance of 

transmitting data. The consequence is that packets belonging to 

a single message may take different paths to the destination, 

which leads to faster traffic transmissions. 

In so doing, there is an efficient handling of congestion in mesh 

networks and the many redundant paths will be assured of 

being used to transmit packets at any particular moment. This 

will prevent overwhelming few links with data packets while 

the rest of the links lie idle.  

Therefore, instead of waiting for three duplicates to detect 

congestion, and perform packet re-transmissions, statistical 

measurements of RTT values will suffice, prompting packet 

transmissions via links with shorter RTT values. 

7. CONCLUSION 

The aim of this paper was to evaluate TCP congestion control 

mechanisms in a mesh network. Parameters such as packet loss, 

retransmissions, network bandwidth, I/O graphs, Time - 

sequence graphs were utilized to gauge its performance in these 

networks. Specifically, the congestion window, slow start 

threshold value and congestion detection and reaction were 

used to identify the kind of TCP implemented in the 

communicating parties.  

The behavior of TCP during congestion avoidance was 

compared to the theoretical established behaviors. It was noted 

that the experimental values agreed with the theoretical values. 

In conclusion, it was established that TCP indeed carries out a 

three way handshake before any data can be sent over the 

communication links.  

Moreover, it was clear that TCP indeed has inbuilt mechanisms 

for dealing with network congestion, namely slow start, 

congestion avoidance , fast retransmit and fast recovery 

algorithms. Due to the noted poor handing of congestion in 

mesh networks as a result of reliance on the receipt of three 

duplicates, an adaptive congestion control algorithm 

employing the round trip times as the criteria was suggested.  

In this new algorithm, congestion in one of the mesh links 

causes its RTT vale to increase. This means that a re-

computation of new RTT values may render this link non- 

optimum, and hence other links with lesser RTT values will be 

employed to transmit packets. In this way, the overwhelming 

of fewer inks with traffic at the expense of other links will be 

avoided. Ultimately, the message packets take different routes 

and hence link utilization is distributed among the available 

links. This leads to better control of congestion in mesh 

networks. Future works lie in the practical implementation of 

this adaptive round trip time-based congestion control 

algorithm in real world mesh network. 
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