
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 15

RESEARCH ARTICLE

Evaluation of TCP Congestion Control Modus

Operandi in Mesh Networks

Vincent O. Nyangaresi

School of Informatics & Innovative Systems, Jaramogi Oginga Odinga University of Science & Technology, Kenya.

vincentyoung88@gmail.com

Solomon. O. Ogara

School of Informatics & Innovative Systems, Jaramogi Oginga Odinga University of Science & Technology, Kenya.

solomon.ogara@gmail.com

Silvance O. Abeka

School of Informatics & Innovative Systems, Jaramogi Oginga Odinga University of Science & Technology, Kenya.

silvancea@gmail.com

Published online: 27 January 2017

Abstract – In mesh networks, the sender machine is connected to

the receiver machine via multiple paths. Efficient transmissions

along these paths require proper link choice so as to quickly

deliver the packets the destination. Poor link selection can lead to

overutilization of some links while the other redundant links

remain underutilized. Over-utilized links experience heavy

congestions under peak hours. The transmission control protocol

(TCP) employs congestion control algorithms to prevent

transmitters from overloading the network with data. These

algorithms include slow start, congestion avoidance, fast

retransmit and fast recovery. The slow start algorithm is utilized

during the initial communication phase while congestion

avoidance, fast retransmit and fast recovery are reactionary

algorithms one packet loss is detected. This paper aimed to

analyze the behavior of TCP under these congestion control

algorithms in wired mesh networks. The dimensions that were

used for this analysis included three way handshake, packet loss,

duplicate acknowledgements, segment retransmissions, recovery,

I/O plots and time-sequence plots. The objective of this study was

to practically understand how the TCP protocol detects and

handles network congestions in mesh networks. To achieve this

objective, an experimental research design was employed. It

involved the practical design of experimental setups that were

used to collect data that was analyzed to provide an explanation

of the TCP congestion control mechanisms. The results obtained

indicate that the TCP first carries out a three handshake before

data transmission can take place. It was also observed that the

receipt of three duplicate acknowledgements is interpreted by

TCP to be packet loss caused by network congestion. Moreover, it

was established that TCP initiates fast retransmit and fast

recovery when packet loss is detected. The contribution of this

paper lies in the fact that it provided a practical understanding of

how TCP detects and reacts to mesh network congestion, a

concept that is critical to network administrators in their quest for

packet loss prevention over the TCP architecture. Towards the

end of the paper, suggestions for developing better ways of

congestion handling in mesh networks by use of round trip times

as a basis for adaptive congestion detection and control are

elaborated.

Index Terms – TCP, Congestion, Throughput, Bandwidth,

Algorithm.

1. INTRODUCTION

All TCP connections employ the congestion window as one of

the dynamics that dictate the number of byte that the sender can

transmit without receiving acknowledgments. In [1], it is

explained that this window serves to thwart the communication

link between the communicating nodes from getting

overwhelmed by traffic. Overwhelmed networks lead to packet

losses, which according to [2] may be caused by malicious

packet dropping and link error.

When connections are established, the congestion window is

set to miniature multiple of the maximum segment size (MSS)

permitted on those connections. In situations where all the data

segments are received and acknowledged, the congestion

window is increased by one MSS [3]. This constitutes the slow

start phase and it keeps on increasing the congestion window

exponentially until a timeout happens or the receiver’s

window size reaches its limit, called the slow start threshold

value (ssthresh).

In their study,[4] noted that the receipt of three duplicate

acknowledgements in a TCP communication is interpreted as

being due to packet loss caused by overcrowded links.

Therefore TCP reacts by adjusting the number of bytes that can

be sent downwards and the communication enters the

congestion avoidance phase. In this stage, the congestion

window enlarges linearly at the rate of one MSS per congestion

window packets for each acknowledgement. The consequence

of this is that the congestion window is incremented by one

segment on condition that all segments are acknowledged.

mailto:vincentyoung88@gmail.com
mailto:solomon.ogara@gmail.com
mailto:silvancea@gmail.com

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 16

RESEARCH ARTICLE

Unfortunately, using this TCP congestion window adjustment,

a malicious node may increase its congestion window hence its

bandwidth at the expense of other network nodes. As such, in

their study, [5] proposed a dynamic approach for malicious

node detection for internet traffic analysis. This is based on the

analysis of the node behavior as a basis for allowing or denying

connections from a node by computing the posterior

probabilities of the factors peculiar to that node.

In TCP Tahoe, in the event of a loss, fast retransmit is entered

[6]. In this phase, the slow start threshold value is set to half of

the current congestion window while the value of the

congestion window is set to one MSS and the communicating

parties revert to slow start phase.

Fast recovery is implemented in a variant of TCP known as

TCP Reno. In this algorithm, when a packet loss occurs, the

slow start threshold value is set to half of the current congestion

window while the value of the congestion window is set to one

MSS, just like in TCP Tahoe [7]. However, this algorithm

omits the slow start phase and enters directly into congestion

avoidance phase.

2. MESH NETWORKS COMMUNICATIONS

A mesh network refers to a network where each of the network

computers is directly connected to other network computers

(fully mesh) or connects indirectly to others (partial mesh) as

shown in Figure 1. According to [8], wireless mesh networks

offer low up-front cost, reliable coverage, easy network

maintenance, dynamic self-organization and self-

configuration. These features are superlative for the next

generation wireless communication systems since they offer

seamless broadband access. Mesh networks are highly fault-

tolerant. This so because every computer has multiple possible

connections paths to the other computers on the network, so a

single cable break will not stop network communication

between any two computers.

Figure 1: Full Mesh Conceptual Set Up

This figure shows that for machine A to transfer data packets

to machine D, there is one direct link that it can use and two

indirect links that are still viable for traffic transmissions. The

direct link connects A to D through a straight line. Indirect links

occur through C and B. All these links are feasible candidates

for packet data communication.

In situations where hop count is used as the only criteria for

path selection, then since path A---D has less hops than both

paths A—B—D AND A—C—D, path A—D will always be

chosen for traffic that is meant to traverse A and D. This

effectively leads to over-utilization of this route while other

rotes lie idle. It is the way the TCP congestion algorithms

handles this form of mesh network congestion that this paper

sought to investigate and analyze.

For efficient traffic transmission, link A—D should be able to

detect and deal with any congestion in an efficient adaptive

version.

3. MOTIVATION

In their paper, [9] proposed an energy efficient routing (EER)

for reducing congestion and time delay in wireless sensor

networks. This approach could lessen the transmission time

and time delays for forwarding the packets. This was

accomplished using an energy efficient routing protocol, where

a discrete delay function is employed to establish new

transitional node and then forwarding the network packets

through that best intermediate node.

In [10] it is explained that network congestion happens when a

network traffic is greater that the network capacity. It can be

necessitated by having many data transmitters sending large

amounts of data at a very high transmission rate. Network

delays cause elongated packet delays and may even cause

packet loss as a result of buffer overflow [11].

To address these shortcomings, congestion control algorithms

have been developed and implemented in TCP. The congestion

control techniques can be viewed as measures to contain

network clogging and keep overall data load well below the

link capacity [12].

Figure 2 (a) and 2 (b) provide an illustration of the delay and

throughput as some of the network congestion performance

measures.

Figure 2 (a): Delay: Network Congestion Performance

Measures [3]

Peer

A

Peer

B

Peer

C

Peer

D

Transmission Links

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 17

RESEARCH ARTICLE

Figure 2 (b): Throughput: Network Congestion Performance

Measures [3]

Figure 2(a) shows that there is an exponential increase in

network transmission delays as the traffic advances towards

network capacity. On its part, Figure 2(b) demonstrates that

there is exponential reduction in data throughput as the traffic

exceeds the network capacity.

In circumstances where a data segment is delayed, the sender

fails to receive acknowledgements in time and therefore ends

up retransmitting the packets [13]. The effects of these

retransmissions is that there will be the data queues longer and

causes further delays, which is in essence, congestion of data

at the receiver.

On the other hand, when the traffic becomes more than the

network capacity, the queues become jam-packed and the

network devices have to discard some packets [14].

This can be demonstrated by Figure 3. As illustrated by this

figure, the receiver has a maximum capacity of 4K (4 x 210=

4096 bytes). This means that it will receive data up to the

capacity of 4K, after which it will be forced to drop the

incoming packets.

Figure 3: Receiver Buffer Full

Note that acknowledgement number 4096 is accompanied by a

window size of 0, which informs the sender that the receiver

window is full and therefore it should not transmit any packet.

However, if the sender ignores this instruction, then the

receiver will be forced to drop the transmitted packets.

When packets are dropped, they will never be acknowledged

and the sender will enter fast retransmit and fast recovery to

deliver the lost packets [15]. A novel idea will be for the

transmitter to wait till the receiver passes the transmitted data

to the applications, after which this data will be moved from

the buffer, hence creating more space in the buffer.

This is illustrated by the last acknowledgement, where the

receiver creates a window size of 1K (IK=210=1024 bytes).

This is why it is now advertising a window of 1024 bytes.

4. PROCEDURE

In a mesh network, computers are connected directly to one

another. This network has high redundancy as a packet can take

one of the many routes from the source to the destination. To

investigate how TCP handles congestion control in a mesh

network, two sets of experiments were carried out.

The first set up involved the transfer of a text file between two

laptop computers via the hypertext transfer protocol (HTTP).

The second experiment involved the downloading of a 243 MB

video file located in a Wamp server of one of the laptops.

Figure 4 shows part of the mesh network that was employed in

this study.

Figure 4: Experimental Set Up

The set up consisted of four laptops labeled A, B, C and D,

connected via an Ethernet cable, through a four-port switch.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 18

RESEARCH ARTICLE

Conceptually, this resembles the conceptual full mesh network

given in Figure 1.

The file to be transferred, named ‘Server’ was created in Wamp

server and stored in a folder called

ADAPTIVE_TCP_CONGESTION_CONTROL_ALGORITH.

The machine hosting this Wamp server was given IP address of

192.168.1.1. Figure 5 shows this file residing in a server.

Figure 5: File Residing in Wamp Server

The laptop to which the file was to be transferred to was given

an IP address of 192.168.1.10. After this, the file URL was

entered in the browser of the receiver upon which the file was

clicked and the ‘save’ option was selected to start the download

process. The wireshark network analyze software was

employed to capture the transfer of this file between the two

laptops.

It was realized that file transfer through HTTP took a very short

duration and the analysis of the required parameters could not

be possible. Therefore, a 243 MB video, which took a little

longer duration, was downloaded while wireshark was used to

monitor the packet transfer between the two laptops. Figure 6

shows the video downloading in progress.

Figure 6: Video Download via HTTP

The downloading speed was 222 KB per second, which meant

that the video took an average of [243 x1000/222] = 18 minutes

to complete. This was enough time to finish all the required

analysis.

5. EXPERIMENTAL RESULTS

The sub-sections below give a detailed description of the data

that was obtained from the experimentations that were carried

out. This include the verification that TCP employs three way

handshake, slow start, congestion avoidance, fast retransmit

and fast recovery algorithms as reactionary measure to network

congestions.

5.1. TCP Three Way Handshake

The sender starts the conversation with the receiver by sending

a SYN packet, sequence number 10200. The receiver responds

with a SYN +ACK packet, sequence number 10201, indicating

that it is ready for the data exchange. The receiver receives this

acknowledgement and proceeds to make a request for the video

that is to be downloaded. This constitutes the three way

handshake as illustrated by Figure 7.

Figure 7: Three Way Handshake

This information was obtained by clicking on the ‘Analyze’

menu and selecting ‘Expert Info’. This confirms the fact that

indeed the communicating systems must initially have a three

way handshake before any data communication can take place

between them.

5.2. Slow Start Phase

After the three way handshake, the connection has been

established and the TCP begins to slowly establish the network

bandwidth in order to avoid transmitting too much data on the

network that might be dropped. It was observed that for packet

number 12, its sequence number was 1(relative sequence

number) and the bytes in flight were 1460. In slow start phase,

each time an acknowledgement is received, the congestion

window is incremented by 1 MSS (where 1 MSS=1460 bytes).

This was confirmed by observing packet number 12 and packet

number 13 in Figure 8.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 19

RESEARCH ARTICLE

Figure 8: TCP Slow Start Phase

Figure 9: Congestion Window after ACK for Packet 12

It was observed that the advertised window size by the receiver

was 254 while the bytes in flight were 1460. The current

sequence number is 1, the source port is 80 while the

destination port is 1198. Since for slow start phase: Congestion

window=congestion window +MSS, then it is expected that

when packet 12 is acknowledged, the total bytes in flight will

be 2920. Figure 9 shows the details obtained for packet 13.

This Figure 9 illustrates that for packet 13, the total number of

bytes in flight is now 2920. The current sequence number is

1461 while the next sequence number is 2921. This is actually

in agreement with the calculated value for the new congestion

window of 2920.

Therefore, it is expected that for packet 14, the congestion

window will be 2920+1460, giving a value of 4380 for the

bytes in flight. This is confirmed by Figure 10.

Once again, the values agree with the theoretical values of 4380

for the bytes in flight, current sequence number of 2921, and

next sequence number of 4381. It was observed that the value

of the congestion window continued to rise up to a value of

65011 for the calculated window size for packet number 297

shown in Figure 11.

Figure 10: Congestion Window after ACK for Packet 13

After this, the value of bytes in flight went down to 1460 bytes

for packet number 298, confirming the fact that the TCP had

entered into congestion avoidance phase similar to that of TCP

Tahoe, where the congestion window is set to 1 MSS when

congestion occurs. During the slow start phase, the source can

send data up to the least of the value of the congestion window

and the receiver advertised window. This is the lower bound of

the sender’s TCP window size.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 20

RESEARCH ARTICLE

Figure 11: Determination of the Slow Start Threshold Value

After packet number 297, there is drop of byte in flight to a

value of 1460. Therefore, the calculated window size for packet

number 297, which s 65011 bytes, is the slow start threshold

value (ssthresh). This is a close approximation to the theoretical

value of 65535 bytes.

Indeed as shown in Figure 12, the value of bytes in flight

dropped to a value of 1460, which is equivalent to 1 MSS. The

receiver advertised window also falls down to 254 bytes, down

from 65011 bytes further confirming that congestion avoidance

phase has been entered.

Figure 12: Onset of Congestion Avoidance Phase

5.3. I/O For Congestion Window Determination

When the congestion window reaches 65535 bytes (slow start

threshold value), the TCP window is at full capacity as shown

in Figure 13. At this window size, the sender is effectively

blocked and the receiver cannot accept any data. This is

confirmed by the statement, ‘previous segment not captured’,

meaning that this segment was dropped and therefore need to

be retransmitted. A plot of amount of data that the sender has

in flight against time can be used to approximate the value of

the congestion window.

Figure 13: Congestion Window Full

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 21

RESEARCH ARTICLE

This is because this window size cannot be determined directly

from the Wireshark traces. The trace of bytes in flight against

time is shown in Figure 14.

In essence, the I/O graph displays the TCP receiver advertised

window size over a given period of time. It has already been

established that the ssthresh value is nearly 65535 bytes. Using

a scale of 1 to 1000 puts this figure to a value of 655.35 bytes

as shown in the graph above.

Therefore in situations where the amount of data that is

transmitted across the network reaches the size of the receive

window, the slow start algorithm is abandoned and the flow of

data is influenced by the receiver using the advertised window

size.

Figure 14: I/O Graph

5.4. Fast Retransmit Phase

The fast retransmission occurs when packet loss is detected.

This is normally prompted by the receipt of three duplicate

acknowledgments. Figure 15 shows that indeed there was

duplicate acknowledgments, indicated by ‘Duplicate

ACK(#1)’, ‘Duplicate ACK(#2)’ and ‘Duplicate ACK(#3)’.

Upon collapsing the first duplicate, the information in Figure

16 was obtained. This figure shows that among others, packet

66692, 66696 and 66798 were duplicate acknowledgements.

To get more information on the first duplicate 66692, this

packet number was double clicked to reveal the information in

Figure 17.

Figure 15: Duplicate Acknowledgements

This Figure 17 gives much information concerning which

particular frame has received duplicate acknowledgement.

Figure 16: Duplicated ACK Packet Numbers

For this case, it is indicated that frame 66691 has received a

duplicate acknowledgement. The expected sequence number is

58362081. After three acknowledgements (Packets numbers

66691, 66692, 66693) for the same sequence number are

received at the sender, the transmitter carries out an immediate

retransmission of the missing segment with packet 66697 as

shown in Figure 18.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 22

RESEARCH ARTICLE

Figure 17: Details of Duplicated Acknowledgements

Interesting to note is that the Selective Acknowledgements

(SACKS) option is set by the receiver, indicating that the

sender is informed of the data that has been received out of

order, by use of left edge and right edge SACKs (SLE and

SRE). From this figure SLE=58389821 while SRE =58391281.

The start of a block is indicated by SLE (Left edge) while the

end of a block is indicated by SRE (Right edge). Consequently,

the data source can only retransmit the missing data segments.

Other packets were also retransmitted as shown by Figure 19.

This figure demonstrates that packets 666697, 66700, 66702

among others were fast retransmitted by the sending laptop.

These are the packets that arrived out of order or lost and were

therefore received duplicate acknowledgments, prompting

their retransmissions.

When TCP enters the fats retransmit phase, the missing

segments are retransmitted before the retransmission timer

expires.

This algorithm also sets the value of ssthresh to half the current

congestion window, as well setting the current congestion

window to a value that is 3MSS more than ssthresh. Since TCP

with SACK is an extension of the TCP Reno algorithm, it does

retain the slow start and retransmit features of Reno.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 23

RESEARCH ARTICLE

Figure 18: Retransmission of Packet with Sequence Number 58362081

Figure 19: Retransmission of More Packets

5.5. Fast Recovery

This phase controls the transmission of new data, after the

retransmission of missing segments, until the first non-

duplicate acknowledgement has been received at the sender.

Figure 20 shows massive retransmissions of missing segments.

After the acknowledgements of all these retransmissions, fast

recovery takes control until the new segments send are

acknowledged. This means that when packet number 66723 is

acknowledged, fats recovery steps in. packets number 66724 to

66727 all acknowledge previously retransmitted packets.

However, packet number 66743 is an accumulative

acknowledgement and it acknowledges all pending packets up

to packet number 66730.

Figure 20: Massive Segment Retransmissions

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 24

RESEARCH ARTICLE

Therefore after packet number 66731 is ACKed, fast recovery

is initiated. This happens at packet number 66746, which

acknowledges both packets number 66731 and 66732.

Therefore after packet number 66746, TCP brings into effect

the congestion avoidance algorithm.

5.6. Time-Sequence Graph (TCP Trace)

This graph is a plot of sequence numbers against time. It is used

to show the maximum bandwidth for the communication link

during the period when communication is taking place between

end systems. The gradient of this curve gives the network data

rates.

It is clear from the graph displayed in Figure 21 that the

network bandwidth is not uniform. The implication of this is

that the bandwidth keeps changing over time. During the initial

stages (Time 0 to 32 seconds), the gradient is low, indicating

the transmission of a small number of packets. However,

between 32 seconds and 90 seconds Time- duration, the

gradient rises steeply clearly indicating high network

bandwidth (slow start phase that doubles MSS values). The

gradient slags gain between 90 and 110 seconds duration,

indicating the congestion avoidance phase.

Figure 21: Time – Sequence Graph

6. PROPOSED ROUND TRIP TIME - BASED

ADAPTIVE CONGESTION CONTROL

The evaluation of the current TCP congestion control

algorithms has revealed that most of them are reactive in nature

and involve massive retransmission of packets deemed to have

been lost. The criterion for the activation of congestion control

is the receipt of three duplicates. In this paper, a novel

congestion control mechanism employing round trip times is

suggested as the possible solution to address the shortcomings

of the current congestion control algorithms.

Four parameters are crucial in this proposed algorithm: the

retransmission timer (RT), round trip time (RTT), receiver

congestion window (cwnd) and the receiver advertised window

(rwnd) as shown in Figure 22.

Normally, TCP maintains a Retransmission Timer (RT) for

each connection. This timer is started during a transmission. A

timeout of the RT causes a retransmission. The rwnd dictates

the value of cwnd, which is equivalent to the size of the current

receiver buffer window.

Figure 22: Round Trip-Based Adaptive Congestion Control

6.1. Parametric Selection

The size of cwnd determines the number of data packets that

could be sent through a given path. The round trip time (RTT)

refers to the duration taken by a probe packet to travel from the

source to the destination and back.

6.2. Link Selection

In this proposed congestion control algorithm, communication

links are evaluated statistically using the RTT value as criteria.

A path with the least cost (PLC) in terms of RTT will be the

suitable candidate for data packet transmission. In Figure 22,

the total RTT values for the possible links in this mesh network

are computed as follows:

Path A—D: Total RTT value = RTT- 5,

Where RTT-5 is the RTT value for a direct link between A and

D.

Path A—B--D: Total RTT value = RTT- 1 + RTT- 2,

Where RTT-1 is the RTT value for a direct link between A and

B and RTT-2 is the RTT value for direct link between B and D.

Peer

A(cwnd)

Peer

B

Peer

C

Peer

D (rwnd)

RTT-1

RTT-2

RTT- 3

RTT -4

RTT-5

RTT-6

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 25

RESEARCH ARTICLE

Path A—C--D: Total RTT value = RTT- 4 + RTT-3,

Where RTT-4 is the RTT value for a direct link between A and

C and RTT-3 is the RTT value for direct link between C and D.

Path A—C—B---D: Total RTT value = RTT- 4 + RTT- 6 +

RTT- 2,

Where RTT-4 is the RTT value for a direct link between A and

C , RTT- 6 is the RTT value for direct link between C and B,

and RTT –2 is the RTT value for a direct link between B and

D.

6.3. Routing Table Updates

In ideal circumstances, the routing table stores numerous paths

which the packet can utilize as it traverses the network. This

proposed algorithm will require that the routers maintain

optimum paths based on the shortest Total RTT values.

Obviously, congestion in a given link will result in longer total

RTT values and these changes should be recorded as path

updates in the routing table.

6.4. Mode Of Operation

The intent of this paper was to evaluate the modus operand of

TCP congestion control algorithms in mesh networks. Due to

the limitations noted in the current TCP implementation of

congestion control such as heavy packet retransmissions due to

the receipt of three duplicates, some of which may be

occasioned by network delays (which may ultimately lead to

packet re-ordering) rather than packet loss, an adaptive

congestion control based on round trip times (RTT) values

rather than three duplicates is suggested.

In this new algorithm, the total RTT values will be cached in

the routers’ memory. Any network delays cause the elongation

of RTT values. Suppose a given path is currently selected as

the optimum link. If excessive traffic flows though this link,

congestion may occur, leading to higher RTT values.

Therefore, a re-calculation of new RTT values may be selected

another different path as the optimum one for data

transmission. Since these RTT computations will be

accomplished statistically at the start and during transmissions,

all the mesh network paths will have a better chance of

transmitting data. The consequence is that packets belonging to

a single message may take different paths to the destination,

which leads to faster traffic transmissions.

In so doing, there is an efficient handling of congestion in mesh

networks and the many redundant paths will be assured of

being used to transmit packets at any particular moment. This

will prevent overwhelming few links with data packets while

the rest of the links lie idle.

Therefore, instead of waiting for three duplicates to detect

congestion, and perform packet re-transmissions, statistical

measurements of RTT values will suffice, prompting packet

transmissions via links with shorter RTT values.

7. CONCLUSION

The aim of this paper was to evaluate TCP congestion control

mechanisms in a mesh network. Parameters such as packet loss,

retransmissions, network bandwidth, I/O graphs, Time -

sequence graphs were utilized to gauge its performance in these

networks. Specifically, the congestion window, slow start

threshold value and congestion detection and reaction were

used to identify the kind of TCP implemented in the

communicating parties.

The behavior of TCP during congestion avoidance was

compared to the theoretical established behaviors. It was noted

that the experimental values agreed with the theoretical values.

In conclusion, it was established that TCP indeed carries out a

three way handshake before any data can be sent over the

communication links.

Moreover, it was clear that TCP indeed has inbuilt mechanisms

for dealing with network congestion, namely slow start,

congestion avoidance , fast retransmit and fast recovery

algorithms. Due to the noted poor handing of congestion in

mesh networks as a result of reliance on the receipt of three

duplicates, an adaptive congestion control algorithm

employing the round trip times as the criteria was suggested.

In this new algorithm, congestion in one of the mesh links

causes its RTT vale to increase. This means that a re-

computation of new RTT values may render this link non-

optimum, and hence other links with lesser RTT values will be

employed to transmit packets. In this way, the overwhelming

of fewer inks with traffic at the expense of other links will be

avoided. Ultimately, the message packets take different routes

and hence link utilization is distributed among the available

links. This leads to better control of congestion in mesh

networks. Future works lie in the practical implementation of

this adaptive round trip time-based congestion control

algorithm in real world mesh network.

REFERENCES

[1] H. Dave, V. Gupta, & P. Dihulia, “Performance comparison between

TCP sack and TCP Vegas using NS-2 Simulator,” International Journal

of Computer Application, 68(11), pp. 49-52, 2013.

[2] M. Kavitha, B. Ramakrishnan and R. Das, “A Novel Routing Scheme

to Avoid Link Error and Packet Dropping in Wireless Sensor Networks,”

International Journal of Computer Networks and Applications (IJCNA),
3(4), PP: 86-94, 2016, DOI: 10.22247/ijcna/2016/v3/i4/48569.

[3] N. Vlajic , “TCP: Congestion Control,” CSE 3214, PP: 1-20, 2016.

[4] S. Stefan, N. Cardwell, D. Wetherall, and T. Anderson, “TCP Congestion
Control with a Misbehaving Receiver,” Department of Computer Science

and Engineering: University of Washington, Seattle, PP: 1-8, 2015.

[5] R. Shankar and S. Naidu, “A Dynamic Approach of Malicious Node
Detection for Internet Traffic Analysis,” International Journal of

Computer Networks and Applications (IJCNA), 1(1), PP: 33-39, 2014.

[6] Y. Nishida, “The NewReno Modification to TCP’s Fast Recovery
Algorithm,” Standards Track, PP: 1-16, 2012.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/41293 Volume 4, Issue 1, January – February (2017)

ISSN: 2395-0455 ©EverScience Publications 26

RESEARCH ARTICLE

[7] A. Walid, Q. Peng, J. Hwang, and S. Low. “Balanced Linked Adaptation

Congestion Control Algorithm for MPTCP”, Working Draft, IETF
Secretariat, Internet-Draft, 2015.

[8] Ahmed and N. Shinde, “A Simulation Technique for Wireless Mesh

Networks to Present Its Topology and Evaluate Its Impact on
Communication Revolution,” Communications and Network, 2016,

DOI: 10.4236/cn.2016.81005.
[9] M. Anuba and A. Anuja, “Energy Efficient Routing (EER) For Reducing

Congestion and Time Delay in Wireless Sensor Network,” International

Journal of Computer Networks and Applications (IJCNA), 1(1), PP: 1-

10, 2014.
[10] M. Hamzah, A. Hijawi and M. Mohammad, “Performance Analysis of

Multi-Path TCP Network,” International Journal of Computer Networks

& Communications (IJCNC), Vol.8, No.2, PP: 145-147, 2016.
[11] Cao, Yu, Mingwei Xu, and Xiaoming Fu, “Delay-based congestion

control for multipath TCP,” In Network Protocols (ICNP), IEEE

International Conference on, pp. 1-10, IEEE, 2012.

[12] J. VijiPriyal , S. Suppiah, “An Extended Study On Newton Raphson

Congestion Control”, International Journal of Advanced Research,

Volume 4, Issue 2, 2016.
[13] Alrshah, Mohamed A., et al. "Agile-SD: a Linux-based TCP congestion

control algorithm for supporting high-speed and short-distance

networks." Journal of Network and Computer Applications 55 (2015):
181-190.

[14] Kire Jakimoski, Slavcho Chungurski, Sime Arsenovski, Lidija

Gorachinova, Oliver Iliev, Leonid Djinevski and Emilija Kamcheva.
“Performance Analysis of Linux-Based TCP Congestion Control

Algorithms in VANET Environment,” International Journal of Future

Generation Communication and Networking (IJFGCN), Vol. 4, Issue 2,
2016.

[15] S. Ogara, “Lecture Notes: Flow Control, Congestion Control and Error

Control,” PP: 1-40, 2016.

Authors

Vincent O. Nyangaresi is currently a student
researcher in areas of data communication

and computer networks, network design and

administration, distributed systems and
information systems security. He has

published numerous research articles

covering areas such as communication
systems, secure network communications,

systems acceptance modeling, TCP

architecture and design, radio wave
propagation, virtualization and cloud

computing, among others.

Dr. Solomon O. Ogara, B.Sc. (Egerton),

B.Sc. (Arizona), M.Sc. (Dakota), Ph.D.
(North Texas) is currently the Chairperson of

the Department of Computer Science &

Software Engineering, Jaramogi Oginga
Odinga University Of Science And

Technology. He has worked as an assistant

professor of computer information system at
Livingstone College. He has taught different

computer information systems and

networking courses including: Introduction
to Computer Information Systems; Object

Oriented Programming; Decision Support &

Business Intelligence, Computer Architecture & Organization; System
Analysis and Design, Web Design using HTML5; Database Management,

Enterprise Network Design, Wired, Optical and Wireless Communications;

Voice/VoIP Administration; Operating Systems with UNIX and Windows

Server; Data, Privacy and Security; Principles of Information Security.

Dr. Silvance O. Abeka is currently a Senior

Lecturer and a Dean-School of Informatics
and Innovative Systems of Jaramogi Oginga

Odinga University of Science and
Technology. He worked previously as a

Director- Institute of Open and Distance

Learning at Africa Nazarene University and
also as a Dean- Faculty of Applied Science

and Technology of Kampala International

University- Dar es Salaam Collage. He holds
a Ph.D in Management Information System

(MIS), Masters of Science in Computer Science from University of Da es

Salaam and Master of Business Administration (Information Technology) from
Kampala International University. His research interests include IT innovation

adoption, open source software study, IT offshoring, Management Information

Systems, Foundations of Network and System Security, Impact of Digital
Technologies on Society, Networking Protocols and Topologies, Web- Design

and E- Learning Technologies.

