
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 93

RESEARCH ARTICLE

Congestion Aware Packet Routing for Delay

Sensitive Cloud Communications

Vincent O. Nyangaresi

School of Informatics & Innovative Systems, Jaramogi Oginga Odinga University of Science & Technology, Kenya.

vincentyoung88@gmail.com

Silvance O. Abeka

School of Informatics & Innovative Systems, Jaramogi Oginga Odinga University of Science & Technology, Kenya.

silvancea@gmail.com

Solomon. O. Ogara

School of Informatics & Innovative Systems, Jaramogi Oginga Odinga University of Science & Technology, Kenya.

solomon.ogara@gmail.com

Published online: 28 July 2017

Abstract – In the recent years, many organizations have turned to

cloud technology to support their information technology services.

The cloud servers are therefore increasingly holding huge and

sensitive information belonging to diverse groups of individuals

and companies. Additionally, some organizations employ the

cloud to provide them with online backup services. One of the

most outstanding requirements for cloud customers is availability

– the customers must be able to access their information and other

resources stored in the cloud any time and from anywhere on the

globe. This means that there should be efficient network design

such that any delays are averted. The connection between the

customer and the cloud can therefore be regarded as delay

senstive. Network congestions often lead to delays and packet

losses. Transmission control protocol employs four congestion

control algorithms – slow start, congestion avoidance, fast

retransmit and fast recovery, all of which fail to meet the

requirements of delay intolerance. Transmission control protocol

pacing has been suggested as a possible solution to delays and

packet dropping in computer networks. However, the

conventional pacing is static in nature, meaning that constant

pauses are introduced between packet transmissions to prevent

bursty transmissions which can lead to delays at the receiver

buffers. This paper therefore presents a congestion aware packet

routing where the delay period is hinged on the prevailing

network conditions. This dynamic pacing algorithm was designed

and implemented in Spyder using Python programming language.

It employed probe signals to gather network intelligence such as

the applicable round trip times of the network. Thereafter, this

network intelligence was employed to tailor the paces to these

network conditions. The results obtained showed that this

algorithm introduced longer paces when more packets are

transmitted and shorter paces when few packets are transmitted.

In so doing, this new algorithm gives enough time for large

packets to be delivered and smaller paces when few packets are

sent. The analysis was done in terms of bandwidth utilization

efficiency, round trip times and congestion window size

adjustments. The congestion window – time graphs and

throughput – time graphs showed that the developed dynamic

pacing algorithm adjusted quickly to network congestions hence

ensuring that the network is efficiently utilized by averting delays.

Index Terms – Cloud Computing, Congestion, Network Delays,

Algorithm, TCP Pacing.

1. INTRODUCTION

Routing algorithms are important in cloud communications in

the specification of procedures to be employed in the transfer a

data packet from the source to the destination. As [1] explain,

to make an accurate routing decision, the routing algorithm

must choose some criteria for making routing decision. Some

of such metrics include bandwidth, number of hop counts, and

transmission power. In this paper, congestion, which is another

critical metric influencing the routes that packets take, is

investigated. In networks with redundant communication paths

with varying levels of congestion, the packets should be made

to utilize the least congested channel.

Packet loss is a serious issue in computer networks. These

losses can be occasioned by malicious packet dropping or link

error. As such, transmitting a data packet from the source and

ensuring that it has arrived at the destination correctly is a

challenging exercise. Presently, Internet and bandwidth are

very valuable and limited resources in networks [2]. As a result,

optimal bandwidth utilization is indispensable so as to support

service stability, good quality of service and ensure steady

quality of experience for users connections. Many techniques

have therefore been proposed to address this challenge.

The conventional TCP’s congestion control mechanisms can

result in bursty transmissions on modern high-speed networks.

This has a harmful impact on overall network efficiency. One

possible solution to this problem is to uniformly space or pace

network data during an entire round-trip time such that packets

mailto:vincentyoung88@gmail.com
mailto:silvancea@gmail.com
mailto:solomon.ogara@gmail.com

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 94

RESEARCH ARTICLE

are not sent in a burst. In [3] a quantitative evaluation of TCP

pacing is provided. The output showed that pacing provides

better fairness, throughput, and lower drop rates in some

circumstances. However, the results also indicated that pacing

has significantly worse throughput than regular TCP in other

situations. This is because of its susceptibility to synchronized

losses and its habit of delaying congestion signals. As such,

mechanisms to eliminate these challenges are required.

In cloud communications, the company’s telecommunications

applications, switching and storage services are hosted by a

third-party [4]. To access these resources, the organization uses

the public Internet. In so doing, the cloud offers on-demand

access to a shared pool of computing resources such as

computer networks, servers, storage, applications and services.

Due to the rapid uptake of this technology, many organizations

have their data centers located in the cloud to facilitate real time

sharing of these resources among departments and even

stakeholders, who might be interested in company

informational resources, such as suppliers and customer [5].

This means that there is always real time connections

established between the company and its data center resources.

Security and availability of the cloud resources then becomes

important for the survival of the cloud-dependent

organizations.

As a result of the huge uptake of the cloud technology, there

exists an increasing demand for physical devices such as

servers to support the increasing number of operations among

the hosted customers. Virtualization comes handy by allowing

one physical hardware such as a server to support multiple

operating systems and hence users [6]. Additionally, cloud

services support distributed processing which can be used to

improve company efficiency [7]. Due to the real time

communication required between customer premise equipment

(CPE) and the cloud servers, delays in this setup will then

translate to huge financial losses among many organizations

that depend on the cloud services for their operations.

Congested networks often lead to packet loss and delays. As

[8] point out, cloud can be employed to provide cross-

enterprise biometric identification. Therefore, delays in the

authentication process can effectively lock out cloud

stakeholders, or cause inconveniences. Further [9] explains that

organizations normally utilize hybrid cloud, which can be a

combination of private, community or public, to enable the

connection of collocations, managed and dedicated services

with cloud resources. Once again, this requires faster

communication among these hybrid models.

To avert delays and network congestions, congestion control

algorithms have been devised to deal with congestion and

packet losses. Some of these algorithms include slow start,

congestion avoidance, and fast recovery and fast retransmit

[10]. Due to the limitations of these algorithms such as the

inefficient utilization of the available bandwidth and the

reliance on explicit receiver notifications to infer packet losses

and control the transmission rate, researchers have come up

with other techniques such as TCP pacing to try and reduce

packet losses and congestions in networks.

In TCP connections, at the beginning of each round-trip time,

TCP senders infuse bursts of packets into the network, which

often stress the network queues. The effects are packet losses,

reduction in throughput and increased latency. Since data

centers are characterized by burst traffic and small buffer sizes,

then such effects can be catastrophic. As such, TCP pacing

serves to reduce the burstiness of TCP traffic and to alleviate

data buffering in routers. However, there is no agreement

among the researchers on the overall benefits of pacing. The

model developed in [11] demonstrated that for a particular

buffer size, as the number of concurrent flows is increased

beyond a Point of Inflection (PoI), non-paced TCP outperforms

paced TCP.

In delay tolerant networks (DTNs), it is not easy to preserve

stability in end to end networks due to long communication

delay and high mobility of network. In the Store and Carry

mechanism employed for these networks, a node can receive

and store the messages in the buffer and wait for the chance to

send them. This therefore calls for the definition of a new

reliable and efficient routing strategy. Hence, [12] proposed

hybrid routing algorithm, Spray and Wait with EBR (S&W

with EBR), which is a combination of both Encounter Based

Routing (EBR) protocol and Spray and Wait Routing (S&W)

protocol. The simulation results demonstrated that the

proposed routing scheme achieved better performance in terms

of Delivery Probability, Overhead Ratio, Dropping Packets and

Goodput.

The only issue in the internet is the tolerances towards delay

that often leads to disconnections when the delay is above

tolerance level. Delay Tolerant Networks (DTN) sustain longer

delays by allowing disconnected operations. Routing protocols

such as Epidemic routing protocols and Spray and Wait have

been designed specifically for DTNs. In [13], a comparison of

these two routing protocol based on end-to-end delay, packet

delivery ratio and bundle hop count is provided. The results

obtained indicated that epidemic routing performed well.

However, if the buffer size is set dynamically, then packet

delivery ratio of epidemic routing can be further enhanced.

This study builds on the current study on TCP pacing by

incorporating the DTN dynamism in epidemic routing, based

on the round trip times instead of buffer sizes, in delay sensitive

networks (DSNs). The developed algorithm is similar in

approach to Spray and Wait, only that this depended on the

network round trip times. The idea was to reduce the delays

that are inherent in the current TCP pacing, which sometimes

makes non-paced TCP connections to outperform paced

connections.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 95

RESEARCH ARTICLE

2. RELATED WORK

Many researchers have devised techniques for eliminating or at

least reducing packet losses occasioned by network

congestions. In [14] an adaptive auto-tuning of TCP pacing

that adjusts the pacing speed dynamically is suggested. It is

based on the network situation that is complicated by static and

manual techniques. To achieve this, two types of dynamic

pacing (congestion window pacing, and estimated available

bandwidth pacing) were introduced and merged with BIC TCP

congestion control at the sender.

To prevent packet losses that lead to performance deterioration,

burst transmission were suppressed, available bandwidth was

estimated and the excess growth of the congestion window size

was restricted. The results indicated that this approach

improved the TCP performance in parallel TCP

communication.

A simple technique that evades bursty transmissions has been

suggested by [15]. Instead of utilizing timers, this technique

employs acknowledgements the first connection receives to

clock packet transmissions of the second connection over the

course of the first RTT when the next connection joins the

network. On the same breadth, acknowledgements of the first

and second connections are utilized to clock packet

transmissions of the third connection.

A study by [16] developed a Discrete Delay Function (DDF for

establishing new intermediate node in wireless sensor networks

(WSN), and then forwarding packets through this best

intermediate node. In addition, a handshaking technique was

utilized to determine the node for forwarding the packets, then

broadcasting this node to the rest of the nodes. In so doing,

other nodes do not have to redo this next node determination,

thereby saving the other nodes’ power and energy. In the

conventional WSN, energy is wasted in routing through the

intermediate nodes and congestion (and hence delays) occurs

during the routing process.

In their paper, [17] describes a performance problem in Data

Transfer Nodes (DTNs) regarding a fast sender overwhelming

a slow receiver. Consequently, packets get dropped, leading to

poor performance. Moreover, slow firewalls, under-buffered

switches, or other network devices that cannot handle high

speed transmissions can also lead to packet losses, whose

retransmissions can lead to time wastage. Therefore, [17]

developed a simple tuning daemon at the sender that can

identify flows during congestion, and then instructs the Linux

kernel to adjust those flows to a rate that the network and

receiver can handle.

The desire to have more bandwidth for data transmission led to

the development of all-optical network core. However, owing

to the intrinsic constraints of this optical technology, only

routers with small packet buffers are viable for

interconnections. The efficient operation of such small-buffer

networks can be assured by making traffic as less bursty as

possible. In [18], a packet pacing mechanism is proposed that

can smooth traffic bursts. The theoretical analysis showed that

this scheme can provide an assurance that queue length of

routers is BIBO stable.

In an effort to boost the web surfing speed and avert delays,

Google has come up with a multiplexing protocol called Quic

UDP Internet Connections (QUIC). It operates at the transport

layer and runs over User Datagram Protocol (UDP and is

optimized to be utilized for HTTP/2 connections [19]. Its goal

is to trim down end-to-end latency and works best (compared

to TCP) for slow connections with high latency.

A novel cooperative transmission control mechanism, referred

to as TCP-polite rate control (TPRC), is proposed by [20]. This

technique is hinged on cooperative determination of new

congestion indicator as a substitute for drop ratio and round-

trip time. Here, cooperative measurement is employed to

identify congestion metric of network. Afterwards, this value

is fed back to rate-based pacing mechanism. In so doing, the

transmission rate is kept at the lower bound of available

bandwidth. The output showed that TPRC scheme

outperformed TCP and TCP-friendly rate control protocol in

terms of fast-start, efficiency, and fairness.

3. PROPOSED CONGESTION AWARE ALGORITHM

An experimental research design using the simulation approach

was adopted in this paper. The cloud communications were

simulated by means of server virtualization, in which the

Wamp server was employed to store the requested resources.

The pseudo-code for the developed algorithm is illustrated in

Algorithm 1. As the pseudo-code demonstrates, the first step

was the starting of the algorithm after which the number of

packets to be sent and the window size were determined.

Provided that there were packets to be sent (N>0), then the

probe signal was sent to the cloud server to measure the round

trip time. However, if there were no packets o be transmitted to

the receiver, the algorithm halted. After the probe signal was

sent to the server, the duration it took the server to respond was

measured, and from which the RttFactor was computed. The

RTOFactor, RTO and TCP_Pace were all calculated based on

the sender’s own assessment of the network conditions. To

prevent the network from entering into long delays, the TCP

pace value was set to 20 seconds, which was a close

approximation to the average duration the server’s responses

took. In circumstances where the TCP paces went beyond this

value, the corresponding packet was logged into a file for

retransmissions.

However, provided that TCP pace value remains below this

threshold, the packets were sent to the server and pauses were

made depending on the computed TCP pace value. On

condition that the window size is equal to the number of

packets sent so far, the algorithm terminated at this point. On

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 96

RESEARCH ARTICLE

the other hand, if the congestion window was more than the

number of packets sent so far, the algorithm shifted to step five,

where probe signal were once again sent to the cloud server.

The data flow diagram for this pseudo-code is shown in Figure

2. As this Figure 2 illustrates, there are three fundamental

decisions to be made during the course of execution of this

algorithm.

This involves whether the number of packets to be sent is

depleted, whether the current TCP Pace exceeds the threshold

of 20 seconds, and whether the number of packets sent so far is

equal to the size of the congestion window.

The coding for this algorithm was accomplished in Spyder

using Python programming language. Figure 3 gives the source

code for the pseudo-code and data flow diagram discussed

above.

Algorithm 1: Dynamic TCP Pacing Pseudo-Code

The first line is the sequence of the probe data that were sent to

the server while the second line starts the sender retransmission

timer. The third line sets the destination server IP address and

specifies the data to be sent over. The fourth line transfers the

packets while the fifth line stops the retransmission timer so

that the elapsed time for the transmission process can be

measured.

Moreover, the sixth line determines the value of Rtt as being

the difference between the two sender retransmission timer

values while the seventh line assigns this value to variable t.

The eighth line serves to convert the measured Rtt into string

for logging purposes. The ninth line establishes the RTTFactor

as being the inverse of the Rtt. The tenth line transforms the

RTTFactor to string for logging into text file. The eleventh line

determines the RTOFactor to be 0.5, since the measured Rtt

was for half-duplex communication. The RTO is then the

product of the RTOFactor and the RTTFactor as illustrated in

line twelve.

The TCP pace on the other hand was obtained from the RTO

by taking the Python’s Math function floor of RTO. If the value

of the computed TCP_Pace exceeded twenty (20) seconds, the

packet was marked and logged for retransmission. However, if

this value was less than twenty seconds, the TCP packets were

sent with pauses equal to TCP_Pace between them. Since this

TCP-Pace was computed for each data in the sliding window,

dynamism in TCP paces was achieved.

Upon exceeding a TCP Pace of 20 seconds, the sequence

number of the current packet is logged into a file for

retransmissions as elaborated by the last line of Figure 3, where

i is the sequence number of the present packet.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 97

RESEARCH ARTICLE

Figure 2: Data Flow Diagram of the Algorithm

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 98

RESEARCH ARTICLE

Figure 3: Dynamic TCP Pacing Snippet

4. RESULTS AND DISCUSSIONS

Among the data collected in this study were received packets,

current retransmission timeout (RTO), current round trip times

(RTT), congestion window, throughput and TCP pace values.

Figure 4 shows part of the results obtained. This figure shows

that the received bytes from the cloud server were 189986 bytes

while the current RTO value was 2.717391079 seconds. On the

other hand, the current RTT value was 0.184000015259

seconds. The value of the congestion window at this RTT value

was 189986 bytes, which corresponded with the size of the

receiver buffer window size.

The throughput stood at 1484.265625 kilo bits per second

transmission time while the value of the current TCP pacing

was 2.0 seconds. To understand the implication of TCP pacing

on congestion window and throughput, a comparison, a second

packet transmission scenario was considered, where the server

was probed, packets sent and network measurements

performed as illustrated in Figure 5. Here, the first line

indicates the number of bytes the receiver has actually obtained

from the server. The second line was that of the retransmission

timeout as determined from the sender assessment. For Figure

5, when the value of the TCP pacing was 9 seconds, the values

of the congestion window and throughput were 635592 and

4965.5625 bytes respectively.

Comparing these values with those obtained in Figure 4, it

becomes clear that the developed algorithm employed longer

TCP paces for larger packets and more throughputs while

permitting very small TCP paces for fewer packets and less

throughput.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 99

RESEARCH ARTICLE

Figure 4: Results for TCP Pacing of Two Seconds

Figure 5: Results for TCP Pacing of Nine Seconds

To establish the trend for the variation of the throughput and

congestion window as TCP paces were varied, five observation

instants were considered as demonstrated in Table 1. The

values of network throughput and sender congestion window

were observed as the values of the TCP paces were varied. The

first column was for the calculated.

TCP pacing value while the second column was for the

observed network throughput in kilo bits per second. The last

column was that of the sender congestion window, measured in

bytes.

As this table shows, for the third observation instant, the TCP

pace value was 13.0 seconds and during which the throughput

and congestion window were 7586.2578125 Kbps and 971041

bytes respectively. For the fourth observation instant, the TCP

pace value was 15.0 seconds while throughput and congestion

window were 8275.921875 Kbps and 1059318 bytes

correspondingly. The last observation instant had a TCP pace

value of 16.0 seconds, during which the values of throughput

and congestion window were 8809.875 Kbps and 1127664

bytes respectively. To visualize the trend inferred herein,

Figure 6 (a) and (b) were employed.

Table 1: Variations of Throughput and Congestion Window

against TCP Paces

These figures assume almost the same shape, implying that

TCP pacing affect congestion window and throughput in a

similar version. The shape of both graphs is almost linear,

which can be interpreted as follows: congestion window and

throughput are directly proportional to the TCP Pacing value.

This means that when high throughput is realized, the TCP

paces are higher to allow the transmitted data to be received

correctly. On the other hand, when fewer packets are sent, the

TCP acing value is set to small values so that other packets are

sent quickly over the same link and the network be probed

again so that if conditions have improved, larger packets can

be sent. This ensures efficient utilization of the communication

link. These two graphs can be analyzed further to provide some

predictive data for the congestion window size and throughput

values. Figure 7 gives an illustration of how this prediction was

achieved.

(a)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 100

RESEARCH ARTICLE

(b)

Figure 6: TCP Pacing against Congestion Window and

Throughput

Since this graph is a nearly a straight line graph, the

relationship between throughput and the TCP paces can be

expressed as shown in (1):

Throughput = [RF * TCP pace] (1)

Where RF is the ramp factor.

The ramp factor for this graph was determined using (2):

𝛥 𝑌

𝛥𝑋
 (2)

 =
4

2000
 (3)

This gives a value of 0.002 for the ramp factor. Therefore, at

any observation instant, the relationship between throughput

and the TCP paces is given by (4):

 Throughput [Kbps] = 0.002 * TCP (4)

To validate this relationship, point R in Figure 5 was

considered. At this instant, the TCP pace value was 2000.

Therefore, according to (4), the throughput value should be

equal to:

Throughput [Kbps] = 0.002 * 2000 (5)

This gives a value of 4 Kbps for the throughput, which a close

approximation to the point where the straight line moving from

point R cut the Y –axis, the throughput. Therefore (4) is valid.

The implication is that TCP pace and the network throughputs

were directly related. As such, during the periods when large

numbers of packets are transmitted, the TCP pacing value was

set to a large value so as to allow enough time for the delivery

of these large number of packets.

Figure 7: Throughput – TCP Paces Ramp Factor

However, during heavy congestion, less packets and hence less

throughput is achieved and TCP pacing value is set to a smaller

value so that the network is probed after a short while to

establish whether network conditions have improved to

facilitate the transmission of many packets. A similar approach

was adopted for the congestion window –TCP paces graph as

shown in Figure 8.

Figure 8: Congestion Window – TCP Paces Ramp Factor

RF =

 =

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 101

RESEARCH ARTICLE

In situations where multiple redundant routes exist from the

source to the destination, the source machine probes the

congestion level of each of these routes. Thereafter, the TCP

paces are set dynamically such that congested routes are

allocated smaller TCP paces due to smaller number of packets

that have to be sent through these links. On the other hand, for

less congested paths, large number of packets are transmitted.

Consequently, TCP paces are set to be a bit large so as to allow

the successful delivery of the sent data. In so doing, the

developed algorithm is truly congestion aware. As was the case

for the throughput – TCP paces graph, this is a near straight line

graph. Therefore the relationship between the congestion

window, Cwnd and the TCP paces can be expressed as shown

in (6):

Cwnd = [RF * TCP pace] (6)

 Where RF is the ramp factor.

The ramp factor for this graph was determined using (7):

𝛥 𝑌

𝛥𝑋
 (7)

 =
5.5

400000
 (8)

This gives a value of 0.00001375 for the ramp factor.

Therefore, at any observation instant, the relationship between

the congestion window and the TCP paces is given by relation

(9):

Cwnd [Bytes] = 0.00001375 * TCP Pace (9)

To put this relationship into confirmation, point P in Fig. 6 was

considered. At this point in time, the TCP pace value was

1000000. Hence, according to equation (9), congestion window

size value should be equal to:

Cwnd [Bytes] = 0.00001375 * 1000000 (10)

The result of (10) is 13. 75 bytes, a very close approximate to

14 bytes, the point where the straight line emanating from point

P cuts the Y-axis, the congestion window. Once again, (9) has

been validated. The next graph to be plotted was that of the

TCP paces against the transmission time as shown in Figure 9.

As this Figure 9 shows, the value of the TCP paces varied

continuously during the transmission time. It further

demonstrates that higher TCP paces were allowed for some

transmission times while very low TCP paces were permitted

for other transmissions.

To put this into context, three points P, Q and R are considered.

At point P, the TCP pace is at its highest value. Therefore,

considering the zero-point as the reference point or the rest

position, then A1 represents the highest amplitude and point P

can therefore be regarded as the crest for this graph during this

observation period.

Figure 9: Variation of TCP Pacing Over Time

On the other hand, at point Q, the graph is at its lowest position

and the value of network TCP pace is at its least. Once again,

taking the zero-point as the reference point, then A2 represents

the least amplitude during the entire observation time.

Therefore, point Q can be taken to be the trough for this graph

during this time.

At point R, the graph is at its midway between zero-point

reference and the crest. As such, amplitude A3 can be regarded

as the mean amplitude. This is because at this observation

instant, majority of the TCP paces were above this point.

Figure 10: Observation Instant-1 TCP Pacing Threshold

 RF =

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 102

RESEARCH ARTICLE

This is the dynamic TCP pacing that this study sought to

develop for cloud communications. However, from this graph,

it was possible to establish the TCP pacing value where most

packet delivery was assured. This was accomplished by

determining the point where most TCP paces were above a

given straight line that then served as the threshold value as

shown n Figure 10. As this Figure 10 clearly demonstrates,

point R fell exactly on this green line.

This meant that the line moving from point R crossing the Y-

axis, the throughput axis, could serve as the threshold line and

the value of the TCP pace where this line crossed the Y-axis

could be considered as the threshold TCP pacing value. From

Figure 10, this threshold TCP pace value was 10 seconds.

At the threshold value of 10 seconds, majority of the TCP paces

were well above this green line while only a few fell below this

line. During the entire observation period, only at three

observation instants A, B and C did the TCP paces went below

the threshold line. The comparison of these three points against

the great number of the points that were above this line led to

the conclusion that the TCP pace of 10 seconds was established

as the optimum TCP pacing value during the observation

period. Using this threshold line, it was possible to cluster the

TCP paces into two regions, labeled H and L. at region H, the

TCP paces were large, implying that many data packets were

transmitted at this region such that enough TCP pacing was

carried to enable these packets to be delivered successfully.

On the other hand, at region L, the TCP paces were less, the

implication of which is that smaller number of packets were

transmitted and the TCP pacing value were set to smaller

values so that the network could be probed again to determine

whether the conditions have improved to facilitate the

transmission of larger number of packets.

Figure 11: Observation Instant-2 TCP Pacing Threshold

However, it was possible for this threshold value to shift during

another set of observation instants as illustrated in Figure 11.

This Figure 11 clearly shows that the optimum TCP value has

now shifted to 7 seconds as majority of the TCP paces now lie

above this new value as demonstrated by the purple horizontal

line.

Consequently, the optimum TCP pacing value depended on the

prevailing network conditions. This was the dynamic TCP

pacing that this paper was advocating for.

5. COMPARISON WITH OTHER TECHNIQUES

In this section, the developed congestion aware packet routing

algorithm is compared with the latest techniques for congestion

and delay reduction in communication networks.

To start with, an adaptive auto-tuning of TCP pacing that

adjusts the pacing speed dynamically introduces congestion

window pacing, and estimated available bandwidth pacing. It

suppresses burst transmission and restricts the excess growth

of the congestion window size. The setback of this technique is

that its congestion window pacing limits the data size during

RTT period to only the size of cwnd. In addition, the estimated

available bandwidth pacing restricts the maximum

transmission speed to the anticipated available bandwidth at the

last time of the packet loss. This is erroneous since network

conditions might have improved since the last packet losses

were detected. The proposed algorithm addresses these

challenges by allowing transmissions speeds and data packet

sizes to be dynamically adjusted based on the prevailing

network conditions.

The second techniques employing acknowledgements for

clocking transmission rates over the course of the first RTT has

been suggested. The challenge of this method is that the

acknowledgements may be attacker initiated, leading to

erroneous clocking of transmissions. The suggested technique

averts these attacks by utilizing RTT instead of

acknowledgements to clock transmission rates.

On its part, Discrete Delay Function (DDF establishes new

intermediate node in wireless sensor networks and then

forwards packets through this best intermediate node. The only

setback for this mechanism is that DDF requires the initial

setting of the range, called concentric coronas. Any node in the

network will then employ this inner corona to forward the

packet, since it is the best intermediate node for forwarding the

packet. On condition that no nodes could be found in a specific

region, this function automatically searches another node in the

next corona. The developed algorithm automatically probes for

minimum cwnd, maximum cwnd and RTT only and then varies

the transmission rates between these cwnd extremes. It does not

require setting of concentric coronas.

A simple tuning daemon installed at the sender that can identify

flows during congestion, and then instructs the Linux kernel to

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 103

RESEARCH ARTICLE

adjust those flows to a rate that the network and receiver can

handle has also been employed to prevent bursty transmissions.

The disadvantage of this technique is that it works only in

Linux kernel which can be easily modified and recompiled,

being an open source. The proposed dynamic TCP pacing

works in Linux, Windows and other platforms and does not

necessitate communication with operating system kernels.

Another technique for delay reduction in all fiber core networks

has been implemented at the router level. It serves to smoothen

traffic bursts. However, this technique is only possible for

router implementation and not for general internetworking

devices. The suggested approach works for al internetworking

devices with small packet buffers and large packet buffers.

Google’s QUIC technique runs over User Datagram Protocol

(UDP and is optimized to be utilized for HTTP/2 connections.

Its shortcomings are that its performance is optimized for

HHTP/2. In addition, since it runs over UDP, it is

connectionless, meaning that delivery of data transferred over

it is not guaranteed. The algorithm proposed here runs on TCP,

UDP and other communication protocols.

A novel cooperative transmission control mechanism, referred

to as TCP-polite rate control (TPRC) is based on cooperative

determination of new congestion indicator as a substitute for

drop ratio and round-trip time. On the flip side, cooperative

measurements generate extra overhead and can easily lead to

congestions. In this new approach, the probe signals transit

with the payload and hence do not create extra overhead.

6. CONCLUSIONS

This study aimed to develop an algorithm to dynamically

change the value of TCP paces for delay sensitive networks. In

these networks, any delays are highly undesirable and packet

losses can be of catastrophic effect on the ongoing

communication. The comparison of the developed pacing

mechanism with other delay reduction mechanism has revealed

that this algorithm outperforms these techniques in one way or

the other. Since majority of the organizations host their data

centers or online backups in third party cloud infrastructure,

there is always a constant communication between company

departments and the cloud data centers. In this scenario, packet

loss or delays can negatively and adversely affect the company

operations. This is one area where the developed algorithm can

be effectively implemented.

The current TCP pacing avoids bursty transmissions, which

might be sources of delays and packet losses. However, the

pacing does not scale with the prevailing network conditions.

In this new dynamic TCP pacing algorithm, the sender first

probes the network to determine the prevailing conditions and

dynamically adjusts the TCP pauses, congestion window, and

throughput. This novel algorithm prevents delays by sending

only a few packets are when TCP paces are long. This gives

enough time for larger packets travelling between the

organization and the cloud to prevent them from being dropped

before reaching their destinations. However, to prevent holding

network resources for long duration, beyond a given TCP

pacing threshold, the current packet sequence number is

marked and logged for retransmissions. The simulation results

obtained justifies the efficiency of this algorithm and it is

therefore recommended for practical implementation on cloud

environment.

REFERENCES

[1] Nouh, May Sayed A., et al. "Enhanced Route Discovery Mechanism of

Ad-Hoc On Demand Distance Vector for MANET." International

Journal of Computer Networks and Applications (IJCNA) 3.6: 129-138,
2016, DOI: 10.22247/ijcna/2016/48904

[2] N. Tanida, M. Inaba, and K. Hiraki, “Adaptive auto-tuning of TCP

pacing”, The University of Tokyo, Hongo Bunkyo Tokyo, Japan, pp. 1-
14, 2015.

[3] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the

Performance of TCP Pacing”, Department of Computer Science and
Engineering University of Washington Seattle, pp. 1-9, 2015.

[4] A.Nabil, T. Patrick, K. Robert, N. Vijay, M. Thomas, and B. Arkady, “

Secure and Resilient Cloud Computing for the Department of Defense”,
Lincoln Laboratory Journal, Vol. 22, No. 1, pp. 123-135, 2016.

[5] D. Sakhuja & A. Shukla, “Cloud Computing”, International Journal of

Engineering Research & Technology (IJERT), Vol. 2, Issue 3, pp. 1-7,
2013.

[6] B. Dennis, “Impact of Virtualization on Data Center Physical

Infrastructure”, The Green grid, Vol. 27, pp. 1-10, 2010.
[7] S. Karolj, D. Davor, A. Enis, S. Ivan, S. Zorislav, “Scalable Distributed

Computing Hierarchy: Cloud, Fog and Dew Computing”, Open Journal

of Cloud Computing, Vol. 2 (1), pp. 16–24, 2015.
[8] M. Haghighat, S. Zonouz & M. Abdel-Mottaleb, “CloudID:

Trustworthy Cloud-based and Cross-Enterprise Biometric

Identification”, Expert Systems with Applications, Vol. 42, No. 21, pp.
7905–7916, 2015.

[9] C. Lehmann, “ Hybrid multi-cloud architecture, and the vendors aiming

to enable and manage it”, 451 Research, LLC, pp. 1-6, 2016.
[10] M. Duke, R. Braden, W. Eddy, E. Blanton & A. Zimmermann, “A

Roadmap for Transmission Control Protocol (TCP) Specification

Documents”, Internet Engineering Task Force (IETF), pp. 1-57, 2015.
[11] M. Ghobadi and Y. Ganjali, “TCP Pacing in Data Center Networks”,

IEEE 21st Annual Symposium on High-Performance Interconnects, pp.

1-8, 2013.
[12] K. Chaubey and P. Mistri, “An Encounter Based Routing in Delay

Tolerant Network (DTN): A Hybrid Approach”, International Journal
Of Innovative Research In Computer And Communication Engineering,

Vol. 4, Issue 5, pp. 8657 - 8662 , 2016. DOI: 10.15680/IJIRCCE.2016.

0405085.
[13] N. Dayanand and A. Vidhate, “Improved Routing Protocol for Delay

Tolerant Network”, International Journal of Advanced Research in

Computer Science and Software Engineering, Vol. 6, Issue 4, pp. 688-

691, 2016.

[14] S. Islam and M. Welzl, “Start Me Up: Determining and Sharing TCP’s

Initial Congestion Window”, ACM, pp. 1-3, 2016. DOI:
http://dx.doi.org/10.1145/2959424.2959440.

[15] Rohini, G., and A. Srinivasan. "Dynamic Transition of Bandwidth and

Power Saving Mechanism to Support Multimedia Streaming Using H.
264/SVC over the Wireless Networks." International Journal of

Computer Networks and Applications 2.2 (2015): 57-63.

[16] Merlyn, A. Anuba, and A. Anuja Merlyn. "Energy Efficient Routing
(EER) For Reducing Congestion and Time Delay in Wireless Sensor

Network." International Journal of Computer Networks and

Applications 1.1 (2014): 1-10.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2017/49121 Volume 4, Issue 4, July – August (2017)

ISSN: 2395-0455 ©EverScience Publications 104

RESEARCH ARTICLE

[17] N. Hanford, B. Tierney and D. Ghosal, “Optimizing Data Transfer

Nodes using Packet Pacing”, ACM, pp. 1-8, 2015, DOI:
http://dx.doi.org/10.1145/2830318.2830322.

[18] Y. Cai, Y. Sinan and T. Wolf, “Practical Packet Pacing in Small-Buffer

Networks”, Department of Electrical and Computer Engineering
University of Massachusetts, pp. 1-6, 2016.

[19] F. Gratzer, “QUIC - Quick UDP Internet Connections”, Seminars FI /

IITM SS 16, Network Architectures and Services, pp. 36-46, 2016, DOI:
10.2313/NET-2016-09-1_06.

[20] W. Wang, L.Huang, C. Li, and X. Wang, “TCP-polite rate control based

on cooperative measurement”, John Wiley & Sons, Ltd, Vol. 9, Issue 9
, pp. 899–909 ,2013, DOI: 10.1002/sec.901.

Authors

Vincent O. Nyangaresi is a student
researcher in areas of data communication

and computer networks, network design

and administration, distributed systems
and information systems security. He has

published numerous research articles

covering areas such as communication
systems, secure network communications,

systems acceptance modeling, TCP
architecture and design, radio wave

propagation, virtualization and cloud

computing, among others.

Dr. Silvance O. Abeka is currently the

Dean, School Of Informatics And
Innovative Systems, Jaramogi Oginga

Odinga University of Science And

Technology. He holds a masters degree in
Business Administration (Information

Technology) and a PhD in Management

Information Science (MIS), from Kampala
International University, Dar es Salaam

Collage. His interests include Management

Information Systems, Principles of
Statistics and E- Commerce. He is also a

lecturer in the school of Computer Studies.

Dr. Solomon O. Ogara, B.Sc. (Egerton),
B.Sc. (Arizona), M.Sc. (Dakota), Ph.D.

(North Texas) is currently the Chairperson

of the Department of Computer Science &

Software Engineering, Jaramogi Oginga

Odinga University Of Science And

Technology. He has worked as an assistant
professor of computer information system

at Livingstone College. He has taught
different computer information systems

and networking courses including:

Introduction to Computer Information
Systems; Object Oriented

Programming; Decision Support &

Business Intelligence, Computer Architecture & Organization; System
Analysis and Design, Web Design using HTML5; Database Management,

Enterprise Network Design, Wired, Optical and Wireless Communications;

Voice/VoIP Administration; Operating Systems with UNIX and Windows
Server; Data, Privacy and Security; Principles of Information Security.

