
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 80

REVIEW ARTICLE

A Review of Static Malware Detection for Android

Apps Permission Based on Deep Learning

Hamida Lubuva

School of Information and Communication Engineering, University of Science and Technology Beijing, Beijing,

China.

hamidalubuva@gmail.com

Qiming Huang

School of Information and Communication Engineering, University of Science and Technology Beijing, Beijing,

China.

qmhuangcn@163.com

Godfrey Charles Msonde

School of Economics, Renmin University, Beijing, China,

gmsonde@gmail.com

Published online: 31 October 2019

Abstract – In recent years, Android has been the main mobile

operating system. The proliferation of apps powered not only by

Android magnetized app developers, but also by malware

developers with criminal intent to design and distribute

malicious apps that can influence the ordinary activity of

Android phones and tablets, steal private information and

credentials, or even worse, lock the phone and ask for ransom.

This study was carried out with a view of bring out clearly the

review of previous researches carried regarding static analysis

and pinpoint out what to be done in future. A systematic

literature review which involves studying 56 research papers

published in regard to static analysis. This review elaborate

permissions misuse, reverse engineering and concept of static

analysis in general. The outcomes of the review revealed that

static analysis is widely used since it is not performed at run-time

hence malicious applications cannot access to the device during

analysis unlike dynamic analysis. During the review no single

work done to the satisfaction curbing the existing and future

evolving malwares. This study will help academicians to gain

insight concerning static analysis without extensively perusing

several articles to understand static malware analysis based on

deep learning.

Index Terms – Static Analysis, Reverse Engineering,

Permissions, Manifest File, APK File, Malicious Applications.

1. INTRODUCTION

With the rapid emergence of android as the principal

operating system has led to the rise of malware applications

built by hackers with a view of extracting both personal and

sensitive user’s data on the android device for malicious

purposes [1], [2]. Static analysis has been a prime method

used since the extraction of manifest file information is done

before the installation of the application unlike both dynamic

and hybrid analysis [3].

The main aim of this study is to review previous work done

on static malware of android apps. The subsequent sections

depict the research done, citing the advantages and

shortcomings. According to [4], discussed permission misuse

by android apps using a static analysis tool of identification

stating that it is possible to obtain all the manifest file

permission. Despite the study, the paper did not mentioned or

show the dataset used during the analysis and the procedure of

getting readable contents of a minfest.xml file. Similarly, [5]

studied system permission to show whether the application is

over privilege but loopholes exists in the write-up since the

author mentioned repacking of application files without

executing on the device but there is no dataset and analysis

performed based on static feature extraction.

According to [6], the authors proposed heuristic model and

compared adagio, Drebin, ISCX and Mamadroid on a dataset

and found their proposed model outpeforms the others. The

only ad-hoc facing their framework is the proper selection of

malware models to preserve great detection rate and apposite

runtime performance as the method discovery analysis

considerably depends on the malevolent applications used for

model excavation. Likewise, [4], based the research on the

SharedUserID by comparing the certificates of two

applications if both have same features then the apps are

likely to share same permissions using an android security

tool. This was done in order to deduce whether one

application misuse the permission of another application if

granted access by the user. Althought the author did not

provide the data used to test how the algorithm of proof of

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 81

REVIEW ARTICLE

concept was implemented using a security tool as dipicted in

the work done by Karthick and Binu [7].

Conversely, [8] deliberated on malware for smart phones in

overall. Though, the paper deliberates various categories of

features very concisely and the authors did not cover all kinds

of obtainable features. Accordingly, [9] explores numerous

types of smart devices available for malicious applications,

their effect on apps and related discovery approaches with a

99.8 percent accuracy detection rate. Nonetheless, they did

not indicate what features they used in detection, bearing in

mind that features have substantial influence on detection. In

[10] the authors review diverse analysis procedures in smart

devices illegal programs detection. The paper outline the

examples of detection approaches along with their

explanation.

The paper doesn’t embrace what datasets used and valuation

measures. Additionally, it does not illustrate all the latest

works extensively. According to Peng et al,.[11], they

scrutinize advancement of mobile malware, damages they

cost and their proliferation model. Different operating systems

are accounted for in the paper making it difficult to carefully

review all available types. Conversely, we emphasize static

malware detection for Android Apps Permit to mitigate how

best the method is compared to dynamic, hybrid or metadata

malware detection and prevention methods where the

application is run on the user device without the user's

knowledge of what is actually happening on the background.

The remainder of this paper is organized as follows. Section 2

offers background information on android and static analysis

needed for paper repository by discussing definitions of static

program analysis, model permission and techniques of

analysis. Section 3 presents a summary of related work using

static analysis presentations based on permissions from

android apps. Section 4 addresses the description of android

apps in reverse engineering. Section 5 outlines the debates

and the paper is concluded.

2. BACKGROUND INFORMATION ON ANDROID AND

STATIC ANALYSIS

In order to gain understanding of the purpose of this study, we

review and give the reader the required preliminary

information on android and static analysis. We explain the

concept of static program analysis, permissions and analysis

technique.

2.1. Concepts of Static Program Analysis

Static code analysis is also called static program analysis,

which means that the application under test cannot be

conducted dynamically and that it can detect bugs in an early

stage before it is implemented [12]. The opposite of static

code analysis is dynamic code analysis. In the latter, the

program is executed and developers look for run-time errors

as stated by [13].

According to Ghahrai [14], after coding and before

performing unit tests, static analysis is performed. Static

testing can be performed by a machine to "pass" the source

code automatically and to detect non-compliance rules. A

compiler that finds lexical, syntactic and even semantinal

errors is the classic example.

Static software analysis usually includes an automated

method that uses inputs the source code or object code of a

program, analyses this code without it being executed, and

produces results by analyzing its code structure, sequences of

statements, and how variable values are interpreted via the

divergent function calls. Static analysis ' primary benefit is

that it can disclose mistakes (or vulnerabilities) that do not

appear (or are not exploited) until long after the software is

published to the public. There are different

benefits/advantages of static analysis as follows; helps

recognize prospective software quality problems before the

software enters manufacturing during the development stage

[15]. It identifies code regions that need to be re-factored /

simplified [15].By concluding it for software to work and

developers to comprehend their software, static code analysis

is not only helpful but also essential. It simplifies the search

process for bugs and mistakes by pointing to them correctly

and helps to define problems.

2.2. Permissions

The resolution of a permission is to safeguard the privacy of

an android user [16]. Not all permissions are dangerous some

are useful to the developer to design security of an android

device. Mobile apps must appeal for permission to access

user’s sensitive data for instance short messages and phone

contacts, as well as particular system features for instance

internet and camera. Reliant on the feature, the system might

allow the permission spontaneously or might occassion the

user to accept the request. A fundamental design of the

android security design is that no mobile app, by default, has

permission to accomplish any operations that would

unfavorably impact other applications or the user. Android

apps must adopt the least privilege to minimize damages [17].

Table 1 below depicts other previous studies in regard to

android permission which are normally misused.

Android.

Permission

Usage Exploitation

<READ/WRITE_

EXTERNAL_

STORAGE>

Permit to

read or

write

device’s

external

storage

Malicious app

can read sensitive

data of the user

and write its

malicious code

on the device

external storage.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 82

REVIEW ARTICLE

<CALL_PHONE> Permits an

app to

induce a

phone call

without

going via

the

interface of

the user

dialer for

the user to

authorize

the call

being

engaged.

Aid the user to

record the voice

of the user and

use it for

malicious

purpose

<RECEIVE_SMS> Permits an

app to

observe the

inbound

SMS

messages,

to record or

implement

processing

on them.

Aid the malware

to read, write and

receive user’s

sensitive

information to

the malicious app

developer.

<SET_PROCESS_LIMIT> Permits an

app to fix

the

determined

number of

app’s

processes

that can be

running but

not

required.

Overwhelming

the device

memory thus

rendering to

slowness in its

normal operation

<ACCESS_ WIFI_

STATE>

Permits the

app to

access data

about Wi-

Fi network

connected

Can aid the

malware in

hacking the Wi-

Fi network and

transmitting user

information by

utilizing this

info.

<READ_ PHONE_

STATE>

Offers

access to

personal

information

of phone

like

IMSI/IMEI

Aids the

developer of the

malicious app to

keep track of

user’s device and

can include

user’s device in

device

identifier,

Voice Mail

Box, Phone

Number,

SIM ID

etc.

malevolent

activities using

information

gathered.

Table 1 List of Dangerous Android Permission [18]

2.3. Analysis Technique

Control-flow analysis: Determining the order of execution of

program statements or instructions. The control sequences are

usually displayed as a control-flow graph (CFG). The CFG

specifies all feasible routes of execution [19].

Important control flow constructs:

Method calls: program analysis to define the function calls

receiver – e.g., virtual functions, function pointers: abstract

interpretation, type structures and restriction.

Basic block: Maximum sequence of successive statements

with one entry point, one exit point and no inner branches.

Loops: An iteration block of codes till a specified state is

achieved.

Data-flow analysis: Is a monitoring technique for how

variables and values change through the flow of the program.

It is a method for collecting data on the feasible set of values

calculated at different points in a computer program. The

control flow chart (CFG) of a program is used to determine

those components of a program that could be propagated by a

specific value allocated to a variable [20]. Compilers often

use the data collected when optimizing a program for

instance:

𝑥 = 𝑐 + 𝑑;

𝑥 = 10 ∗ 7;

It is easy for an optimizer to recognize that: a "useless"

assignment is the first assignment tox, since the calculated

value for x is never used (and thus the first statement can be

removed from the program). At compile time, the expression

10 ∗ 7 can be calculated, simplifying the second assignment

statement to 𝑥 = 70;

Points-to analysis: involves computing a static abstraction of

all the data to which a pointer expression (or just a variable)

may point during runtime of the program [21].

3. SUMMARY OF RELATED WORK BASED ON

PERMISSIONS OF ANDROID APPS USING STATIC

ANALYSIS

Nearly 80 percent of the papers were based on static analysis

as illustrated by the study. There is a lot of job done in static

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 83

REVIEW ARTICLE

analysis as described Table 2, and more needs to be explored

to get greater precision with a minimum amount of

characteristics, as fewer characteristics decrease regression

and classification training and testing time and provide

quicker reaction [22].

There are different reviews which talked about static malware

detection and their challenges. A framework for automatically

analyzing permission use in Android apps was suggested and

created. Permlyzer can analyze the use of permissions in

Android apps accurately and thoroughly [23].Defines a

strategy that uses system call log data to create a dataset [24].

This paper tackles the issue of android malware intrusion. Use

Rotation Forest in this article to tackle the issue of android

malware intrusion [25] .Table 2 provides a summary of the

previous work based on static analysis.

Ref Mechanis

m

Malware

Detection

Rate/

Accuracy

Strengths Weakness

[26] Stowaway Not

Stated

The

authors

tested 950

applicatio

ns and

used

stowaway

tool to

detect

over-

privilege

android

apps.

Despite

using

Stowaway

, the tool

is

incapable

of

handling

some

multifacet

ed

reflective

calls.

[27] Stowaway/

StackOverf

low

Not stated This

paper

illustrated

that the

authors

tested

10,000

apps and

offered

statistical

models

for

envisagin

g

permissio

n abuse

and call

for

permissio

In this

paper,

Stowaway

has been

used

together

with

Stack-

Over-

flow. But

according

to [26], is

incapable

of

handling

some

complex

reflective

calls

n

document

ation.

They

instituted

that the

popularity

of a

permissio

n is

sturdily

related

with its

abuse,

while

other

aspects

such as

effect and

intrusion

had little

effect.

[28] Web-based

app

Not stated The paper

analyses

500000

apps for

mobile

device

and the

privileges

they

request

using an

algorithm

of

machine

learning

in order to

rate the

risk of an

app for

developer

s and user

to adopt.

The

authors

only

mentione

d that the

apps were

extracted

and

permissio

n

analyzed

but no

tool

mentione

d or

software

that helps

the

developer

s or users

to extract

the APK

file of an

android

app.

[29] FAMOUS 99% This

paper

proposes

a

predictive

The

authors

tested

applicatio

ns and

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 84

REVIEW ARTICLE

forensic

approach

to detect

suspicious

android

applicatio

ns based

on a

trained

model

called

Forensic

Analysis

of mobile

devices

using

scoring

(FAMOU

S) which

is

intelligent

to scan all

the apps

installed

in the

attached

device

and offer

a

descriptiv

e report.

11,371

apps

tested.

showed

some

suspicious

APK file

but they

did not

mentione

d the

dataset.

They did

not

mentione

d how

many

apps were

tested to

the

devices

attached

to

FAMOUS

. The

procedure

of testing

apps

using

FAMOUS

was not

shown

hence

difficult

for the

developer

s or users

to attest

the tool.

[30] Permission

Manageme

nt App

Not stated In this

scheme,

end-users

can avert

malware

behavior

from

retrieving

sensitive

data and

invoking

sensitive

API in

real time.

The

explanatio

n

The

method

incurs

extra

performan

ce cost.

Their

proposed

scheme

was not

tested on

a real

mobile

device

hence

their

results

upsurges

the

flexibility

of

managing

permissio

n and

advances

the

security

and

consistenc

y of data

in mobile

devices.

The

authors

analyzed

2,200

apps.

can be

biased in

the real

world.

[31] APK

Auditor

88% The

authors

tested

8,762

apps and

classified

them as

malicious

or benign

successful

ly.

The

method

employs

the APK

client,

Database

signatures

and the

central

server.

The

disadvant

age to this

method is

that extra

cost is

incurred

in setting

up the

tool for

analysis.

[32] RefinedDr

oid

Not stated In this

paper the

authors

tested 727

apps to

attest for

fine-

grained

permissio

n model

which are

The tool

deployed

in this

research

is that it

modifies

the APK

file of

applicatio

n during

feature

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 85

REVIEW ARTICLE

appropriat

e for

many

standard

apps. This

tool

allows the

user to

lower the

privilege

level of

permissio

n.

extraction

. This

may lead

to

exaggerat

ed

outcomes.

[33] APK

Analyzer

Not stated The

authors

supplied

the

dataset of

576,174

android

apps

while

conductin

g the

experimen

t for free

android

app and

found

there

method to

be better

than those

used by

[34]

which

contains

possible

flaws that

cause

imperfecti

ons.

The

authors

did not

test paid

applicatio

ns to

determine

effectiven

ess of

their

methodol

ogy.

[35] Java-based

custom

built APK

analyzer

90% In this

paper the

authors

develop

and

examine

proactive

Machine

Learning

approache

The

authors

used a

small

sample

size of

malware

apps in

there

experime

s based on

Bayesian

classificat

ion

intended

to

uncover

unidentifi

ed

Android

malware.

The

authors

tested

2000

permissio

n-based

framewor

k.

nt which

might not

be

compared

to authors

using

large

samples

in the

experime

nt to

depict

model

performan

ce.

[36] DroidRay Not stated The

authors

tested

24,259

apps to

show

malware

based on

geographi

cal

spread.

The

model

helps to

curb new

form in

which

malware

spreads

out.

Their

model is

not good

enough

since it

did not

mention

the

malware

detection

rate as

compared

to

previous

studies.

[37] Weka tool Not

Stated

The

authors

used the

machine

based

learning

tool to test

200 apps

to extract

permissio

ns in

order to

examine

The

authors

tested a

small

sample

size and

they

authors

did not

classify

the

malwares

whether

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 86

REVIEW ARTICLE

whether

they are

malwares.

they are

infosteal,

Trojan

among

others.

[38] SherlockD

roid,

(Alligator)

98.04% The

authors

tested

102,156

apps

using

Alligator

which is

able to

uncover

unknown

malware.

The

authors

failed to

explore

new

clusters

and

learning

scripts.

The

authors

abscond

introducin

g weights

on

properties

so that

algorithm

s such as

deviation

do not

deliberate

each

property

with alike

status

[39] Apposcopy Not stated The

authors

evaluated

their tool

on a mass

of

available

Android

applicatio

ns and

attest that

it can

efficiently

and

reliably to

determine

malware

that fit to

definite

families.

In this

scheme it

is difficult

to design

any

signature

oriented

scheme

like

Apposcop

y since it

can be

defeated

by

obfuscatio

n scheme

such as

real

coding.

The

authors

tested

11,215

apps and

found 16

of them to

be

malwares.

[40] Woodpeck

er

Not

Stated

The

author

used their

tool

employin

g inter-

procedura

l data

flow

analysis

scheme to

exhaustiv

ely

uncover

possible

capability

disclosure

s where

an

unreliable

app can

acquire

unlawful

access to

subtle

data or

restricted

actions.

The

authors

did not

provide

the

dataset to

assist in

future

studies.

They only

stated

they

tested 13

permissio

ns in

which 11

were

leaked

[41] DroidAPI

Miner

99% In this

paper, the

authors

purpose to

alleviate

malware

installatio

n via

providing

vigorous

and

frivolous

classifiers

. The

authors

The

authors in

their

experime

nt realized

a big false

positives

and

negatives

of 2.2%

but they

did not

attest

where the

problem

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 87

REVIEW ARTICLE

extensivel

y carry

out an

analysis

to excerpt

pertinent

features

regarding

malware

behavior

netted at

API level

and

appraised

different

classifiers

by the

produced

feature set

during the

testing of

3987

apps.

occurred

during

their

analysis.

[42] DNADroid Not stated The tool

adopted

by authors

in this

study

showed a

very low

false

positive

rate and

confirmed

that all

141 apps

identified

by

DNADroi

d are

indeed

replicas

through

visual or

behavioral

confirmati

on.

The

authors

did not

mentione

d the

malware

detection

rate in

their

study.

[43] DroidCha

meleon

Not stated The

authors

found out

that all the

anti-

The

authors

failed to

strength

their

malware

products

are

susceptibl

e to

common

alterations

.

studies

but

depicting

the

detection

rate to

show best

their

model is

as

compared

to other

existing

literature.

[44] CHEX Not stated The

scholars

presented

a method

to

spontaneo

usly

discern

entry

points in

mobile

app, as

well as

the new

analysis

model and

attest that

app

splitting is

effective

and

perfect

way to

model

execution

s of

manifold

entry

points and

expedite

universal

data-flow

scrutiny.

The

authors

tested

5486 real-

world

This study

did not

put into

considerat

ion the

rate at

which the

malicious

apps were

discovere

d to

support

their

study.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 88

REVIEW ARTICLE

apps.

[45] AndroSimi

lar

94.4% The

authors

were able

to

discover

malicious

apps

vigorousl

y using

signature

statistics

in feature

selection

by

deploying

relationshi

p digest

hashing

scheme.

In their

approach

the

authors

did not

consider

memory

constrain

in

developin

g a robust

family

signature

to identify

variants

with

family

illustrativ

e

signatures

[46] DroidBarri

er

 The

authors

achieved

high

reassuranc

e by

designing

an

verificatio

n model

that uses

protected

applicatio

n

IDs,

preserved

and

secured

by system

runtime,

to validate

processes

and put

together

their

identity to

genuine

apps

installed

on the

In their

work the

authors

not focus

on

validating

inter-

process

communi

cations

and

authorizin

g

admission

to apps’

assets.

android.

Table 2 Strength and Weaknesses of selected related work

based on permissions of android apps using static analysis

4. REVERSE ENGINEERING OVERVIEW OF ANDROID

APPLICATIONS

According to [47], Reverse engineering is the analysis of a

subject system for classifying system components and their

interrelationships, and for providing a specific or higher

degree of perception image of a process. Reverse engineering

is just the process of examining the code-to-code but not

changing or replicating the source codes [22].To perform

inverse engineering .apk file needs to be decompiled which

offers Dex and Android manifest file in an indecipherable

format [48].

A number of arsenals are accessible for reverse engineering

such as JD-GUI, DEX2JAR [49], APKTOOL [50],

AXMLPRINTER2.JAR [51], ANDROGAURD[52] and

CLASSYSHARK [53]. Figure 1 depicts APK file conversion

steps to obtain the original source code of the manifest file,

resources and the java codes.

Figure 1 Reverse Engineering of APK File

In reverse engineering the APK file is extension is change

from .apk to .zip and its contents extracted to obtain meta-inf,

res, classes.dex, resources.arsc and the AndroidManifest.xml

[54]. The contents are then extracted to a specified folder for

analysis in the subsequent processes. The apktool.jar and the

apktool.bat are utilized in a command prompt to obtain the

manifest file and the java codes used as well as other

resources as shown in Figure 1 which has been modified from

the Pooja Singh et al. reference [55]. This process will enable

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 89

REVIEW ARTICLE

the user to study and analyze the permission model required

by the application in order to install it unlike the dynamic

analysis where the android application accessed the user’s

device for the user to know the permission [56].

5. DISCUSSION

In this paper, a review of about 48 articles were studied

regarding to static analysis in Android malware detection

based on manifest file which contain permissions a user must

accept before installing the application. Most of the android

applications are created by hackers in order to steal private

information of a user on the device. Previous researched

studied in this work reveals the android manifest.xml file

contain information that an application intend to do. For

instance several manifest files contain the READ_CONTACT

which reads and store all the personal contact of a user. These

contacts will be used by the hackers for their ill intentions. In

the internet several applications have been developed with

productive names to perform a certain tasks but the android

app does some different tasks like stealing photos and images

from the user’s phone. In this view it is important to analyze

the APK android file before allowing it to access to the user

device. Static analysis is the best feature as compared to

dynamic, hybrid and metadata where the APK conversion is

done before installing the file to the user’s device. APK file

cannot be studied without decompiling it to get the original

source code. Since the manifest file contain the permission

like WRITE_EXTERNAL_STORAGE, this permission will

allow malware such as adware and other dangerous ones to be

installed onto the user device and this will use the phone read

access memory thus making the phone slow. Some of these

adware are able to send and several SMS if the SEND_SMS

and RECEIVE_SMS permissions are enabled. In this study,

static analysis is recommended as its plusses outperforms the

other APK analysis features.

6. CONCLUSION

In this work, the use of static malware detection in android

malware apps was thoroughly reviewed. A comparison of

current job has been provided with regard to certain criteria.

The review identified knowledge gaps in the current job,

highlighting significant problems and opening problems that

will guide future study initiatives. Analysis of static Android

malware dominates the current job. Future work may consider

reviewing other methods such as dynamic studies or the use

of methods of hybrid assessment or deployment of metadata.

Except in a few cases, sharing research datasets and tools

among researchers lingered unaddressed. Hardening deep

learning models against various assaults on adversaries and

detecting, describing and measuring concept drift are essential

in future job on malware detection for Android. In addition,

scientists need to bear in mind the restriction of deep learning

techniques such as absence of transparency and its non-

autonomous model for building more effective models.

Finally, the findings of this job can help encourage Android

malware detection studies based on techniques of deep

learning.

REFERENCES

[1] Z. Fang, W. Han, and Y. Li, “Permission based Android security: Issues

and countermeasures,” Comput. Secur., vol. 43, no. 0, pp. 205–218,

2014.
[2] F. Tchakounté, “Permission-based malware detection mechanisms on

android: analysis and perspectives,” J. Comput. Sci., vol. 1, no. 2, pp.

63–77, 2014.
[3] M. Egele, “A Survey on Automated Dynamic Malware Analysis

Techniques and Tools Vienna University of Technology,” ACM

Comput. Surv. 44.2, vol. V, pp. 1–49, 2012.
[4] S. Karthick and S. Binu, “Static analysis tool for identification of

permission misuse by android applications,” Int. J. Appl. Eng. Res., vol.

12, no. 24, pp. 15169–15178, 2017.
[5] D. Geneiatakis, I. N. Fovino, I. Kounelis, and P. Stirparo, “A

Permission verification approach for android mobile applications,”

Comput. Secur., vol. 49, pp. 192–205, 2015.
[6] A. Skovoroda and D. Gamayunov, “Securing mobile devices: Malware

mitigation methods,” J. Wirel. Mob. Networks, Ubiquitous Comput.
Dependable Appl., vol. 6, no. 2, pp. 78–97, 2015.

[7] S. Karthick and S. Binu, “Android security issues and solutions,” IEEE

Int. Conf. Innov. Mech. Ind. Appl. ICIMIA 2017 - Proc., no. February,
pp. 686–689, 2017.

[8] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda,

“Evolution, detection and analysis of malware for smart devices,” IEEE
Commun. Surv. Tutorials, vol. 16, no. 2, pp. 961–987, 2014.

[9] M. La Polla, F. Martinelli, and D. Sgandurra, “A Survey on Security for

Mobile Devices,” IEEE Commun. Surv. Tutorials, vol. 15, no. 1, pp.
446–471, 2013.

[10] S. Mohite and P. R. Sonar, “A survey on mobile malware: war without

end,” Int. J. Comput. Sci. Bus. Informatics, vol. 9, no. 1, pp. 23–35,

2014.

[11] S. Peng, S. Yu, and A. Yang, “Smartphone Malware and Its Propagation

Modeling: A Survey,” IEEE Commun. Surv. Tutorials, vol. 16, no. 2,
pp. 925–941, 2014.

[12] M. Odusami, O. Abayomi-Alli, S. Misra, O. Shobayo, R. Damasevicius,

and R. Maskeliunas, “Android Malware Detection: A Survey,”
Commun. Comput. Inf. Sci., vol. 942, no. 2, pp. 255–266, 2018.

[13] N. DuPaul, “Static Analysis vs Dynamic Analysis | Veracode,”

VERACODE, 2019. [Online]. Available:
https://www.veracode.com/blog/2013/12/static-testing-vs-dynamic-

testing. [Accessed: 25-Oct-2019].

[14] A. Ghahrai, “Static Analysis vs Dynamic Analysis in Software
Testing,” Testing Excellence, 2018. [Online]. Available:

https://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-

software-testing/. [Accessed: 25-Oct-2019].
[15] P. Anderson, “The use and limitations of hearing aids,” J. Def. Softw.

Eng., no. 6, pp. 19–21, 2008.

[16] M. Derks, “Fair Privacy : Improving Usability of the Android

Permission System,” 2015.

[17] J. Reardon et al., “50 Ways to Leak Your Data: An Exploration of

Apps’ Circumvention of the Android Permissions System,” 28th
USENIX Secur. Symp., pp. 603–620, 2019.

[18] M. Sujithra and G. Padmavathi, “Enhanced Permission Based Malware

Detection in Mobile Devices Using Optimized Random Forest
Classifier with PSO-GA,” Res. J. Appl. Sci. Eng. Technol., vol. 12, no.

7, pp. 732–741, 2016.

[19] F. E. Allen, “Control flow analysis,” Proc. a Symp. Compil. Optim., pp.
1–19, 1970.

[20] K. D. Cooper and L. Torczon, “Chapter 9 - Data-Flow Analysis,” in

Engineering Compiler, K. D. Cooper and L. B. T.-E. a C. (Second E.
Torczon, Eds. Boston: Morgan Kaufmann, 2012, pp. 475–538.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 90

REVIEW ARTICLE

[21] L. Li et al., “Static analysis of android apps: A systematic literature

review,” Inf. Softw. Technol., vol. 88, pp. 67–95, 2017.
[22] S. R. Tiwari and R. U. Shukla, “An Android Malware Detection

Technique Using Optimized Permission and API with PCA,” Proc. 2nd

Int. Conf. Intell. Comput. Control Syst. ICICCS 2018, no. Icirca, pp.
134–139, 2019.

[23] W. Xu, F. Zhang, and S. Zhu, “Permlyzer: Analyzing permission usage

in Android applications,” 2013 IEEE 24th Int. Symp. Softw. Reliab.
Eng. ISSRE 2013, pp. 400–410, 2013.

[24] B. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy,

“Android permissions: A perspective combining risks and benefits,”
Proc. ACM Symp. Access Control Model. Technol. SACMAT, Jun.

2012.

[25] H. J. Zhu, Z. H. You, Z. X. Zhu, W. L. Shi, X. Chen, and L. Cheng,
“DroidDet: Effective and robust detection of android malware using

static analysis along with rotation forest model,” Neurocomputing, vol.

272, pp. 638–646, 2018.

[26] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android

permissions demystified,” Proc. ACM Conf. Comput. Commun. Secur.,

pp. 627–636, 2011.
[27] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen, “Asking for

(and about) permissions used by android apps,” IEEE Int. Work. Conf.
Min. Softw. Repos., pp. 31–40, 2013.

[28] N. Gruschka, L. Lo Iacono, and J. Tolsdorf, “Classification of android

app permissions: Tell me what app you are and i tell you what you are
allowed to do,” Eur. Conf. Inf. Warf. Secur. ECCWS, vol. 2018-June,

no. June, pp. 181–189, 2018.

[29] A. Kumar, K. S. Kuppusamy, and G. Aghila, “FAMOUS: Forensic
Analysis of MObile devices Using Scoring of application permissions,”

Futur. Gener. Comput. Syst., vol. 83, pp. 158–172, 2018.

[30] S. Niu, R. Huang, W. Chen, and Y. Xue, “An Improved Permission
Management Scheme of Android Application Based on Machine

Learning,” Secur. Commun. Networks, vol. 2018, pp. 1–12, 2018.

[31] K. A. Talha, D. I. Alper, and C. Aydin, “APK Auditor: Permission-
based Android malware detection system,” Digit. Investig., vol. 13, pp.

1–14, 2015.

[32] J. Jeon et al., “Dr. android and Mr. hide: Fine-grained permissions in
android applications,” Proc. ACM Conf. Comput. Commun. Secur., pp.

3–14, 2012.

[33] N. Munaiah et al., “Darwin: A static analysis dataset of malicious and
benign android apps,” WAMA 2016 - Proc. Int. Work. App Mark. Anal.

co-located with FSE 2016, pp. 26–29, 2016.

[34] T. K. Chawla and A. Kajala, “Transfiguring of an Android App Using
Reverse Engineering,” Int. J. Comput. Sci. Mob. Comput., vol. 3, no. 4,

pp. 1204–1208, 2014.

[35] S. Y. Yerima, S. Sezer, and G. McWilliams, “Analysis of Bayesian
classification-based approaches for Android malware detection,” IET

Inf. Secur., vol. 8, no. 1, pp. 25–36, 2014.

[36] M. Zheng, M. Sun, and J. C. . Lui, DroidRay: A Security Evaluation
System for Customized Android Firmwares. 2014.

[37] Z. Aung and W. Zaw, “Permission-Based Android Malware Detection,”

Int. J. Sci. Technol. Res., vol. 2, no. 3, pp. 228–234, 2013.
[38] L. Apvrille, L. Apvrille, and A. S. Industries, “Pre-filtering Mobile

Malware with Heuristic Techniques,” GreHack 2013, Grenoble, Fr., no.

June 2013, pp. 43–59, 2013.
[39] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-

based detection of android malware through static analysis,” Proc. ACM

SIGSOFT Symp. Found. Softw. Eng., vol. 16-21-Nove, pp. 576–587,
2014.

[40] M. Grace, Y. Zhou, Z. Wang, X. Jiang, and O. Drive, “Systematic

Detection of Capability Leaks in Stock Android Smartphones,” Ndss,
2012.

[41] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-Level

Features for Robust Malware Detection in Android BT - Security and
Privacy in Communication Networks,” 2013, pp. 86–103.

[42] J. Crussell, C. Gibler, and H. Chen, “Attack of the Clones: Detecting

Cloned Applications on Android Markets BT - Computer Security –
ESORICS 2012,” 2012, pp. 37–54.

[43] V. Rastogi, Y. Chen, and X. Jiang, “Catch Me If You Can: Evaluating

Android Anti-Malware Against Transformation Attacks,” IEEE Trans.
Inf. Forensics Secur., vol. 9, no. 1, pp. 99–108, 2014.

[44] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically Vetting

Android Apps for Component Hijacking Vulnerabilities,” in
Proceedings of the 2012 ACM Conference on Computer and

Communications Security, 2012, pp. 229–240.

[45] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal,
“AndroSimilar: Robust Statistical Feature Signature for Android

Malware Detection,” in Proceedings of the 6th International Conference

on Security of Information and Networks, 2013, pp. 152–159.
[46] H. M. J. Almohri, D. (Daphne) Yao, and D. Kafura, “DroidBarrier:

Know What is Executing on Your Android,” in Proceedings of the 4th

ACM Conference on Data and Application Security and Privacy, 2014,

pp. 257–264.

[47] E. J. Chikofsky and J. H. Cross, “Reverse Engineering and Design

Recovery: A Taxonomy,” pp. 13–17, 1990.
[48] S. R. Tiwari and R. U. Shukla, “An Android Malware Detection

Technique Based on Optimized Permissions and API,” Proc. Int. Conf.
Inven. Res. Comput. Appl. ICIRCA 2018, no. January, pp. 258–263,

2018.

[49] H. A. Alatwi, “Android malware detection using category-based
machine learning classifiers,” 2016.

[50] M.-Y. Su and K.-T. Fung, “Detection of android malware by static

analysis on permissions and sensitive functions,” in 2016 Eighth
International Conference on Ubiquitous and Future Networks (ICUFN),

2016, pp. 873–875.

[51] X. Li, J. Liu, Y. Huo, R. Zhang, and Y. Yao, “An Android malware
detection method based on AndroidManifest file,” in 2016 4th

International Conference on Cloud Computing and Intelligence Systems

(CCIS), 2016, pp. 239–243.
[52] C. Liu, Z. Zhang, and S. Wang, “An Android Malware Detection

Approach Using Bayesian Inference,” in 2016 IEEE International

Conference on Computer and Information Technology (CIT), 2016, pp.
476–483.

[53] K. Wang, T. Song, and A. Liang, “Mmda: Metadata Based Malware

Detection on Android,” in 2016 12th International Conference on
Computational Intelligence and Security (CIS), 2016, pp. 598–602.

[54] S. Lachure, U. Pagrut, N. Jichkar, N. Khan, and J. Lachure, “Reverse

Engineering APKS for Analysis,” pp. 268–272, 2018.
[55] P. Singh, P. Tiwari, and S. Singh, “Analysis of Malicious Behavior of

Android Apps,” Procedia Comput. Sci., vol. 79, pp. 215–220, 2016.

[56] B. Bonné, S. T. Peddinti, I. Bilogrevic, N. Taft, S. Clara, and B. Bonné,
“Exploring decision making with Android ’ s runtime permission

dialogs using in-context surveys This paper is included in the

Proceedings of the permission dialogs using in-context surveys,” no.
Soups, 2017.

Authors

Hamida Lubuva received her Bachelor Electronics

and Communication Engineering in 2016 from the, St.

Joseph University, Tanzania. She is currently pursuing

Master Degree in Information and Communication
Engineering at the University of Science and

Technology Beijing. Her research areas include;

Terminal Detection, Networking, Network security,
Data Privacy.

Huang Qiming is an associate Professor and Master

Tutor of Beijing University of Science and
Technology, Huazhong University of Science and

Technology, Postdoctoral Fellow, Department of

Computer Science, Zhejiang University, Associate
Research Fellow, School of Computer, Beijing

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2019/187292 Volume 6, Issue 5, September – October (2019)

ISSN: 2395-0455 ©EverScience Publications 91

REVIEW ARTICLE

University of Posts and Telecommunications, Visiting Scholar, University of

Hong Kong. At the Beijing University of Science and Technology, the School
of Computing, the future of the Internet of Things, cloud computing

encryption certification and authorization, block chain smart contracts, data

privacy protection and deep learning based computer video classification,
network intrusion detection direction of scientific research work, and

committed to Applications in smart cities, industrial internet, health care

information systems, and car networking. He has published more than 50
academic papers, and more than 20 papers have been included in SCI and EI.

There are 1 collection of papers, 1 joint, and 4 textbooks. Teaching data

structure and algorithm analysis, mobile Internet, communication network
security foundation, modern communication security foundation, computer

network, software engineering, computer introduction and programming.

Godfrey Charles Msonde; received his Bachelor

Degree of Science in Economics in 2012 from

Mzumbe University, Tanzania. In 2019，He

graduated Masters of National Economics from
Renmin University of China, Beijing China. He is

currently pursuing Master of International Public

Policy at Wilfrid Laurier University, Canada. His
research areas include Digital economy, development

studies, Big Data, Smart Agriculture to Africa.

