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Abstract – In Wireless Sensor Networks, diverse nodes are 

associated with each other for monitoring definite circumstances. 

So, sensors are considerably utilized in distinct real-time 

utilizations namely remote operated unmanned vehicle, 

atmospheric surveillance, disaster management, and so on. 

Transmitting data from a remote operated unmanned vehicle to 

server via Long Term Evolution (LTE) with the harmony of 

Bluetooth Low Energy (BLE) relaying remains the core of 

significant data transmission in wireless networks. The 

utilization of Unmanned Aerial Vehicles (UAVs) for wireless 

networks is swiftly heightening as the driving force of new 

applications due to their distinctive resources for improving 

coverage and energy efficiency of wireless network UAVs act as 

base stations. In other condition, data-driven Deep Learning-

assisted (DL) strategies using multilayer perceptron are 

acquiring an increasing interest for not utilizing huge frequency 

of generated data, however ensuring network procedure in an 

optimal manner and hence providing QoS requirements of 

wireless networks. But, UAVs is resource-constrained devices 

specifically in power resources and data transmission. With 

traditional DL scheme being cloud-centric necessitate UAVs' 

data are stored in centralized server, therefore generating huge 

communication overhead and thus result in network bandwidth 

and energy inefficiency of UAV devices. To address these issues 

in this work, a Fully Recursive Long Short Term Memory (FR-

LSTM) for improving data transmission rates and quality of 

service in wireless networks is proposed. Initially, Deep 

Learning-based model was designed in Long Term Evolution 

(LTE) Dominant Influencing Criterions (DIC) estimation. The 

applications of power resources and bandwidth allocation 

(PRBA) in self-organizing LTE small cell network, therefore 

minimizing RMSE and average end-to-end delay involved in 

transmission. Next, a Fully Recursive Perceptron Network 

(FRPC) and LSTM model was utilized and applied for DIC to 

resolve the UAV position which reduces overall system 

performance and user throughput. Hence, for classification 

regression tasks, when is there no LTE signal, data can be 

transmitted to another device through BLE (Bluetooth Low 

Energy), therefore ensuring throughput and ensuring minimum 

latency. The effectiveness of FR-LSTM is yet to be validated 

using four kinds of evaluation metrics with diverse number of 

nodes, namely, RMSE, throughput, average end-to-end delay, 

and latency. 

Index Terms – Wireless Sensor Network, Long Term Evolution, 

Long Short Term Memory, Dominant Influencing Criterion, 

Root Mean Square Error, Power Resources and Bandwidth 

Allocation. 

1. INTRODUCTION 

Long Term Evolution identification necessitates Medium 

Access Control (MAC) scheduler entity in bestows full proof 

QoS in downlink and uplink direction. However, LTE-MAC 

usually takes into consideration only single impediment like, 

radio resource availability, user throughput and channel 

conditions so on. However, in reality not taking into 

consideration all the constraints in a synchronous manner 

would affect the QoS requirements.  

A multilayer perceptron neural network was proposed in [1] 

based on UAV localization was proposed with the objective 

of enhancing the localization accuracy. Here, the UAV height 

plays the dominant role on accuracy aspect, the flying height 

was initially optimized and followed by which the localization 

was said to be performed. Moreover, nonlinear MLP model 

with nonlinear activation functions was employed that in turn 

serves enhanced as localizing node in WSNs by UAV, 

therefore not only improving localization accuracy but also 

minimizing the deployment cost. However, MLP-based 
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localization for Unknown Nodes (UN) localization in UAV 

aided WSN is resource-constrained devices specifically in 

power resources and data transmission. 

A Multi Objective QoS aware LTE-A Downlink-MAC 

Scheduler (MOQDS) method was proposed in [2] that 

provided a two level QoS and fairness analysis. Here, the 

scheduling were said to be performed at various levels by 

means of each level provides own objective with respect to 

numerous operational restrictions. Each transmission time 

gap, the method utilized multi-objective optimization for the 

purpose of obtaining correct users’ based on the utilization for 

converged LTE QoS requirements. With this average 

reduction in packet drop was said to be ensured along with the 

improved cell throughput. However with multi objective multi 

constraint being cloud-centric due to cloud-based radio access 

networks for LTE necessitates UAVs' data to be stored in a 

centralized server, therefore generating huge communication 

overhead and thus result in network bandwidth and energy 

inefficiency of UAV devices. 

In this article, novel data transmission method was designed 

from unmanned vehicle to the server via LTE, called, Fully 

Recursive Long Short Term Memory (FR-LSTM) which will 

simultaneously address QoS and data transmission in wireless 

network. The contributions are given below. 

1.1. Contribution 

 A new Fully Recursive Long Short Term Memory (FR-

LSTM) method is developed and it can effectively 

perform data transmission for UAVs via LTE and BLE 

into a unified representation. The spatial and temporal 

factors that influence data traffic generation are Deep 

Influencing Learning-based LTE and Fully Recursive 

Perceptron-based Long Short Term Memory. 

 To capture the optimal vehicle when network coverage is 

available, a Deep Influencing Learning-based LTE 

algorithm is put forward to obtain data matrix split into 

different grids based on frequency and bandwidth. Then, 

a successive Dominant Influencing Criterions (DIC) 

strategy is proposed to capture the deviations and 

covariance of each vehicle.  

 The Fully Recursive Perceptron-based Long Short Term 

Memory is also explored to fully utilize the mapping 

from an input sequence to output sequence, updating the 

weight and bias by employing Fully Recursive 

Perceptron, thus further analyzing UAV positioning 

performance.  

1.2. Motivation  

Many researchers have been carried out for data transmission. 

But the consumption of energy is higher. 

 Data transmission rate was found to be too low. 

 Security aspects were not analyzed. 

 Large number of overhead. 

 Bandwidth and energy is inefficient. 

 Performance analysis was not carried out. 

 Small amount of latency and signaling overhead. 

This motivates to introduce the Fully Recursive Long Short 

Term Memory (FR-LSTM) method. 

1.3.  Scope 

The scope of wireless data transmission is used to reduce the 

time consumption while communication between sender and 

receiver. In addition transmission overhead needs to be 

reduced during data communication. 

The rest of the articles are organized as follows. Section 2 

describes overview of significant data transmission for UAV 

in wireless networks. Section 3 explains Fully Recursive 

Long Short Term Memory (FR-LSTM) method and analysis. 

Section 4 illustrates UAV positioning and data transmission 

metrics to estimate FR-LSTM method. Section 5 explains 

simulation parameters and discusses in detail by comparing it 

with state-of-the-art methods. Section 6 concludes the present 

work. 

2. RELATED WORKS 

Over of the past few years, Unmanned Aerial Vehicle (UAV) 

is being considered as the future device for distinct 

application solutions and also has been accessible for practical 

development. This is due to the reason that with the advanced 

sensor implementations, autopilot missions are said to be 

implemented for different applications. In [3], secured UAV-

assisted heterogeneous network environment was proposed to 

ensure secure continuous connectivity. Challenges and several 

open problems and issues accordingly concerning use of UAV 

based on Federated Deep Learning (FDL) was investigated in 

[4]. An elaborate study was conducted in [5] to minimize 5G 

deployment cost within small and medium-sized enterprises.  

The utilization of UAVs as wireless communication 

manifestos for easing communication has received great level 

of significance in the recent years. Vehicles that bestow such 

prerequisites are essential in dreadful circumstances for 

assisting rescue squads for reducing fatalities and keep away 

from supplement destruction in the concerned area. Line of 

sight and non-line of sight were discussed in [6] detail for 

healthcare applications. However, the data transmission rate 

was found to be too low. To improve the data transmission 

rate, massive random access of devices was performed in [7] 

using double queue model.  

Taking into consideration the rising requirements of maritime 

digital data services, there arise a requirement to design 
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maritime communications assisting high-speed data rates and 

improved communication exposure. A long term development 

for maritime was designed in [8] therefore improving 

communication coverage in an extensive manner. 

Performance modeling and analysis of LTE system to access 

unlicensed spectrum was designed in [9]. However, security 

aspects were not analyzed. To address this issue, a non-

repudiation key hint transmission between devices was 

proposed in [10], therefore contributing to protected data 

sharing in D2D communication.  

Long Term Evolution (LTE) in unlicensed spectrum band 

(LTE-U) is presented that used 5 Giga Hertz for 3rd 

Generation Partnership Project (3GPP) in the cellular 

networks. However, performance analysis was not carried out. 

In [11] with the weighted area spectral efficiency, the 

transmission duration was said to be improved enhancing the 

transmission duration also. On the other hand, wavelet 

transforms were employed in [12] to significantly minimizing 

the error involved. However, issues were related to over load 

remained unaddressed. To address this issue, current 

standardized solutions were analyzed for group-based 

communication in [13]. 

A novel vertical handover scheme was proposed in [14] on 

the basis of a multi-criteria prediction decision. With this, 

accuracy percentage involved in vertical handover was said to 

be improved significantly. Yet another heuristic method 

integrating radio and transport resources was investigated in 

[15] with the objective of reducing the total cost involved in 

handover. Yet another enhanced handover mechanism 

employing mobility prediction was proposed in [16] to not 

only improve the network throughput but also to reduce the 

retransmission gradually.   

However, the above said techniques may cause a small 

amount of latency and signaling overhead. To address this 

issue, a user application based commercial access point 

selection method was proposed in [17], therefore minimizing 

the association latency and achieving higher throughput. 

Certain insights and methods for LTE using Orthogonal 

Frequency Division Multiplexing was investigated in [18] 

therefore improving robustness and reliability to certain 

extent. A historical perspective involving evolution and 

impact of Wi-Fi was investigated in [19]. Yet another 

performance evaluation model for vehicular networking 

concerning LTE towards minimization of delay was proposed 

in [20]. A joint resource allocation problem based on 

cognitive radio (CR) techniques was developed in [21] for 

user equipment with multi-homing capabilities. The long-term 

dynamical evolution and orbital lifetime of low-inclination 

GTOs are introduced in [22] based on the Semi-analytic Tool 

for End of Life Analysis software (STELA) with the solar 

radiation pressure (SRP) and Earth's shadow taken into 

account. A measurement-based neural-network-based root-

mean-square (RMS) delay spread model was designed in [23] 

for ubiquitous indoor IoTs scenarios. The Long Short-Term 

Memory (LSTM) Neural Network model was developed in 

[24] to predict irrigation prescriptions. The cloud radio access 

network (C-RAN) architecture is proposed in [25] to fully 

meet the requirements of 5G mobile networks. 

Previous proposal have made extensive contributions to the 

deployment of UAV and data transmission. Although with 

high resource constraint the QoS is said to be compromised. 

For this reason, this study supplements previous research 

studies by proposing new method, Fully Recursive Long 

Short Term Memory (FR-LSTM) and its elaborate description 

is provided in the forthcoming sections. 

3. FULLY RECURSIVE LONG SHORT TERM MEMORY 

(FR-LSTM) METHOD 

In this section, the proposed Fully Recursive Long Short 

Term Memory (FR-LSTM) method is introduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Block Diagram of Fully Recursive Long Short Term 

Memory (FR-LSTM) Method 

In Figure 1, a broad interpretation on the main body of FR-
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forwarding to the server through LTE, the Deep Influencing 

Learning-based LTE algorithm is designed. With this both the 

error in obtaining optimal vehicle is reduced with minimum 

end-to-end delay in transmission. Then, a Fully Recursive 

Perceptron-based LTE strategy is put forward to enhance 

throughput with minimum delay in data transmission. 

3.1. System Model 

In this section, the information flow and power configuration 

from transmitter ‘𝑇𝑖(𝑈𝐴𝑉)’ denoted as ‘𝐵𝑆’ to the receiver 

‘𝑅𝑖(𝑈𝑠𝑒𝑟𝑠)’ denoted as ‘𝑈’ is presented. It comprises 

network environment by ‘𝑡ℎ𝑟𝑒𝑒 𝐵𝑆’ as base station ‘𝐵𝑆’ and 

‘𝑛𝑈𝑠’ represented by ‘𝑈1, 𝑈2, … , 𝑈𝑛’ that are served by the 

deployed ‘𝐵𝑆’. On the basis of the system model structure, all 

‘𝐵𝑆’ communicate with each other and are positioned at 

different locations.  Let us consider a graph ‘𝐺(𝐵𝑆, 𝐸)’, where 

‘𝐵𝑆’ represents the set of UAVs, also the positions cannot be 

changed and ‘𝐸’ represents the set of links between users ‘𝑈𝑖’ 

and ‘𝑈𝑗’. Moreover, a link ‘𝐿(𝐵𝑆𝑖 , 𝐵𝑆𝑗)’ is said to exist 

between any two base stations ‘𝐵𝑆𝑠’ if and only if they lie 

within the transmission range of each other, ‘𝐿(𝐵𝑆𝑖 , 𝐵𝑆𝑗) >

𝐷𝑖𝑠(𝑃𝐵𝑆𝑖 , 𝑃𝐵𝑆𝑗) ≤ 𝑇𝑖’, where ‘𝑇𝑖’ refers to the transmission 

range and ‘𝑃𝐵𝑆𝑖 , 𝑃𝐵𝑆𝑗’ denote the positions of two base 

stations ‘𝐵𝑆𝑖’, ‘𝐵𝑆𝑗’ respectively.  In addition each ‘𝐵𝑆 𝑢 ∈

𝑈’ provides communication service to set of users, ‘𝑆(𝑈)’ 

where each user receives signals from single base station 

‘𝐵𝑆’. 

3.2. Deep Influencing Learning-based LTE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Block Diagram of Deep Influencing Learning-based 

LTE Model 

While transmitting data from a remote operated unmanned 

vehicle to server via Long Term Evolution (LTE) with the 

coexistence of BLE Relaying resource-constrained device 

nature in terms of power and bandwidth, a strict delay is 

introduced, therefore causing error also. To address this issue 

in this section, first, a Deep Learning-based model for Long 

Term Evolution (LTE) Dominant Influencing Criterions 

(DIC) estimation is presented. This application is analyzed to 

the use case of power resources and bandwidth allocation 

(PRBA) for self-organizing LTE small cell network, therefore 

reducing RMSE and average end-to-end delay involved in 

transmission. Figure 2 shows the block diagram of Deep 

Influencing Learning-based LTE model. 

In figure 2, let us consider a sequence of data points for each 

unmanned vehicle ‘𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛’ and ‘𝑉𝑃,𝐵’ represents 

the data traffic matrix taking into consideration both the 

power ‘𝑃’ and bandwidth ‘𝐵’. Then, then at ‘𝑡𝑡ℎ’ time 

interval with the service ‘𝑆’ representing the power and 

bandwidth, the data traffic matrix is mathematically expressed 

as given below.  

 𝑉𝑆,𝑡 =

[
 
 
 
 
 𝑣𝑆,𝑡

(1,1)
𝑣𝑆,𝑡

(1,2)
… 𝑣𝑆,𝑡

(1,𝑛)

𝑣𝑆,𝑡
(2,1)

𝑣𝑆,𝑡
(2,2)

… 𝑣𝑆,𝑡
(2,𝑛)

… … … …
… … … …

𝑣𝑆,𝑡
(𝑚,1)

𝑣𝑆,𝑡
(𝑚,2)

… 𝑣𝑆,𝑡
(𝑚,𝑛)

]
 
 
 
 
 

      (1) 

From equation (1), the data traffic matrix for each vehicle 

with power and bandwidth, ‘𝑉𝑆,𝑡’ is derived based on its 

corresponding service ‘𝑆’ including power ‘𝑃’ and bandwidth 

‘𝐵’ at time ‘𝑡’ with coordinates ‘(𝑚, 𝑛)’ respectively. If the 

receiver ‘𝑅𝑖(𝑈𝑠𝑒𝑟𝑠)’ has LTE signal and upon availability of 

the network coverage, the correlation coefficient is 

mathematically expressed as given below.  
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From equation (2), ‘𝑣(𝑚,𝑛)’ represent the mean value of the 

vehicles services (i.e., based on power and bandwidth) over 

time domain ‘𝑡’. However, in case of uneven distribution or 

upon non-existence of LTE signal, then, Dominant 

Influencing Criterions (DIC) employing the Pearson Spatial 

Correlation (PSC) is measured to permit data transmission via 

Bluetooth Low Energy (BLE). Finally, upon detecting the 

LTE signal transfer can be made. The probability estimation 

using is mathematically expressed as given below. 
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From equation (3), the estimation of DIC is measured based 

on the PSC ‘𝜌’ employing the covariance operator for the 

respectively unmanned vehicle ‘𝐶𝑂𝑉’, standard deviation of 

the corresponding vehicles ‘𝜎’, actual coordinates ‘(𝑚, 𝑛)’ 

and referral coordinates ‘(𝑚′, 𝑛′)’ respectively. Finally, the 

power and bandwidth optimized vehicle for data forwarding is 

obtained as given below.  

 𝑣𝑜𝑝𝑡 = 𝑂𝑉 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝜌(𝑚,𝑛) (4) 

From equation (4), the optimal vehicle for data forwarding 

‘𝑣𝑜𝑝𝑡’ is selected using the argmax function ‘𝑎𝑟𝑔𝑚𝑎𝑥’ 

relative to the DIC employing PSC ‘𝜌(𝑚,𝑛)’ respectively. The 

pseudo code representation of Deep Influencing Learning-

based LTE for optimal unmanned serving vehicle for data 

forwarding is given below.  

Input: Unmanned vehicles ‘𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛’ 

Output: Optimal vehicle ‘𝑂𝑉 = 𝑜𝑣1 , 𝑜𝑣2, … , 𝑜𝑣𝑛’ 

1: Initialize power ‘𝑃’, bandwidth ‘𝐵’, time ‘𝑡’ 

2: Begin 

3: For each unmanned vehicles ‘𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛’ 

4: Obtain the data traffic matrix using (1) 

5: Estimate correlation coefficient upon availability of the 

network coverage using (2) 

6: Evaluate Dominant Influencing Criterions (DIC) using (3) 

7: Return (power and bandwidth optimized vehicle for data 

forwarding) 

8: End for  

9: End 

Algorithm 1 Deep Influencing Learning-based LTE 

In algorithm 1, Deep Influencing Learning-based LTE 

objective remains in obtaining the power and bandwidth 

optimized vehicle for data forwarding. First, data traffic 

matrix is generated based on two resources, power and 

bandwidth. Next, correlation coefficient is estimated for the 

available network so that the RMSE involved in selecting the 

optimal vehicle is minimized. Finally, optimal vehicle is 

arrived at based on the DIC, therefore reducing the end-to-end 

delay involved in transmission. 

3.3. Fully Recursive Perceptron-based Long Short Term 

Memory 

In wireless system, the performance and throughput 

estimation for UAV system heavily based on data traffic load 

and offered resource (i.e., power and bandwidth) to support 

that load. To address this issue in this section, with the 

obtained resource optimized unmanned vehicle, a Fully 

Recursive Perceptron Network (FRPC) and LSTM model is 

designed. FRPC with LSTM is applied to DIC to determine 

UAV position that in turn maximizes overall system 

performance and throughput. Figure 3 shows the block 

diagram of Fully Recursive Perceptron-based Long Short 

Term Memory model. 

 

 

 

 

 

 

 

 

 

 

Figure 3 Block Diagram of Fully Recursive Perceptron-based 

Long Short Term Memory Model 

In figure 3, let us utilize the LSTM to model LTSE temporal 

dependency and to estimate UAV positioning. Here, LSTM 

network evaluates the mapping from an input sequence, 

‘𝑂𝑉 = (𝑜𝑣1, 𝑜𝑣2, … , 𝑜𝑣𝑛)’ to an output sequence, ‘𝑌 =
(𝑦1, 𝑦2, … , 𝑦𝑡)’ by estimating the network unit activations 

employing the equations given below in an iterative manner.  

𝑖𝑡 = 𝜎 (𝑊𝑖𝑜𝑣𝑂𝑉𝑡 + 𝑊𝑖𝑚𝑀𝑡−1 + 𝑊𝑖𝑐𝐶𝑡−1 + 𝑏𝑖) 
                       (5) 

𝑓𝑡 = 𝜎 (𝑊𝑓𝑜𝑣𝑂𝑉𝑡 + 𝑊𝑓𝑚𝑀𝑡−1 + 𝑊𝑖𝑐𝐶𝑡−1 + 𝑏𝑓) 

                      (6) 

𝑐𝑡 = 𝑓𝑡  ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔 (𝑊𝑐𝑜𝑣𝑂𝑉𝑡 + 𝑊𝑐𝑚𝑀𝑡−1 + 𝑏𝑐)
                      (7) 

𝑜𝑡 = 𝜎 (𝑊𝑜𝑜𝑣𝑂𝑉𝑡 + 𝑊𝑜𝑚𝑀𝑡−1 + 𝑊𝑜𝑐𝐶𝑡 + 𝑏𝑜) 

                     (8) 

𝑦𝑡 = (𝑊𝑦𝑚𝑀𝑡 + 𝑏𝑦)      (9) 

From equations (5) to (9), ‘𝑖𝑡’, ‘𝑓𝑡’, ‘𝑜𝑡’ denotes the input gate 

(i.e., input sequences representing the optimal vehicles), 

forget gate and output, ‘𝑐’ and ‘𝑚’ represents the activation 

vectors for each cell (i.e., for each input sequence) of memory 

block, weight matrices ‘𝑊’ bias vectors ‘𝑏’ are employed to 

construct associations among input layer, output layer, and 

memory block based on data traffic load and the available 

resource. Here, ‘⊙’ denotes the scalar product of two vectors 

i.e., forget vector and cell state with ‘𝜎(. )’ representing the 

standard logistics sigmoid function, and ‘𝑔(. )’ and ‘ℎ(. )’ 

corresponds to the cell input and cell output activation 

𝐼𝑛𝑝𝑢𝑡 𝐺𝑎𝑡𝑒 𝑂𝑢𝑡𝑝𝑢𝑡 𝐺𝑎𝑡𝑒 

𝐶 ℎ 𝑂𝑉 𝑂𝑉 𝑂𝑉𝑡 𝑦 
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functions. The Fully Recursive Perceptron-based Long Short 

Term Memory gate are the integration of input the forget 

gates, and preceding hidden state ‘ℎ’ is associated to the reset 

gate, whereas in the conventional LSTM, the memory content 

to be utilized in the network is supervised by the output gate 

at time ‘𝑡’. Followed by which an instantaneous error 

criterion is formulated as given below. 

 𝐸𝐶 =
1

2
(𝑒𝑇𝑒)   (10) 

From equation (10), the error criterion ‘𝐸𝐶’ is measured on 

the basis of the output error as ‘(𝑒𝑖 = 𝑎𝑜𝑖 − 𝑒𝑜𝑖)’, with ‘𝑎𝑜𝑖’ 

representing the actual output and ‘𝑒𝑜𝑖’ denoting the 

estimated output respectively. Next, with the aid of Fully 

Recursive Perceptron Network (FRPC), the weight and bias 

factors are evaluated to determine the position of a UAV and 

this is mathematically expressed as given below. 

 𝑊𝑖𝑗
𝑛𝑒𝑤 = 𝑊𝑖𝑗

𝑜𝑙𝑑 − 𝜂
𝜕𝐽

𝜕𝑊𝑖𝑗
  (11) 

 
𝜕𝐽

𝜕𝑏𝑖
= ∑ 𝑒𝑖

𝜕𝑦𝑖

𝜕𝑏𝑖

𝑛
𝑖=1 = ∑ 𝑒𝑖

𝜕𝑊𝑖𝑗𝑖𝑗

𝜕𝑏𝑖

𝑛
𝑖=1  (12) 

 
𝜕𝐽

𝜕𝑏𝑖
= ∑ 𝑒𝑖

𝑛
𝑖=1 ∑ 𝑊𝑖𝑗

𝜕𝑖𝑗

𝜕𝑏𝑖
 𝑛

𝑖=1   (13) 

From equations (12) and (13), the position of UAV is 

estimated on the weight ‘𝑊𝑖𝑗’ and bias factor ‘𝑏𝑖’ 

respectively. The pseudo code representation of Fully 

Recursive Perceptron-based Long Short Term Memory for 

UAV positioning is given below.  

In algorithm 2, Fully Recursive Perceptron-based LSTM 

objective here remains in obtaining the positioning of UAV 

with maximum throughput and minimum latency. To achieve 

this objective, first, the network unit activations for each 

unmanned vehicles and input sequences are measured via 

Fully Recursive Perceptron-based Long Short Term Memory 

gate. This model possesses the advantage of connecting the 

hidden gate directly to the input, whereas in the conventional 

LSTM model it is connected via the output gate. 

Input: Unmanned vehicles ‘𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛’ 

Output: UAV positioning with minimum latency and 

maximum throughput 

1: Initialize input sequence, ‘𝑂𝑉 = (𝑜𝑣1, 𝑜𝑣2, … , 𝑜𝑣𝑛)’, 

weight matrices ‘𝑊’ and bias vectors ‘𝑏’ 

2: Begin 

3: For each Unmanned vehicles ‘𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛’ input 

sequence, ‘𝑂𝑉’ 

4: Estimate input gate, forget gate, cell state and output gate 

using (5), (6), (7) and (8) 

5: Estimate output sequence using (9) 

6: Estimate weight using (10) 

7: Evaluate bias using (11) and (12) 

8: Return UAV positioning  

9: End for 

10: End 

Algorithm 2 Fully Recursive Perceptron-based Long Short 

Term Memory 

With this the throughput involved in UAV positioning is said 

to be improved. Next, with the aid of Fully Recursive 

Perceptron employed in evaluating the weight and bias get rid 

of obtaining amount of hidden layers and neurons (i.e., layer 

power and bandwidth optimized vehicle), therefore reducing 

the latency. 

4. EXPERIMENTAL SETUP 

The experimental settings of proposed Fully Recursive Long 

Short Term Memory (FR-LSTM) method are implemented in 

NS-2 simulator. The FR-LSTM method is simulated in a 

network area of size 1500m * 1500m for conducting 

simulation using 500 different nodes or unmanned vehicles. 

The simulation parameters utilized in our work are shown in 

Table 1. 

Simulation Parameter Value 

Network area 1500m * 1500m 

Number of unmanned 

vehicles  

50, 100, 150, 200, 250, 

300, 350, 400, 450, 500 

Vehicle distribution Uniform random 

Initial energy in each 

unmanned vehicle  

2J 

Control packet size 48bytes 

Data packet size 100bytes 

Simulation time 100s 

Pause time 10s 

Mobility model Random Way Point 

Transmission range 300m 

Number of runs 10 

Table 1 Simulation Parameters 

5. SIMULATION PARAMETERS AND DISCUSSION 

The simulation of proposed FR-LSTM method for 500 

different unmanned vehicles for measuring the proposed 

performance is presented in this section. The performance of 

FR-LSTM method is measured in error, end-to-end delay, 
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throughput and latency. The result of FR-LSTM method is 

compared with existing multilayer perceptron neural network 

[1] and MOQDS [2] methods. 

5.1. Performance Measure of End-to-End Delay  

Remote operated unmanned vehicle is an end-to-end delay 

incurred in identifying optimal vehicle. This is 

mathematically expressed as given below. 

 𝐸2𝐸𝐷 = ∑ 𝑉𝑖 ∗ 𝑇𝑖𝑚𝑒 [𝑣𝑜𝑝𝑡]𝑛
𝑖=1   (14) 

From equation (14), the end-to-end delay ‘𝐸2𝐸𝐷’ is 

calculated on the basis of number of unmanned vehicles 

involved in simulation ‘𝑉𝑖’ and the time consumed in 

obtaining optimal vehicles ‘𝑇𝑖𝑚𝑒 [𝑣𝑜𝑝𝑡]’ across a network for 

source to destinations. It is measured in milliseconds (ms).  

The impact of end-to-end delay on data delivery performance 

is shown in Table 2. 

Number of 

Unmanned 

Vehicles 

Average End-to-End Delay 

FR-

LSTM 

Multilayer 

Perceptron 

Neural 

Network 

MOQDS 

50 1.25 2 2.25 

100 1.95 2.25 3.05 

150 2.15 2.4 3.25 

200 2.55 2.95 3.55 

250 2.6 3.15 3.85 

300 2.95 3.45 4.35 

350 3.15 3.95 4.95 

400 3.55 4.25 5 

450 3.75 4.45 5.15 

500 3.95 4.85 5.35 

Table 2 Impact of Average End-to-End Delay Using FR-

LSTM, Multilayer Perceptron Neural Network [1] and 

MOQDS [2] 

From table 2, the end-to-end delay performance for FR-

LSTM, multilayer perceptron neural network and MOQDS 

methods. Taking performance in end-to-end delay as an 

example, proposed FR-LSTM method brings about 37.5% 

and 44.44% improvements when compared to [1] and [2] for 

50 number of unmanned vehicles into consideration. 

 

Figure 4 Average End-to-End Delay Comparisons for FR-

LSTM, Multilayer Perceptron Neural Network [1] and 

MOQDS [2] 

Figure 4 illustrates the end-to-end delay of proposed FR-

LSTM method and existing multilayer perceptron neural 

network [1] and MOQDS [2] depended on the number of 

iterations. Variation was identified in end-to-end delay 

estimation when dissimilar numbers of epochs were 

employed. The figure demonstrates the calculated results of 

FR-LSTM, multilayer perceptron neural network [1] and 

MOQDS [2] and can be used to accurately measure the delay 

incurred for optimal vehicle identification in the UAV 

coverage. From the figure it is inferred that the proposed 

system can minimize the end-to-end delay with increasing 

number of unmanned vehicles enhance capability and 

reliability of UAVs. Besides, proposed FR-LSTM method can 

correctly measures user end-to-end delay even when the 

vehicles are moved. The reason behind the improvement is 

due to the estimation of Dominant Influencing Criterions 

based on power and bandwidth. Only on the basis of this DIC, 

the optimal vehicles are identified. Hence, the end-to-end 

delay using the FR-LSTM method is said to be reduced by 

18% compared to [1] and 33% compared to [2]. 

5.2. Performance Measure of Root Mean Square Error 

The second parameter of importance is the root mean square 

error. This is utilized in measuring the differences among 

predicted values and experimental values. In our work, it 

refers to the differences between predicted optimal vehicle 

and the observed optimal value. In order to aggregate 

magnitudes of errors, RMSE serves has different vehicles in 

single measure of predictive power. This is mathematically 

expressed as given below. 
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 𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑉−𝑂𝑉)2𝑛

𝑖=1

𝑛
  (15) 

From equation (15), the root mean square error ‘𝑅𝑀𝑆𝐸’ is 

measured based on the predicted vehicle ‘𝑃𝑉’ and the 

observed vehicle ‘𝑂𝑉’ respectively. It is measured in 

percentage (%).The RMSE on data delivery performance is 

summarized in Table 3. 

Number of 

Unmanned 

Vehicles 

Root Mean Square Error 

FR-LSTM Multilayer 

Perceptron 

Neural 

Network 

MOQDS 

50 0.4 1.6 3.6 

100 0.45 1.75 3.85 

150 0.55 1.9 4.15 

200 0.8 2.05 4.45 

250 0.92 2.25 4.65 

300 1.15 2.4 4.8 

350 1.35 2.55 4.85 

400 1.55 2.7 4.9 

450 1.85 2.85 4.92 

500 2.05 3.05 5 

Table 3 Impact of Root Mean Square Error Using FR-LSTM, 

Multilayer Perceptron Neural Network [1] and MOQDS [2] 

 

Figure 5 Root Mean Square Error Comparisons for FR-

LSTM, Multilayer Perceptron Neural Network [1] and 

MOQDS [2] 

From table 3 the RMSE performance for all the three 

methods. Taking the performance in RMSE as an example, 

proposed FR-LSTM method brings about 55% and 76% 

improvements when compared to [1] and [2] for 50 number of 

unmanned vehicles. 

From Figure 5, the RMSE with number of unmanned vehicles 

placed at different positions under diverse conditions. In 

figure 5, increasing number of unmanned vehicles to be 

placed in the network for transmitted data from an unmanned 

vehicle to the server via LTE also increases the RMSE. 

However, 2ith ‘50’ number of unmanned vehicles considered 

for simulation, actual optimal vehicle being ‘35’ and the 

observed optimal vehicle being ‘37’, the error was found to 

be ‘−2’ using FR-LSTM, and the observed optimal vehicles 

being ‘39’, the error was found to be ‘−4’ using [1] and 

observed optimal vehicles being ‘41, the error was found to 

be ‘−6’ ‘using [2], the RMSE was found to be 0.4, 1.6 and 

3.6 respectively. The proposed method is simply adapts and 

efficient transmissions. The reason behind improvement was 

the incorporation of Deep Influencing Learning-based LTE 

algorithm. By applying this algorithm, initially, data traffic 

matrix was generated on the basis of power and bandwidth. 

Followed by which the correlation coefficient was evaluated 

for the available network. With this, the RMSE involved in 

selecting the optimal vehicle using FR-LSTM was said to be 

minimized by 56% compared to [1] and 76% compared to [2]. 

5.3. Performance Measure of Throughput 

The third parameter for significant data transmission using 

unmanned vehicles is the throughput rate. It is defined as the 

amount of information delivered in a specific period of time 

using the optimal vehicles.  

 𝑇𝑃 =
𝐷𝑃𝑟𝑒𝑐

𝐷𝑃𝑠𝑒𝑛𝑡
   (16) 

From equation (16), the throughput rate ‘𝑇𝑃’ is calculated on 

the data packets successfully received ‘𝐷𝑃𝑟𝑒𝑐’ using the 

unmanned vehicles and data packets sent ‘𝐷𝑃𝑇𝑠𝑒𝑛𝑡’. It is 

measured in percentage (%).The impact of throughput on data 

delivery performance is summarized in Table 4. 

Number Of 

Unmanned 

Vehicles 

Throughput (%) 

FR-LSTM Multilayer 

Perceptron 

Neural 

Network 

MOQDS 

50 88 84 80 

100 86.25 83.15 79.65 

150 86.16 83 79.25 
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200 86 82.85 79 

250 85.85 82.65 78.85 

300 85.65 82.35 78.55 

350 85.35 82 78.25 

400 84.15 81.45 77 

450 84 80.85 76.35 

500 82.15 79.55 76 

Table 4 Impact of Throughput Using FR-LSTM, Multilayer 

Perceptron Neural Network [1] and MOQDS [2] 

From Table 4 the throughput performance for all the three 

methods. Taking the performance in terms of throughput as 

the performance metric as an example, the proposed FR-

LSTM method brings about 4% and 9% improvements when 

compared to [1] and [2] for 50 unmanned vehicles. 

 

Figure 6 Throughput Comparisons for FR-LSTM, Multilayer 

Perceptron Neural Network [1] and MOQDS [2] 

From Figure 6, the throughput with the number of unmanned 

vehicles based on the three different methods, FR-LSTM, 

multilayer perceptron neural network [1] and MOQDS [2]. In 

figure 6, the throughput minimized with enhanced number of 

unmanned vehicles or simulation conducted. The training 

accuracy converged rapidly to lower values of 86.25%, 

83.15% and 79.65% for 100 unmanned vehicles from 88%, 

84% and 80%.  

The RMSE on validation set matches the training set and 

influence of input unmanned vehicles on number of iterations 

during training of optimal vehicle identification reduced when 

number of iterations improved. Though, proposed method 

denotes potential of precisely calculating throughput values 

since the application of Fully Recursive Perceptron Network 

(FRPC) and LST) model. With application of this model, 

UAV positioning is obtained by estimating the network unit 

activations accordingly to Fully Recursive Perceptron. 

Therefore the throughput rate using FR-LSTM method is said 

to be improved by 4% compared to [1] and 9% compared to 

[2] respectively. 

5.4. Performance Measure of Latency 

Finally, the metrics considered for simulation is latency. The 

latency in our work refers to the difference in time between 

the simulation and the response time. This is mathematically 

expressed as given below. 

 𝐿 = [𝑆𝑖𝑚𝑡 − 𝑅𝑒𝑠𝑡]  (17) 

From equation (17), latency ‘𝐿’ is measured on the basis of 

the simulation time ‘𝑆𝑖𝑚𝑡’ and the response time ‘𝑅𝑒𝑠𝑡’. It is 

measured in milliseconds (ms). The impact of latency on data 

delivery performance is summarized in Table 5. 

Number of 

Unmanned 

Vehicles 

Latency 

FR-LSTM Multilayer 

Perceptron 

Neural 

Network 

MOQDS 

50 3 4 5 

100 4.5 5 6.3 

150 4.95 6.25 6.55 

200 5.35 6.85 7 

250 5.85 7 7.65 

300 7 7.45 8 

350 7.35 7.65 8.35 

400 7.85 8.85 10.35 

450 9 11.35 12.15 

500 10.25 13 14.55 

Table 5 Impact of Latency Using FR-LSTM, Multilayer 

Perceptron Neural Network [1] and MOQDS [2] 

From table 5 the latency performance for all the three 

methods. Taking the performance in terms of latency as an 

example, the proposed FR-LSTM method brings about 16% 

and 24% improvements when compared to [1] and [2] for 50 

number of unmanned vehicles. 
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Figure 7 Latency Comparisons for FR-LSTM, Multilayer 

Perceptron Neural Network [1] and MOQDS [2] 

Finally from Figure 7, the latency comparisons made for three 

different methods, FR-LSTM, multilayer perceptron neural 

network [1] and MOQDS [2] respectively. From the above 

figure it is illustrative that the rate of latency is directly 

proportional to the unmanned vehicles involved in the 

simulation. In other words, increasing the unmanned vehicles 

causes an increase in mapping input sequence to output 

sequence this in turn increases the latency rate also. However, 

with ‘50’ unmanned vehicles considered for simulation, the 

simulation time being ‘20𝑚𝑠’ and response time being 

‘15𝑚𝑠’ using FR-LSTM, response time being ‘16𝑚𝑠’ using 

[1] and response time being ‘15𝑚𝑠’ using [2], the latency was 

observed to be 3ms, 4ms and 5ms respectively. From this 

result it is inferred that the latency is said to be reduced using 

FR-LSTM upon comparison with [1] and [2]. The reason 

behind the improvement is due to the application of Fully 

Recursive Perceptron-based Long Short Term Memory 

algorithm. By applying this algorithm, for each unmanned 

vehicles and input sequences are obtained using Fully 

Recursive Perceptron-based Long Short Term Memory gate, 

where the hidden gate is said to be directly connected to the 

input. With this the latency involved in data transmission is 

said to be minimized using FR-LSTM method by 16% 

compared to [1] and 24% compared to [2]. 

6. CONCLUSION 

In this paper, the Fully Recursive Long Short Term Memory 

(FR-LSTM) method was presented for solving the problem of 

UAV positioning to reduce the latency and maximize 

throughput. We used Dominant Influencing Criterions (DIC) 

for performing learning-based LTE and select the optimal 

vehicles for training and testing phases. Depend on network 

unit activations and instantaneous error criterion, proposed 

system was evaluated by Fully Recursive Perceptron. The 

proposed FR-LSTM method is compared with state-of-the-art 

methods to data transmission from remote unmanned vehicle. 

The proposed method was found to have a better throughput 

with respect to the data transmission method. In addition, the 

proposed FR-LSTM method have lower end-to-end delay and 

latency, the error distributions in every set of testing points 

are small and limited. In each development, the proposed 

method of RMSE complexities was reduced compared with 

other state-of-the-art methods. Thus, FR-LSTM method gives 

state-of-the-art method on data transmission from a remote 

operated unmanned vehicle, therefore facilitating BLE 

transmission. In future data transmission can be performed by 

new artificial Intelligence method in order to improve the 

throughput, end-to-end delay, root mean square error, latency. 

REFERENCES 

[1] Visalakshi Annepu, A. Rajesh, “An unmanned aerial vehicle-aided node 
localization using an efficient multilayer perceptron neural network in 

wireless sensor networks”, Neural Computing and Applications, 

Springer, 32, 11651–11663, Dec 2019 [multilayer perceptron neural 
network]. 

[2] Saptarshi Chaudhuri, Irfan Baig, Debabrata Das, “A Novel QoS aware 

Medium Access Control Scheduler for LTE-Advanced Network”, 
Computer Networks, Elsevier, 135, 1-14, Jan 2018 [Multi Objective 

QoS aware LTE-A Downlink-MAC Scheduler (MOQDS) method]. 

[3] Maher Aljehani, Masahiro Inoue, Akira Watanbe, Taketoshi Yokemura, 
Fumiya Ogyu, Hidemasa Iida, “UAV communication system integrated 

into network traversal with mobility”, Springer Nature,  2, 1057, May 

2020. 
[4] Bouziane Brik, Adlen Ksentini, Maha Bouaziz “Federated Learning for 

UAVs-Enabled Wireless Networks: Use Cases, Challenges, and Open 

Problems”, IEEE Access, 8, 53841 – 53849, Mar 2020. 
[5] Mohammad N. Patwary, Syed Junaid Nawaz, Abdur Rahman, Shree 

Krishna Sharma, Mamunur Rashid, Stuart J. Barnes, “The Potential 

Short- and Long-Term Disruptions and Transformative Impacts of 5G 
and Beyond Wireless Networks: Lessons Learnt From the Development 

of a 5G Testbed Environment”, IEEE Access, 8, 11352 – 11379, Jan 

2020. 
[6] Hanif Ullah, Mamun Abu-Tair, Sally McClean, Paddy Nixon, Gerard 

Parr, Chunbo Luo, “Connecting Disjoint Nodes Through a UAV-Based 

Wireless Network for Bridging Communication Using IEEE 802.11 
Protocols”, EURASIP Journal on Wireless Communications and 

Networking, 142, Mar 2020. 

[7] Wen Zhan, Lin Dai,” Massive Random Access of Machine-to-Machine 
Communications in LTE Networks: Throughput Optimization with a 

Finite Data Transmission Rate”, IEEE Transactions on Wireless 
Communications, 18, 12, 5749-5763, Jul 2019. 

[8] Sung-Woong Jo, Woo-Seong Shim, “LTE-Maritime: High-Speed 

Maritime Wireless Communication Based on LTE Technology”, IEEE 
Access, 7, 53172-53181, Mar 2019. 

[9] Jun Zheng, Jie Xiao, Qilei Ren, and Yuan Zhang, “Performance 

Modeling of an LTE LAA and WiFi Coexistence System using the 

LAA Category-4 LBT Procedure and 802.11e EDCA Mechanism”, 

IEEE Transactions on Vehicular Technology, 69, 6, 6603 – 6618, Jun 

2020. 
[10] Aiqing Zhang, Jianxin Chen, Rose Qingyang Hu, Yi Qian, “SeDS: 

Secure Data Sharing Strategy for D2D Communication in LTE-

Advanced Networks”, IEEE Transactions on Vehicular Technology, 65, 
4, 2659 – 2672, Mar 2015. 

[11] Haonan Hu, Yuan Gao, Jiliang Zhang, Xiaoli Chu, Qianbin Chen, Jie 

Zhang,” On the Fairness of the Coexisting LTE-U and WiFi Networks 
Sharing Multiple Unlicensed Channels”, IEEE Transactions on 

Vehicular Technology, 69, 11, 13890 – 13904, Jul 2020. 

[12] Sarvjit Singh, Amit Gupta, J. S. Sohal, “Transmission of Audio over 
LTE Packet Based Wireless Networks Using Wavelets”, Wireless 

Personal Communications, Springer, 112, 541–553, Jan 2020. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2021/209696                 Volume 8, Issue 4, July – August (2021) 

  

 

 

ISSN: 2395-0455                                                  ©EverScience Publications       287 

    

RESEARCH ARTICLE 

[13] Younghwan Jung, Daehee Kim, Sunshin An, “Scalable group-based 

machine-to-machine communications in LTE-advanced networks”, 
Wireless Network, Springer, 25, 63–74, Jun 2017. 

[14] Khalid M. Hosny, Marwa M. Khashaba, Walid I. Khedr, Fathy A. 

Amer, “New vertical handover prediction schemes forLTE-WLAN 
heterogeneous networks”, PLOS ONE 

https://doi.org/10.1371/journal.pone.0215334 April 17, 2019. 

[15] Welton Araujo, Rafael Fogarolli, Marcos Seruffo, Diego Cardoso, 
“Deployment of small cells and a transport infrastructure concurrently 

for next generation mobile access networks “, PLOS ONE  

https://doi.org/10.1371/journal.pone.0207330 November 26, 2020. 
[16] Khong-Lim Yap, Yung-Wey Chong, Weixia Liu, “Enhanced handover 

mechanism using mobility prediction in wireless networks”, PLOS 

ONE https://doi.org/10.1371/journal.pone.0227982 January 24, 2020. 
[17] Mun-Suk Kim, Yena Kim, SeungSeob Lee, SuKyoung Lee, Nada 

Golmie, “A user application-based access point selection algorithm for 

dense WLANs”, PLOS ONE 

https://doi.org/10.1371/journal.pone.0210738 January 16, 2019. 

[18] S. Schwarz, B. Ramos Elbal, E. Zöchmann, L. Marijanovic, S. 

Pratschner, “Dependable wireless connectivity: insights and methods 
for 5G and beyond”, Elsevier, 135, 449–455, Oct 2018. 

[19] Kaveh Pahlavan, Prashant Krishnamurthy, “Evolution and Impact of 

Wi‑Fi Technology and Applications: A Historical Perspective”, 

International Journal of Wireless Information Networks, Springer, 28, 

3–19, Nov 2020. 
[20] Zeeshan Hameed Mir, Fethi Filali, “LTE and IEEE 802.11p for 

vehicular networking: a performance evaluation”, EURASIP Journal on 

Wireless Communications and Networking, 89, Aug 2014. 
[21] X. Wang, M. Jia, Q. Guo, I. W. Ho and J. Wu, "Joint Power, Original 

Bandwidth, and Detected Hole Bandwidth Allocation for Multi-Homing 

Heterogeneous Networks Based on Cognitive Radio," in IEEE 
Transactions on Vehicular Technology, 68, 3,  2777-2790, March 2019, 

doi: 10.1109/TVT.2019.2892184. 

[22] Yue Wang, Xuhui Luo, Xiaojie Wu, Long-term evolution and lifetime 
analysis of geostationary transfer orbits with solar radiation pressure, 

Acta Astronautica, 175, 2020, 405-420,ISSN 0094-

5765,https://doi.org/10.1016/j.actaastro.2020.06.007. 
 

 

 
 

 
 

 

 
 

How to cite this article: 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

[23] Y. Yu, W. Lu, Y. Liu and H. Zhu, "Neural-Network-Based Root Mean 

Delay Spread Model for Ubiquitous Indoor Internet-of-Things 
Scenarios," in IEEE Internet of Things Journal, 7, 6, 5580-5589, June 

2020, doi: 10.1109/JIOT.2020.2979766. 

[24] Jimenez, AF., Ortiz, B.V., Bondesan, L. et al. Long Short-Term 
Memory Neural Network for irrigation management: a case study from 

Southern Alabama, USA. Precision Agric 22, 475–492 (2021). 

https://doi.org/10.1007/s11119-020-09753-z  
[25] J. Liu, Z. Zhao, J. Ji and M. Hu, "Research and application of wireless 

sensor network technology in power transmission and distribution 

system," in Intelligent and Converged Networks, 1, 2, 199-220, Sept. 
2020, doi: 10.23919/ICN.2020.0016. 

Authors 

Uma. S received her Master degrees MCA and M.E 
in CSE from Priyadarshini Engineering College 

(University of Madras) and S.K.P Engineering 

College (Anna University). Now she is working 
towards a Doctoral degree in the School of 

Computing at Veltech Rangarajan Dr.Sagunthala 

R&D Institute of Science and Technology, Chennai. 
Her research interests include wireless and Ad hoc 

networks and Data Mining. 

Dr. M. J. Carmel Mary Belinda, currently working 

as Professor at Vel Tech Rangarajan Dr. Sagunthala 

R&D Institute of Science and Technology. She 
completed her Ph.D. in the area Wireless Sensor 

Networks. Having 20+ years of experience in the 

teaching field. Published more than 20 research 
papers in her research area. 

 

Uma. S, M J Carmel Mary Belinda, “Recursive Perceptron Long Short Term Memory for Wireless Data Transmission in 

Unmanned Aerial Vehicles”, International Journal of Computer Networks and Applications (IJCNA), 8(4), PP: 277-287, 

2021, DOI: 10.22247/ijcna/2021/209696. 
 


