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Abstract – Today, Most smart mobile devices are facilitated with 

advanced processing hardware and short-range data 

communication systems by which they are practically capable to 

provide effective execution services to the neighbor mobile device 

client request and/or receive services on a need basis within the 

local area network. Therefore, to relish the powerful capability 

of these smart mobile devices in the private campus network, we 

propose an intelligent composite offload decision algorithm 

(ICODA) framework that attempts to connect several smart 

mobile devices in wireless local area network and make them 

apply intelligence before servicing each other request preferably 

without the internet. The significance of the proposed 

framework is that it has a mechanism to make a data offloading 

decision using an optimal decision tree classifier model and also 

a mechanism to avoid data offloading operation using the data 

cache neural networks model. The experimental results obtained 

are obvious to show the minimal client system battery utilization 

and hence an optimized work time for a smart mobile client 

device that participates in the ICODA framework. 

Index Terms – Private Network, Client-Side Local Cache, Device 

Status Report Generation, Data Offload Decision, Server Side 

Global Cache, Average Battery Energy and Task Run Time 

Measure, Optimized Work Time. 

1. INTRODUCTION 

The brisk advancement of data communication and machine 

learning solutions in smart mobile devices has facilitated the 

way to discover the research knowledge gaps in the on 

premise computing framework. To optimize the work time 

and/or battery life consumption, the computational tasks that 

arise from mobile devices may be executed locally or 

offloaded to neighboring devices [1]. The data caching 

mechanism make use of deep learning to predict popular 

cache data inclusion accurately [2]. The productive artificial 

intelligence solution with past experiences, powerful models, 

and an elegant learning ability can robotise the mobile client 

data offload decision making capability in the network [3]. To 

overcome the problems of high latency, more energy 

consumption, high bandwidth, and lack of network 

connectivity infrastructures, it is sensible to perform local 

computations on the mobile devices alone [4]. The local 

mobile devices can release the weight of the workload and 

reduce the computation costs in local task execution by 

maintaining a coordinated relationship between mobile 

devices and servers in offloading frameworks [5]. If 

offloading frameworks are a well-planned design then the task 

offloading will optimize the mobile device's computational 

efficiency with reduced latency and less energy consumption 

[6]. The combination of optimized, unsupervised and deep 

machine learning solutions are used to cache data at fog 

computation model act as a booster to data access in quick 

time [7]. Computational intensive applications can receive 

major benefits from data offloading mechanisms than the 

data-intensive applications which need to spend more time 

solely on data communication rather computation [8]. “The 

nearby mobile devices can efficiently be utilized as a crowd-

powered resource cloud to complement the remote clouds. 

The issues related node heterogeneity, unknown worker 

capability, and dynamism are identified as essential 

challenges to be addressed when scheduling work among 

nearby mobile devices” [9]. The proposed intelligent 

composite offload decision algorithm (ICODA) framework is 

specially designed for the smart mobile devices attached to a 

wireless local area network (WLAN) to address their work 

time problem. The main objectives of real-time 

implementation of ICODA framework are to create an on 
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premise WLAN with the finite number of mobile devices as 

depicted in Figure 1, develop an intelligent data caching 

mechanism at both client and centralized server end, and an 

optimal supervised decision tree classification approach to 

make the appropriate data offload decision and hence perform 

remote execution with direct or indirect result transfers based 

on idle neighbor mobile device server selection and its current 

wireless network coverage information. 

 

Figure 1 On-Premise Computing Model in ICODA 

Framework 

2. RELATED WORK 

A detailed literature review of several different approaches 

identified for Mobile Data Offloading strategies based on 

Machine Learning, Task scheduling, Congestion awareness, 

Server Specification, User Mobility, Mobile Client Energy 

Estimation, Communication Path Selection, Cache 

Management, and Application workload structure has been 

presented in Table 1. The JAY model can performs 

computation on local device network based on runtime system 

profiler information with fast and privileged access to raw 

data [1]. The OREGANO model performs computation in 

batches and data streams on private mobile network where the 

data reside thereby reducing the data communication 

overhead associated with cloud offload computing [4]. The 

compute intensive files can gain more benefits out of data 

offloading techniques compared to data intensive high size 

files [8].  

The mobile device heterogeneity, unknown capability and run 

time computation are the challenges with data offloading 

techniques in private local mobile device networks [9]. A 

proficient cache enhancement method is used to store more 

popular results in cache server to optimize offloading 

operation. As the task run time length increases, more 

important processed information are cached to keep them in 

tact in the storage server. So, the users intend to move the data 

to the server to reduce the run time latency. On simulation it 

is observed that “it reduces execution delay up to 42:83% and 

33:28% for single-user femto-cloud and single-user mobile 

edge computing, respectively. Also for multi-user OOCS can 

further reduce 11:71% delay compared to single-user OOCS 

through user’s cooperation” [10].  

The automated selection of off-loadable code using @offload 

annotations, divides the prime task into off-loadable and non-

off-loadable components. It is the application developer with 

expertise, who inserts the annotations for selected methods 

that can preferably get benefited by data offloading 

mechanism. The simulation resulted in less run time and 

battery consumption value [11]. An experiment has been 

conducted based on file size with different wireless mobile 

networks using MECCA model.  Different task size and 

different network interfaces are made part of implementation 

to measure energy consumption and computation time and 

then perform the required comparative analysis. “The results 

obtained have revealed the cloud potential in the reduction of 

power consumption by 61% to 90% for Wi-Fi and 4G 

respectively” [12].  

The energy-oriented task scheduling and weight assignment 

scheme uses energy status and local computing power to 

guarantee low residual energy mobile client devices to get 

scheduled first for computation which leads more user 

satisfaction in network [13]. The architecture of mobile edge 

cloud computing has been designed as a computation offload 

strategy for mobile devices. It incorporates a deep learning 

solution to predict task size, required CPU cycles and total 

transfer delay to make appropriate data offload decision and a 

computation task migration algorithm for edge cloud on 

failures. It divides an ongoing task into several small tasks 

and each small task is executed on a node [14]. The adaptive 

task allocation approach uses energy consumption estimator 

based on power profiles that can increase the execution 

performance during data offload operation.  

The experiments are conducted for local device, Wi-Fi and 

3G transmissions using machine solution for transfer of 

source code [15]. The Adaptive job allocation scheduler 

(AJAS) allocates jobs to slave nodes using on the go 

computing resources and current battery status. The AJAS job 

processing time is relatively faster than dynamic, static and 

random based job allocation methods [16]. The computation 

offloading approach constitutes of a Deep Belief Network 

(DBN) and a logistic regression layer. The typical binary 

RBM is changed to a Gaussian–Bernoulli RBM Learning 

technique. It learns from the request and response record of 

nodes in local network and then the response time of 

subsequent requests are predicted [17]. The necessity of an 

intelligent offloading framework for work time optimization 

is identified as a research gap. 
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Table 1 Literature Review on Different Offloading Strategies 

3. THE PROPOSED ICODA FRAMEWORK 

The proposed ICODA framework consists of 4 major 

components as shown in Figure 2. 

3.1. Client-Side Local Cache (CSLC) Component 

The working of CSLC begins with the selection of processer 

bound workload on a mobile client device. It checks the 

existence of the respective workload transaction history in the 

local cache. If the local cache entry is found, then the 

corresponding output file is immediately made available to a 

client device. Otherwise, it activates the client device status 

report generation component. The local cache area contains 8 

attributes as shown in Table 2, where the first 6 attributes are 

crucial to evaluate the target variable 'X-factor' value. The last 

attribute is a corresponding pointer to an output file location. 

Ref. 

No. 
Offload Decision Criteria 

Methodology / 

Algorithm Used 

Limitation 

/ Gap Identified 

[1] 
Based on local applications and system 

profiler 

JAY- Runtime system profile 

generation task scheduling algorithm 

A Configurable cloud. 

No data caching. 

Excess profiled data 

communication. 

[4] 

Based on data location, the computations 

are performed on the network where the 

data reside. 

Data-centric mobile computing aware 

processing of tasks generated by co-

located mobile devices (OREGANO 

model). 

No data caching. 

Device battery and CPU 

power are not considered for 

load balancing operation. 

[10] 
Most important computation results are 

stored in the cache server. 

Optimal Offload with Cache 

Enhancement Scheme(OOCS) 

Significant reduction. Just 

Simulated. 

[11] 
Based on “@offload” annotation in code 

by developers. 

User Level Online Offloading 

Framework. 

User Mobility, Multi-User & 

Server not considered. 

[12] 
Based on different task size input to 3G, 

4G & Wi-Fi network interfaces. 
MECCA Rule-based approach Mobile Client-oriented. 

[13] 
Low residual Energy mobile clients are 

preferred first. 

Energy and priority task-oriented 

scheduling scheme. 

Local energy and computation 

status-oriented 

[14] 

The necessary CPU cycles, maximum 

uplink, and data communication time are 

computed with proper workload size 

prediction. 

Deep Learning solution 

Sub Task Migration Algorithm. 

No Content Caching., User 

Mobility 

[15] 
Adaptable Task Allocation. 

Energy consumption estimator. 

Decision Tree. 

K-Neural Networks. 

Power profiler application 

programming interface. 

Regression, 4G/5G. 

[16] 
Based on Mobile device battery level 

 

Master slave concept 

Dynamic computer resources 

allocation. 

More focus on job 

rescheduling. 

Just Simulated. 

[17] 

Based on request & response record of 

nodes, It predicts response time of 

subsequent request. 

Deep Belief Network with Regression 

Layer. 

Just Simulated. No Real-world 

scenario. 

[18] 
Local Mobile Cloud Energy Sharing 

Effect 
ColloboRoid Architecture 

Applies only to Mobiles in 

Same Access Point. 
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Figure 2 Proposed ICODA Framework 

Table 2 Client-Side Local Cache Attributes 

3.1.1. Local Cache Replacement Policy 

The cache data replacement policy relies on File size, 

Offloaded history, File selection count, Remote and Local run 

time attributes to compute X-factor value as shown in Eq. (1). 

Based on this X-factor value, a ‘victim’ row of data 

replacement is identified as shown in Table 3. The cache data 

replacement policy uses the X-factor value as major criteria to 

identify victim. 

X − factor =
FS

(FSC ×[(2 ×RRT)+(LRT)]
                     (1) 

                                                                                                           

In Eq. (1), FS, FSC, RRT, and LRT denote File size, File 

selection count, Remote run time, and Local run time 

File 

Name 

File 

Size 

(Bytes) 

Previously 

Offloaded? 

File 

Selection 

count 

Remote Run 

Time 

(Seconds) 

Local Run Time 

(Seconds) 

X-factor Pointer to 

Output File 

P2.py 512 NO 22 0.0 16.49 1.41 Ptr1 

P4.py 586 NO 5 0.0 20.34 5.76 Ptr2 

P8.py 610 YES 14 26.28 0.0 0.82 Ptr3 

L.py 827 NO 8 0.0 33.05 3.12 Ptr4 

H.py 1024 YES 10 40.66 0.0 2.51 Ptr5 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2021/210720                 Volume 8, Issue 6, November – December (2021) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       706 

     

RESEARCH ARTICLE 

respectively. The 'Victim' indicates the file location to be 

replaced with a new subsequent popular file data with high 

run time and low X-factor.  

Larger the ‘X-factor' value, the corresponding file get to be a 

victim of data replacement. If there is a tie between two rows 

then the locally executed file gets replaced with new data. The 

'Retain' value indicates that there is no replacement currently 

for the row in a cache. This cache area gets more populated 

preferably with the source files that are remotely executed 

with high run time measures. The design flow of client side 

local cache search and replacement policy are presented in 

algorithm 1 and algorithm 2. 

Table 3 Local Cache Data Replacement Policy Based on X-Factor 

Algorithm: Client-side-Local-cache-search 

Input: Workload name, Workload size. 

Output: Display related output file 

BEGIN 

     Check local cache area for metadata match of input 

workload (W). 

     If workload entry matches with entry in Local cache: 

         Then  

             Display corresponding output file. 

             Exit 

     If No workload entry matches in the Table: 

         Then 

              Invoke Report Generation component (CDSRG). 

              Receive output file with run time measure. 

              Display output file. 

              Invoke Local-cache-insert algorithm. 

END 

Algorithm 1: Client-Side-Local-Cache-Search 

Algorithm: Local-cache-insert 

Input: Workload name, Workload size, LRT/RRT. 

Output: Transaction Insertion 

BEGIN 

     If local cache space == “Available”: 

         Then  

              Increment FSC by 1 for the workload (W) 

             Compute X-factor value. 

            Add transaction to local cache table. 

             Exit 

     If local cache space ==”Unavailable”: 

         Then 

              Apply cache replacement policy. 

              Find cache data entry with high X-factor. 

              Replace it with new transaction data. 

END 

Algorithm 2 Local-Cache-Insert 

3.2. Client Device Status Report Generation (CDSRG) 

Component 

The CDSRG component collects seven device features from 

smart mobile client device profiled resource status data such 

as File size, current battery level, CPU core, CPU cycles 

utilization percentage, physical memory availability, physical 

hard disk availability, and Wi-Fi Signal strength to form an 

input report to submit to data offload decision component. 

The workflow of CDSRG component is presented in 

algorithm 3. 

Algorithm: Client-device-status-report-generation 

File 

Name 

File Size 

(Bytes) 

Previously 

Offloaded? 

File 

Selection 

count 

RRT 

(Sec) 

LRT 

 (Sec) 

X-

factor  

Pointer 

to 

Output 

File 

Local cache 

Replacement 

P2.py 512 NO 22 0.0 16.49 1.41 Ptr1 Retain 

P4.py 586 NO 5 0.0 20.34 5.76 Ptr2 Victim 1  

P8.py 610 YES 14 26.28 0 0.82 Ptr3 Retain 

L.py 827 NO 8 0.0 33.05 3.12 Ptr4 Victim 2 

H.py 1024 YES 10 40.66 0 2.51 Ptr5 Victim 3  
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Input: Workload path 

Output: Profiled resource consumption information 

BEGIN 

      Obtain Workload Name, Format, and size in bytes to 

be offloaded. 

      Obtain present battery status of the client device. 

      Obtain number of CPU cores in the client device. 

      Obtain current availability percentage of main 

memory space in the client device.   

      Obtain current availability percentage of storage 

space in the client device  

      Obtain Network signal strength of connection for 

communication. 

      Call Random forest decision tree classifier function in 

CSDOD component.  

END 

Algorithm 3 Client-Device-Status-Report-Generation 

3.3. Client-Side Data Offload Decision (CSDOD) 

Component 

It uses client device status information report as input to 

machine learning classification algorithm, embedded in 

CSDOD component to generate an optimal and accurate data 

offload decision either to move a computational workload to 

the centralized server connected within a private network or to 

perform local execution itself. The comparable investigation 

has been carried out between Iterative Dichotomiser 3, 

CART, and Random forest classifier (RFC) with cross-

validations. The Random forest decision tree classifier has 

outperformed the other two with 99.44 classification 

accuracy. The detail of comparative analysis has been 

presented in Results and discussion section. The workflow of 

CSDOD component is presented in algorithm 4. 

Algorithm: Random-forest-decision-tree-classifier 

Input: Profiled client device resource status report 

Output: Local execution decision (LED) / Remote execution 

decision (RED) 

BEGIN 

    Select random K data instances from a specified training 

dataset input. 

    Generate decision trees for each sub-sample of the dataset 

    Predict the output from each decision tree. 

    Perform poll for each predicted result. 

   Output the majority voted prediction result. 

END 

Algorithm 4 Random-Forest-Decision-Tree-Classifier 

3.4. Server-Side Global Cache (SSGC) Component 

In this component, the centralized server maintains a database 

that consists of workload name, size in bytes, run time, and a 

pointer to a corresponding output file of all computational 

workloads that have undergone remote execution. Therefore it 

first performs a global cache search to check the existence of 

respective workload transaction history. If a transaction is 

found then the corresponding output file is immediately 

directed towards to the actual client device. Otherwise, it 

selects an idle neighbor device with good battery level to 

perform remote execution. Once the remote execution is 

completed, it is the responsibility of the centralized server to 

update the cache with a new workload entry consisting of its 

name, size in bytes, run time, and a corresponding pointer to 

the output file in the server cache and send the same 

information to the actual client to update itself. Hence, the 

overall mobile client device work time can be optimized by 

reducing the burden of processing workload on a client 

device. The device work time is the period for which the 

mobile device is operable to perform essential application 

execution. The global cache area contains 6 attributes as 

shown in Table 4, where the first 4 attributes are crucial to 

evaluate the target variable 'X-factor' value. The last attribute 

is a corresponding pointer to the output file location. 

3.4.1. Global Cache Replacement Policy 

Whenever the centralized server directs to update the global 

cache, the global replacement policy gets activated. The 

global cache data replacement policy relies only on File size 

(FS), File selection count (FSC) and Remote run time (RRT) 

attributes to compute X-factor value as shown in Eq. (2). 

Based on this X-factor value, a ‘victim’ row of data 

replacement is identified as shown in Table 5. The formula for 

X-factor value computation is: 

X − factor =
FS

FSC∗RRT
                         (2) 

                                                                                                                           

The global cache is beneficial to avoid unnecessary data 

offloading operations which incur the cost of device selection, 

data transmission, and network traffic. The global cache holds 

the most important and high run time-oriented source files 

with their respective output files collected from all user 

mobile participants in the CODA framework and hence can be 

treated as a more diversified cache data relevant to the 

specific organization. The workflows of SSGC component in 

global cache search and data replacement policy are presented 

in algorithm 5 and 6. 
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File Name File Size 

(Bytes) 

File Selection Count Remote Run Time 

(seconds) 

X-Factor Pointer to Output File 

PI-2.py 658 12 16.49 3.32 Sptr1 

PI-4.py 575 23 20.34 1.22 Sptr2 

PI-8.py 756 41 26.28 0.70 Sptr3 

CC.py 950 32 33.05 0.89 Sptr4 

DC.py 1024 11 300.66 2.28 Sptr5 

Table 4 Server-Side Global Cache Attributes 

File Name File Size 

(Bytes) 

File Selection 

Count 

Remote Run Time 

(Seconds) 

X-

Factor 

Pointer to 

Output File 

Global Cache 

Replacement 

PI-2.py 658 12 16.49 3.32 Sptr1 Victim 1 

PI-4.py 575 23 20.34 1.22 Sptr2 Victim 3 

PI-8.py 756 41 26.28 0.70 Sptr3 Retain 

CC.py 950 32 33.05 0.89 Sptr4 Retain 

DC.py 1024 11 300.66 2.28 Sptr5 Victim 2 

Table 5 Global Cache Data Replacement Policy Based on X-Factor 

Algorithm: Server-side-Global-cache-search 

Input: Workload file, Workload name, and its size 

Output: Display related output file 

BEGIN 

Check global cache area for metadata match of input 

workload (W). 

If workload entry matches in the Global cache: 

Then 

Display corresponding output file. 

Exit 

If No workload entry matches in the Global cache: 

Then 

Select an Idle neighbor device with battery stability to 

perform remote execution. 

Receive output file with run time measure. 

Send output file to an actual request client device. 

Invoke Global-cache-insert algorithm. 

END 

Algorithm 5 Server-Side-Global-Cache-Search 
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Algorithm: Global-cache-insert 

Input: Workload name, Workload size, RRT. 

Output: Transaction Insertion 

BEGIN 

     If global cache space == “Available”: 

         Then  

             Increment FSC by 1 for the workload (W) 

             Compute X-factor value. 

            Add transaction to global cache table. 

             Exit 

     If global cache space ==”Unavailable”: 

         Then 

              Apply cache replacement policy. 

              Find cache data entry with high X-factor. 

              Replace it with new transaction data. 

END 

Algorithm 6 Global-Cache-Insert 

4. IMPLEMENTATION 

The experimental setup comprises of 81 mobile devices which 

include smartphones and laptops of different specifications. 

The smart devices are powered by android version operating 

system, RAM component ranging from 2 to 8 Gigabytes 

capacity, processor core ranging from dual to octal numbers, 

internal storage ranging from 64 to 128 GB and battery 

4000mAh to 6000mAh. The participated laptop computers are 

powered by 64-bit Windows 10 operating system with Intel 

core i3, i5 and i7 operable at 2.2, 2.3 and 2.5 GHz. These 

laptops has RAM ranging from 4 to 8 GB and battery capacity 

ranging from 2.29 to 3.3Ah. These specifications of mobile 

devices are mentioned to inform that all the different mobile 

devices were involved in the implementation and have no 

considerable effect on ICODA performance. The laptops are 

just part of the mobile network which can request/offer 

services to neighbor mobile devices under the supervision of 

the centralized server. The Python application programming is 

used to design and implement an ICODA mobile application 

framework using several popular graphic, process and system 

utility packages. The PyCharm integrated development 

environment with installed Python version 3.9 interpreter is 

utilized to run the python project. Once the mobile application 

is developed, it is inputted to a Buildozer tool to translate a 

kivy application into an android compatible java application 

to make it run on real android supported mobile devices. The 

real mobile devices are then connected over Wi-Fi to 

communicate the data with each other without necessarily 

using the internet is performed using special network and 

decision tree classifier packages in python. A 40000 real-time 

profiled resource consumption data samples are noted in the 

experiment of 80 mobile devices connected through a wireless 

access point in the private network, offloading compute-

intensive files of size ranging from 500KB to 1 MB among 

each other through the centralized server at different time 

conditions. A sample of profiled resource consumption data is 

shown in Table 6. 

Suppose the Client selected workload: D:\\Files\CI-

2.pyz 

ATTRIBUTE VALUE RANGE 

Workload Size 0.5 MB 
0 <  size < 1 

MB 

Client Battery 

Status  
72 %       25 – 100  % 

Client CPU Count 4 02 – 04 – 08  

Client CPU Cycles 

% 
96.3 50 – 100 % 

Client Virtual 

Memory %  
55.8 50 – 100 % 

Client Disk 

Storage 
97.5% 50 – 100 % 

Wi - Fi Network 

Signal 

Strength 

Good 
-67 to -50 

dBm 

Table 6 A Real-Time Profiled Resource Consumption Data 

Sample 

The ICODA resource status report contains 7 prime input 

attributes obtained from smart mobiles devices and a single 

target variable i.e. data offload decision (DOD). The threshold 

setting for each attribute is presented in Table 7. 

Based on the threshold setting as shown in Table 7, the real-

time large data set of 40000 data samples have been 

normalized to the practice range with several finite categories 

for each feature. After normalization, the total training 

samples that represent the large data set is reduced to just 

2*4*3*4*4*4*3 = 4608 samples as presented in Table 8. 

Based on the training, the optimal decision tree classifier 

accepts 7 input attributes, performs analysis on them, and 

produces a data offload decision (DOD) on whether to offload 

the data to a centralized server for further operation or 

perform local execution. This decision-making intelligence 

optimizes the overall smart mobile client device work time 

and reduces the regular battery usage on specific and 

significant workloads. 
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SIZE CUR_BAT CPU_CORE CPU_CYCLES 

 

0 – Small 

 

<= 500 KB 

0 – LB 

 

(0 – 25)% 

0  - Dual 

 

      0 – L 

 

      75% utilized 

1 – MB 

 

(26 – 50)% 

 

1 - Quad 

1 – M 

 

50% utilized 

 

1 – Large 

 

>500 KB 

<= 1 MB 

2 – HB 

 

(51 – 75)% 

 

2 - Octa 

     2 – H 

 

  25% utilized 

3 – Max 

 

(76 – 100)% 

      3 – VH 

 

  <25% utilized 

 

PHY_MEM PHY_DISK Wi-Fi Strength     Target feature: DOD 

0 – LM 

 

(0 to 25)% 

Memory Available 

0 – LS 

 

(0 to 25)% 

Available 

0 – Poor signal 0 – Local execution 

 

1 – MM 

 

(26 to 50)% 

Memory Available 

1 – MS 

 

26 to 50)% 

Available 

 

1 – Good signal 

 

2 – HM 

 

(51 to 75)% 

Memory Available 

2 – HS 

 

(51 to 75)% 

Available 

2 – Excellent Signal 1 – Remote Execution 

3 – VHM 

 

(76 to 100)% 

Memory Available 

3 – VHS 

(76 to 100)% 

Available 

Table 7 Threshold Setting for the Resource Consumption Status Report 

SIZE 

(MB) 

CUR_BAT CPU_CORE CPU_CYCLES PHY_MEM PHY_DISK Wi-Fi 

Signal 

DOD 

0.5 LB D L LM LS E Y 

0.5 MB Q M MM MS G N 

0.5 HB O H HM HS E N 

0.5 Max D VH VHM VHS P N 

1.0 LB D L LM LS E Y 

1.0 MB Q M MM MS G Y 

1.0 HB O H HM HS E N 

1.0 Max D VH VHM VHS P N 

Table 8 A Sample Data Frame of Normalized Data Set Containing 4608 Data Samples 
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From Table 8, the values LB, MB, HB, and Max denote low 

battery, medium battery, high battery, and Maximum battery 

level. The values D, Q, and O denote dual-core, quad-core, 

and octa-core processors. The values L, M, H, and VH denote 

low, medium, high, and very high CPU cycles availability. 

The values LM, MM, HM, and VHM denote low memory, 

medium memory, high memory, and very high memory 

availability. The values LS, MS, HS, and VHS denote low 

storage, medium storage, high storage, and very high storage 

availability. The values E, G, and P denote Excellent, Good, 

and Poor Wi-Fi signal strength. The values Y and N for target 

feature DOD denote ‘yes’ to Offload file for remote execution 

and ‘no’ to perform local execution respectively. 

 

Figure 3 Feature-Target Correlation Visualization 

Figure 3 represents the relationship between input feature 

selection and output target feature. The correlation shows the 

capability of selecting the attributes that can make the 

predicted target variable value high accurate or removing the 

irrelevant attributes which can decrease the classification 

accuracy and quality of the model. It is observed that all the 

features of the normalized data set have a positive impact on 

increasing decision accuracy. 

4.1. Optimal Data Offload Decision Tree Classifier 

Decision tree classification algorithms are supervised machine 

learning algorithm that empowers predictive models with high 

accuracy, stability and ease of interpretation. These 

algorithms work best when a predefined target variable is 

present and can be applied for both categorical and continuous 

input/output variables. They are adaptable to solve 

classification and regression problems. In the ICODA 

framework, we have a data set with a categorical target 

variable - Data offload decision (DOD). 

4.2. ID3 – Decision tree classifier 

The Iterative Dichotomiser 3 (ID3) classification model 

constructs a decision tree by placing an attribute with low 

entropy or high information gain at the root spot of the 

decision tree.  The workflow of ID3 classifier is presented in 

algorithm 7. The entropy (E) is evaluated as shown in Eq. (3), 

E =  [− (
Pds

Pds+Nds
) ×  log2 (

Pds

Pds+Nds
)] +

 [− (
Nds

Pds+Nds
) ×  log2 (

Nds

Pds+Nds
)]                        (3)                                                                                                          

Where ‘Pds' represents the count of positive samples, 'Nds’ 

represents the count of negative samples and ‘Pds + Nds’ 

represents total instances in the given mobile client resource 
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consumption status training data set. The Information gain 

(IG) is evaluated as shown in Eq. (4),   

IG =  Entropy (parent)– [Average Entropy (children)]  (4) 

Algorithm: ID3 Decision Tree classifier 

Input: Profiled client device resource status report 

Output: Local execution/Remote execution/No Execution 

decision 

BEGIN 

     Compute entropy for data of client device resource status 

report. 

     For each data attribute 

            Compute entropy for all its possible categorical 

values. 

            Compute information gain for the data attribute. 

     Take out the attribute with high information gain. 

    Repeat the cycle until the desired data offload decision tree 

is generated 

END                                                                                         

Algorithm 7 ID3 Decision Tree Classifier 

4.3. CART - Decision Tree Classifier 

The Classification and Regression (CART) model constructs 

a decision tree by finding the best split through the calculation 

of the weighted sum of Gini Impurity (GI) for both child 

nodes as shown in Eq. (5). This is repeated for all possible 

splits and then takes the one with the lowest Gini Impurity as 

the best split. Lower the value higher the purity and 

homogeneity of the nodes in a tree. The workflow of CART 

Decision Tree classifier is presented in algorithm 8. 

GI = 1 – ∑(success probabilities for each class)^2      (5) 

Algorithm: CART Decision Tree classifier 

Input: Profiled client device resource status report 

Output: Local execution/Remote execution/No Execution 

decision 

BEGIN 

      The select Root node(S) is based on Gini Index and 

Maximum Information Gain. 

      Calculate the Gini Index and Information gain. 

      Select the node based on Minimum Gini Index or 

Maximum Information Gain. 

      Split set S to produce the subsets of data. 

      Recur on each subset. 

      Create the decision Tree. 

END 

Algorithm 8 CART Decision Tree Classifier 

4.3.1. CART with Grid search Cross-validation (CART-

GSCV) 

It represents the application of the Grid search cross-

validation method which tunes hyper-parameters to provide a 

better estimation of the performance of the CART model for 

every combination of parameters per grid. The parameters of 

importance are criterion :("Gini", "entropy"), splitter, 

maximum depth, minimum samples for split, minimum 

samples at leaf level. 

4.4. Random Forest (RF) – Decision Tree Classifier  

The Random forest (RF) classifier is an ensemble learning 

technique used to construct multiple CART models with 

different data instances and unique initial variables. The RF 

classifier chooses the classification that has the most votes 

among all the trees in the forest. The two major benefits of 

ensemble models are more accurate predictions and the 

procedure of combining multiple CART models into a single 

strong model that helps to provide productive decision can 

stabilize the overall machine learning model. 

4.4.1. Random Forest Classifier with Randomized Search 

Cross-Validation (RF-RSCV) 

It represents the application of the Random search cross-

validation method which tunes hyper-parameters to provide a 

better estimation of the performance of the RFC model by 

selecting a random grid combination of parameters. Random 

search can draw hyper-parameter values from continuous 

distributions, allowing it to sample the parameter space more 

fully and efficiently. The hyper-parameters include maximum 

depth, minimum sample for split, maximum leaf nodes, 

minimum leaf samples, n-estimators, and maximum features. 

4.4.2. Random Forest Classifier with Grid Search CROSS-

Validation (RFC-GSCV) 

It represents the application of the Grid search cross-

validation method which tunes hyper-parameters to provide a 

better estimation of the performance of the RF Classifier 

model for every combination of parameters per grid. The 

parameters of importance are maximum depth, minimum 

sample for split, maximum leaf nodes, minimum leaf samples, 

n-estimators, and maximum features. 

4.5. Performance Evaluation Metrics 

We have considered the Classification accuracy, Precision, 

Recall, and F1 score as the prime performance factors to 

evaluate the quality of the training model. 
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4.5.1. Classification Accuracy (CA) 

It is the ratio of the number of correct predictions to the total 

number of predictions made out of all input samples. 

CA =
True Positives (TP)+ True Negatives (TN)

TP+TN+False Positives+False Negatives
              (6)                                                                                                                                                    

4.5.2. Precision 

It is the number of correct positive results divided by the 

number of positive results predicted by the classifier. 

Precision =
True Positives

True Positives+False Positives
                 (7)                                                                                                                                                     

4.5.3. Recall 

It is the number of correct positive results divided by the 

number of all relevant samples.  

Recall =
True Positives

True Positives+False Negatives
                      (8)                                                                                                                                                     

4.5.4. F1- Score 

F1 Score is the harmonic mean of precision and Recall used 

to find the balance between them. Since it tends to mitigate 

the effect of large outliers and intensify the smaller ones, it is 

the most effective evaluation metric in the classification 

framework to make it precise and robust. 

F1 Measure = 2 ×
Precision×Recall

Precision+Recall
                        (9)                                                                                                                                                      

On training the different machine learning classification 

models such as ID3, CART, and Random forest algorithms 

with real-time normalized data set, we have the following 

comparison graph in terms of classification accuracy as 

shown in Figure 4. 

 

Figure 4 Comparison between ID3, CART, and RF Decision Tree Classification Accuracy 

Form Figure 4, the random forest classifier can be considered 

as a highly accurate and robust method. And it does not suffer 

from the over fitting problem since it takes the average of all 

the predictions and remains to be unbiased. In the ICODA 

framework, it is noted that the classification accuracy of ID3, 

CART and RF models is at 92.91%, 99.22% and 99.44% 

respectively on applying Eq. (6). On cross-validation with 

Random search and Grid search, the RF classification 

accuracy estimation is at 99.60% and 99.59% respectively 

which implies the best quality training model performance for 

the data set on applying Eq. (6).  Therefore the Random 

Forest Classifier is declared as optimal decision tree algorithm 

that outperforms all the other decision tree classifiers in the 

CODA framework. To support the result, we have also 

applied Eq. (7), Eq. (8), and Eq. (9), to measure Mean 

precision, Recall, and F1 score for the optimal random forest 

classifier which is at 0.9967 to indicate a significant classifier 

model performance. At this point, the successful WLAN 

connection between the smart mobile client and the 

centralized server is set. The medium-range data offload 

operation has been carried out with multiple compute-

intensive task files that can keep the processor busy at all the 

available number of cores to measure execution time. The 

experiment has been repeated several times to get the 

productive result out of the real time device communication 

implementation. The graphical view of results obtained and 

their meaningful interpretation is presented in the next 

section. 
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5. RESULTS AND DISCUSSION 

The three processor bound source code files namely PI-22.py, 

PI-44.py, and PI-88.py of size 542KB, 598KB, and 635KB 

which follow the master-slave technique to keep dual, quad, 

and octal CPU cores busy with maximum workload possible 

respectively, it is noticed that if these three files are run solely 

on mobile client device itself, then it need to spend more 

energy as presented in Table 9. 

Instead, if the files are offloaded to a centralized server for 

computation, it will reduce the load on the processor of 

mobile client device.  From Fig. 5 it is observed that the 

battery life sustained measure for each processor bound 

source file is 0.55, 0.62, and 0.65 percent respectively. The 

data transfer time is < 0.022 seconds for the files moved 

between different smart mobile devices as depicted in Table 

10. 

Table 9: Battery Power Consumption Measure With or Without Data Offloading 

 

Figure 5 Battery Conservation in ICODA Offloading Scheme 

File Name File Size Link Speed-in Mbps Mean Data Transfer Time (secs) 

PI-22.py 524B 96 0.017 s 

PI-44.py 598B 
96 0.019 s 

PI-88.py 635B 
96 0.021 s 

Table 10 Data Transfer Time for Compute-Intensive Files 

MEAN REAL BATTERY LIFE SPENT ON CLIENT DEVICE 

File Name File Size If executed on 

Local Device 

When Offloaded to 

Remote device 

PI-22.py 524B 0.69% 0.14% 

PI-44.py 598B 0.79% 0.17% 

PI-88.py 635B 0.83% 0.18% 
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MEAN REAL EXECUTION TIME MEASURE 

File_Name File_Size Local CPU Time On Offloading 

PI-22.py 524B 16.49 s 16.578 s 

PI-44.py 598B 20.32 s 20.418 s 

PI-88.py 635B 26.28 s 26.386 s 

Table 11 Execution Time Comparison 

The smart mobile device task execution time computation in 

ICODA framework on offloading considers several critical 

parameters such as CSLC search time, CSDOD time, Task 

transmission time from a mobile client device to centralized 

server (MC-CS), SSGC search time, Task transmission time 

from the centralized server to neighbor mobile device (CS-

NMD), Neighbor mobile device (NMD) run time, Task result 

transmission time neighbor mobile device to a centralized 

server (NMD-CS) and Task transmission time from a 

centralized server to actual smart device client(CS-MC). From 

Table11, for task files, PI-22.py, PI-44.py, PI-88.py, the local 

device CPU time computed is 16.49s, 20.32, and 26.28s 

respectively. But on task data offloading in the ICODA 

framework, the task turnaround time is still evaluated to 

16.578s, 20.418s, and 26.386s with the difference of about 

0.088s, 0.098s, and 0.106s compared to local CPU Time is 

still a remarkable operation as shown in Table 12. The real 

advantage of the ICODA framework lies when we avoid data 

offloading using local or global data cache mechanisms which 

are as shown in Table 13. 

CSLC 

Search 

Time 

CSDOD 

Time 

TTT MC-

CS 

SSGC 

Search 

Time 

TTT 

CS -NMD 

NMD 

Run Time 

TTT 

NMD -CS 

TTT 

CS-MC 

Task 

Turnaround 

Time 

0.012s 0.01s 0.016s 0.007s 0.015s 16.49s 0.016s 0.012s 16.578s 

0.013s 0.01s 0.018s 0.008s 0.017s 20.32s 0.018s 0.014s 20.418s 

0.014s 0.01s 0.02s 0.008s 0.019s 26.28s 0.02s 0.015s 26.386s 

Table 12 Turnaround Time Computation for a Task 

CODA framework Cache Hit? Remarks Task Turnaround time 

Client-side local 

cache (CSLC) 

search 

PI-22 output file 

Found 

  

Task execution time is equal to 

CSLC search time 

0.012s 

 

PI-44 output file 

Found 

0.013s  

 

PI-88 output file 

Found 

0.014s  

 

Server-side global 

cache (SSGC) 

search 

PI-22 output file 

Found 

Task execution time is a sum of 

(CSLC search time + CSDOD 

time + TTT MC-CS time + 

SSGC search time + TTT 

CS-MC time) 

0.045s 

PI-44 output file 

Found 

0.049s 

PI-88 output file 

Found 

0.072s 

 

Table 13: Turnaround Time Computation for a Task on Successful Cache Hit 
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From Table 13, it is observed that there is a huge time 

difference in turnaround time measure since the task file is not 

physically executed but the corresponding output file is 

extracted from the cache to serve the client device execution 

request. Since the compute-intensive files consume less data 

communication time, it can lead to minimization of energy 

consumption on a client device and is preferable to perform a 

data offloading operation on these files for remote server 

execution. An artificial neural network back propagation 

algorithm is applied on both local and global cache data with 

sizes ranging from 1000 to 6000 entries and 3000 to 12000 

entries respectively. The results of performance evaluation are 

evident to declare that the cache replacement prediction 

accuracy increases with the increase in training size as shown 

in Table 14 and 15. The Artificial neural network–back 

propagation model is the method of fine-tuning the weights of 

a neural network based on the error rate obtained in the 

previous iteration. This ensures the minimized error rate and 

enhanced generalization to produce a more reliable model. It 

uses all inputs for training and can make incremental updates 

with a stochastic gradient descent algorithm. It is useful for a 

continuous data set. 

The Steps of ANN-back propagation Training Model: 

1. Forward pass        

2.  Calculate error or loss              

3. Backward pass 

Algorithm: ANN-back propagation 

Input: Cache data attributes 

Output: Prediction accuracy 

BEGIN 

      Assign random weights. 

      Find activation rate of hidden Nodes. 

      Find the activation rate of Output Nodes. 

      Find the error rate at Output Node. 

      Cascade and recalibrate the error in the backward process. 

END 

Algorithm 10 ANN-Back Propagation Model 

ANN – Back Propagation Model Performance in CSLC 

Training set size 1000 2000 4000 6000 

Learning Time (sec) 6.5 10.6 16.7 21.4 

Prediction accuracy 88.7 92.2 94.1 96.4 

Table 14 Local Cache Performance Evaluation 

ANN- Back Propagation Model Performance in SSGC 

Training set size 3000 6000 9000 12000 

Learning Time (sec) 11.5 18.1 23.7 27.9 

Prediction accuracy 91.3 94.6 95.8 98.3 

Table 15 Global Cache Performance Evaluation 

Frame 

work 

Cloud 

Type 

Client data 

Caching 

System 

profiler 

Turnaround 

Time on an 

Offload 

Energy-

Saving on 

Offload 

Experiment 

ICODA 

 

Private 

cloud / 

MEC 

Yes Run time Lower 80 – 90% Real-time 

JAY 

(2021) 
Custom No Run time Higher 20 – 40% Real-time 
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Table 16: Performance Evaluation of ICODA with JAY, OREGANO, and ULOOF Offloading Frameworks 

Therefore, it is clear from Table 16 that the optimization in 

mobile client device work time is possible by adopting 

machine learning approaches in data offloads decision and 

data caching mechanism of ICODA framework and is 

promising to achieve better proficient performance with 

reduced run time. 

6. CONCLUSION 

In this paper, the proposed intelligent composite offload 

decision algorithm (ICODA) framework can outperform with 

optimized work time proficiency for two main reasons 

namely, a popular data caching mechanism to postpone the 

offloading operation as long as possible by keeping the most 

important results intact on storage and a random forest 

classifier algorithm with 99.44% best mean accuracy can 

optimize the length of the health of client mobile device work 

time. The data caching components of the proposed ICODA 

framework has been designed, implemented, and analysed. 

The performance of prediction accuracy using the ANN-back 

propagation machine learning model on local and global 

cache tables has been evaluated. The prediction accuracy was 

observed at 96.4% in the local cache and 98.3 in the global 

cache which is significant. Therefore, The ICODA framework 

is stable with infrastructure-less content caching at user 

equipment device level on a private network. A high 

bandwidth Wi-Fi-enabled network will be an added advantage 

for additional communication efficiency. This framework is 

generic and flexible in its architectural nature and can add any 

improvised decision-maker scheme to it for better results in 

the future for different applications and its real data sets. The 

extended experimental observation makes us realize that this 

framework can virtually double the energy of mobile devices 

since they are not used for workload execution unless the 

workload is new and unique in relevant to the specific 

organization private cloud giving rise to the substantial 

increase in overall mobile device work time enhancement. 
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