
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 72

RESEARCH ARTICLE

Improving Performance and Efficiency of Software-

Defined Networking by Identifying Malicious

Switches through Deep Learning Model

Thangaraj Ethilu

Department of Computer Science and Engineering, Annamalai University, Chidambaram, Tamil Nadu, India

ethilthangaraj@yahoo.co.in

Abirami Sathappan

Department of Computer Science and Engineering, Annamalai University, Chidambaram, Tamil Nadu, India

reachabisv@gmail.com

Paul Rodrigues

Department of Computer Science and Engineering, King Khalid University, Abha, Saudi Arabia

drpaulprof@gmail.com

Received: 05 December 2021 / Revised: 08 January 2022 / Accepted: 13 January 2022 / Published: 28 February 2022

Abstract – In recent times, Software Defined Networking (SDN)

has developed widely to provide capable solutions for future

internet services. As with the solutions, SDN brings us a

hazardous rise in malicious threats. We investigated a sort of

Distributed Denial of Services (DDoS) assault known as an

internet services attack, which evaluates the influence of both

traffic flow and throughput depletions in order to characterize

the abnormalities. This sort of attack has a significant impact on

the whole SDN. This paper introduces a deep learning method to

improve the performance efficiency of the SDN by classifying the

network switch into either a trusted switch or a malicious switch

device. In this research, an attack detection methodology for

Internet services utilizing Software Defined Networking (SDN) is

proposed. The SDN controller may evaluate traffic flow, detect

anomalies, and restrict both incoming and outgoing traffic as

well as source nodes. The SDN considers a Convolutional Neural

Network (CNN) based attack detection system that can identify

malicious node. Kaggle datasets are used to test and train CNN

and the features such as packet duration, packet count, byte

count, accuracy for identifying the flow of trusted and malicious

switches. According to the results, the CNN-based attack

detection system can identify the attack with an accuracy of 89

percent. The comparison evaluation with the already proposed

LeNet CNN of the feature classification proves that the flow is

the trusted one and with the constant throughput with the help

of the deep learning model.

Index Terms – Software Defined Networking (SDN), Kaggle

Dataset, Convolutional Neural Networks (CNN), Keras, Internet

Service Attack, Malicious Switches, Malicious Node, Distributed

Denial of Services.

1. INTRODUCTION

Deep Learning Model focuses on the trusted and the

malicious [1-4] or untrusted switch detection for better

network performance [5]. This is carried out through the

Software Defined Networking (SDN) using deep learning

architecture. The basic deep learning model is illustrated in

below Figure 1.

Figure 1 Basic Deep Learning Model

This work is based on two stages training and testing stages.

In the training stage, the computations of trusted and

malicious network switches relate to the SDN controller for

the external feature charts. They are trained by the Modified

Convolutional Neural Networks (CNN) with LeNET datasets

mailto:reachabisv@gmail.com

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 73

RESEARCH ARTICLE

to produce the trained patterns. In the testing stage, the

computations of trusted and malicious network switches relate

to the SDN controller for the external feature charts specially

used for checking malicious activities. Modified

Convolutional Neural Networks (CNN) with LeNET datasets

will produce the categorized response as a trusted or untrusted

network switch [6]. This Architecture helps in the

classification of the unidentified switch to either trusted or

malicious switch where external and internal feature charts

are required. The internal maps are computed by the

architecture itself but external needs to be computed

outwardly from the network switch device where the external

process is determined. Through the deep learning modified

architecture, the untrusted switches are detected for the better

performance of the SDN [7]. Here the external feature charts

are computed for trained and categorized from the switch

device through Convolutional Neural Networks (CNN).

Similarly, our proposed work focuses on the deep learning

environment using the Kaggle dataset. The best feature

selection for the identification and detection of trusted and

untrusted switches. We created a deep learning environment

using TensorFlow and Keras environment. Here, CNN will be

used for text classification and feature importance. The flow

of trusted and untrusted switches and the security of the

attacker node will be determined.

1.1. Problem Statement

In our proposed system, larger scalability issues of Software

Defined Networking (SDN) due to lower throughput and high

latency are addressed. The partition of the control plane and

the data plane is a contributor to the above-mentioned issues

of SDN architecture especially the scalability of a control

plane. This decoupling is carried out by the controller (i.e.,

pox controller) which helps in the classification of network

devices. The process of identifying the trusted or untrusted

network by classifying the features of the packet in an

efficient manner through constant throughput. A deep

learning environment is a process followed for analyzing and

implementing the network switch. A throughput comparison

study with the existing LeNet architecture helps to determine

the trusted flow of network switches efficiently.

1.2. OBJECTIVE

The suggested technique takes into account the following

goals:

1. To identify malicious switches using a deep learning model

and to increase Software Defined Network performance and

efficiency by recognizing malicious and trusted switches

through the Kaggle dataset.

2. A novel method of attack detection methodology for

Distributed Denial of Services (DDoS) attacks in internet

services is created using entropy values and Principal

Component Analysis (PCA) based on Convolutional Neural

Networks (CNNs).

3. To implement CNN and their characteristics such as packet

duration, packet count, byte count, and accuracy for

distinguishing the flow of trustworthy and malicious switches

are tested and trained.

4. The performance of the proposed SDN system is compared

to that of the present LeNeT architecture. The SDN

performance may be determined by using constant throughput

and comparing it to an existing LeNet architecture.

The Section 2 defines the related literature survey of the

existing systems. Section 3 describes about the methods and

materials used in the analysis part. The 4th section defines the

complete information of the proposed approach and the SDN

implementation and 5th Section describes our experimental

results. Section 6 will finally conclude the paper with future

expansions.

2. LITERATURE SURVEY

Oliveira et al. [1] focus network’s control plane approach for

energy efficiency. It is capable of parallel processing which is

splitting of multi-tasks of the controller through the multicore

processor. Through this division of tasks among the similar

cores, the frequency can be lowered can help in lowering the

consumption of energy by not keeping the same quality of

service level. Here, they used the multicore processor to save

the energy consumed without compromising the level of

service. They performed many standard measures like latency

[8]; throughput and standard energy efficiency metrics for

data centers namely Communication Network Energy

Efficiency (CNEE) metric [9, 10]. Comparing a single core

with this multicore processor gives better efficiency

performance. To show the effects of handling the packets on

the controller energy consumption SDN model is presented.

The motivation on energy savings behindhand the multicore

controller is conferred.

Mohsin et al. [2] in their paper the controller pane is

determined through the fewer power nodes. Here, the meta-

heuristic Software Defined Networking (SDN) approach is

evaluated for shortest path selection in Wireless Sensor

Networks (WSN). To overcome the problems of exploration

and exploitation [11, 12] a new modified algorithm Dolphin

Echolocation Algorithm (DEA) is created. This algorithm will

help to find the efficient path of the nodes. In this paper, the

residual selections of nodes are considered to select the

desired shortest path.

Madhukrishna et al. [3] in their paper need of the energy-

efficient algorithm is determined. They have focused on

active and sleep mode in their consumption model for the

large and wide SDN applications. For the real-time

application, this energy consumption routing algorithm helps

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 74

RESEARCH ARTICLE

to reduce energy. A framework for energy efficiency for

Software Defined Networking (SDN) is introduced in this

paper. Efficient Routing Algorithm Selection (ERAS) is the

algorithm used to perform energy consumption [13]

calculation and link load optimization. This optimization is

used by all the neighbor nodes of the controller plane with the

help of link state data.

Naeem et al. [14] developed a malware classification system

(MICS) that collected hybrid characteristics from malware

before classifying it using Support Vector Machine (SVM).

Using only samples of 9339 from malware 25 families, they

were able to obtain a classification accuracy of 97.4%. Their

strategy for small-scale analysis attained an accuracy of

99.6% using just samples of 5116 from malware of ten

families. To categorize metamorphic malware J48, Logistic

Regression, and Naive Bayes is used to mining common sub-

graphs from metamorphic malware operation code graphs. Its

goal is to reduce the need for human expertise as well as the

associated costs [15]. Andrzej et al. [16] discuss the malicious

flow of switches in SDN. Openflow method was carried in

this proposed method to detect and identify the untrusted flow

of switches. According to this method, packet dropping and

packet swapping methods are classified to determine the

switch flow. To address the problem of vulnerability and

network security new algorithm was created. Two vulnerable

behavior were identified to resolve the untrusted flow of

switches. Here, the controller will analyze the statistics

periodically to help the features of packet count, byte count,

and duration of flow be determined. Yan et al. [17] created a

deep neural network that learned features from malicious files

using CNN and Long-Short Term Memory (LSTM) networks.

It significantly lowered the cost of creating artificial features.

By expressing malware executable as entropy value streams,

Gibert et al. [18] transformed the malware classification issue

into a time series classification problem, and then utilized a

CNN classifier to discover optimum discriminant sequels of

the time classification. This approach had a 98.28 percent

accuracy for the Microsoft dataset. However, it will not be

effective for malware families with a tiny number of samples.

3. DEEP LEARNING MODEL-ANALYSIS SECTION

In this proposed system, we divide the process into two parts:

one is data analysis part and SDN implementation parts. The

data analysis part is carried out through a deep learning

environment using Tensorflow and Keras environment [19].

The dataset used in this process is the Kaggle dataset. We take

Kaggle data for SDN trusted and untrusted flow. The

flowchart of the proposed analysis part is shown in Figure 2.

3.1. Deep Learning Environment with Keras

In general, deep learning is a machine language used to detect

the features in similes. This deep learning uses Convolutional

Neural Networks (CNN) which can work as a brain in a

human being. It consists of many layers where each layer can

excerpt one or many distinctive features. For machine

language, it is very difficult to identify the structure as trusted

or untrusted. It is more acute to feature extraction maps to be

automated using machine language. To overcome real-world

issues, deep learning is used to analyze and identify objects in

similes. Here, the process is circulated in a well-timed

practice.

Figure 2 Flowchart of Analysis Part

Figure 2 clearly describes the flow of trusted or untrusted

network switches. After the network switch, nodes and

controller are initiated, the Software Defined Networking

(SDN) will identify the flow of the network. Through

analyzing, three features are identified [20].

If the flow of duration is high, then the network switch will be

untrusted, and low means flow will be trusted. Some of the

deep learning frameworks include TensorFlow and Keras.

Our proposed system is carried out in Keras framework to

excerpt exterior feature plots.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 75

RESEARCH ARTICLE

3.2. Feature Extraction

The main goal of text classification is to categorize text into

applicable classes or forms. This system comprises a feature

extraction tool that works out several plain text docs and a

classifier through prior data of the labelled data [21]. The

classification of features is based on the trusted and untrusted

flow of switches. As the analysis part progresses, the packet is

taken as input where three features are determined. They are

byte count, packet count, and duration of the flow. In this

proposed work, we divide the process into two parts data

analysis and Software Defined Networking implementation

parts. In the analysis part, the deep learning environment is

created using TensorFlow and Keras environment. Keras is

providing a firm user investigation. Keras is now integrated

with Tensorflow Application Program Interface (API). When

the flow starts trusted and untrusted flow is identified. If the

duration of flow is high means untrusted flow and if the flow

is low means trusted flow. The maximum and minimum flow

of those features are tabulated in below Table 1.

Feature Max Min

Packet Count 350000 4000

Byte Count 147128002 23814

Duration 800 250

Table 1 Min and Max Features

3.2.1. Entropy Values

Entropy is the notch of uncertainty. The level of the disorder

can be computed through the entropy of the information. A

higher level of entropy denotes complex or high uncertainty

and the most disorderly system. Low entropy information

provides the possibility to guess fore coming engendered

values. Entropy [22] is computed using the below equation

(1).

(2.25) × N∫ min⁡(X) × max⁡(X) × P × log1pxdx (1)

Where P(X) is the probability density function (PDF) of the

X(n) switch. Entropy is regarding the maximum and

minimum amount of data or information converged by a

certain bit. The entropy e is known through the below

equation (2).

(1.14)e = 1npDilNpDi (2)

Where D is distribution, N elements and p(i) is the probability

of the element. The natural log is defined as log2 in binary,

and the equation is stated as follows (3).

np(1.15)e = 1npp⁡Di⁡log2pDi (3)

Where log 2(N) is the maximum value of entropy.

3.2.2. Min-Max Level

The maximum and minimum values of entropy features such

as packet count, duration flow, and byte count. The minimum

and maximum of all features are computed as shown in below

Table 1. This analysis is carried out for the trusted flow [23]

of switches.

3.2.3. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a mathematical

process that reduces a large number of (potentially) linked

variables to a smaller number of unconnected variables

known as principal components. The initial principal element

accounts for as considerable variation in the data as feasible,

with each subsequent component accounting for as much

variability as possible. PCA is a technique for emphasizing

variance and highlighting significant outlines in a dataset. It's

frequently used to make statistical data easier to understand

and comprehend. The CNN architecture is used for

categorizing trusted and untrusted networks from an unknown

network requires both interior and exterior maps. The interior

map feature will be produced by itself whereas exterior maps

are computed from the switch [4]. The weight of the feature

chart is computed through the below equation (4).

𝑊𝐹𝑀 =
𝛼𝑖∗𝛽𝑖

𝑤𝑖
 (4)

Whereas 𝛼𝑖 is the index factor of the alpha and 𝛽𝑖 is the index

factor of the beta with the computation weight 𝑤𝑖 . The index

factor of the alpha (𝛼𝑖) is calculated using the below equation

(5) which denotes the unknown network whose packet flow of

controller and SDN controller is obtained.

𝛼𝑖 =
𝑃𝑠∗𝑃𝑟

𝑁
 (5)

Whereas 𝑃𝑠 is the total number of successfully transmitted

packets from SDN controller(c) to switch(s) over t is time‘t’,

𝑃𝑟 the number of packets received the successfully at the

controller from switch and finally N is the number of packets

transmitted from s to c. The index factor of beta (𝛽𝑖) is

calculated based on below equation (6) which is computed

between controller and switch of the dropped packet.

𝛽𝑖 =
𝑑𝑠𝑐

𝑁
∗ 𝐸𝑠 (6)

Whereas 𝑑𝑠𝑐 is the total packets dropouts from c to s and 𝐸𝑠 is

the switch’s energy consumption. The SDN controller weight

index (𝑤𝑖) is calculated using the below equation (7).

𝑤𝑖 =
∑ 𝑃𝑖𝑐
𝑁1
𝑖=1

𝑁1
 (7)

Whereas 𝑃𝑖𝑐 is the received packets of the SDN controller

from its switches surrounded and N1 is the total number of

adjoining switches around SDN controller. This feature

computation is stored as a matrix called Feature Map (FM)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 76

RESEARCH ARTICLE

and is collaborated with CNN for detecting trusted and

untrusted switch flow in Software Defined Networking

(SDN).

3.3. Classification Factors

The byte count is computed using a number of bytes. The byte

count for trusted (1) and untrusted switch (0) is illustrated in

below Figure 3. From this, we set entropy for trusted (1) and

untrusted switch (0). Packet count is nothing, but the total

number of packets accumulated. Packet count is one method

of classifying traffic. Packet count of the trusted (1) and

untrusted (0) flow are shown in the below figure 4. The

maximum and minimum of the feature is computed in the

above Table 1. Packet count is nothing, but the total number

of packets accumulated. Packet count is one method of

classifying traffic. Packet count of the trusted (1) and

untrusted (0) flow are shown in the below Figure 4. The

maximum and minimum of the feature is computed in the

above Table 1.

Figure 3 Byte Count

Figure 4 Packet Count

Figure 5 Duration

The duration of the flow is categorized in the above figure.

This is used to statistically label stream flow. These data are

mean flow daily values measured over a specified equation

below. It is computed using definite time interval. The

exceedance duration [24] is given as the below equation (8),

where P is the probability of the trusted flow, m is the high to

low ranking and n denotes mean flow [25] of the network

switch.

𝑃 = 100 ∗ (
𝑚

𝑛+1
) (8)

4. SDN IMPLEMENTATION

Second part of implementation is carried out in SDN through

importing the predefined libraries. TensorFlow

implementation is as follows: TensorFlow Implementation is

an open source for deploying deep learning models. Keras is

used for Convolutional Neural Networks (CNN) environment

that run and compile on Central Processing Units (CPU) and

Graphics Processing Unit (GPU). This implementation part is

classified into data plane, controller plane, and data plane.

4.1. Mininet, OpenFlow, and the Pox Controller

In our proposed system Mininet is used to create an SDN

environment. It enables an SDN environment in any Pc or

laptop. Software Defined Networking (SDN) provides fast

prototyping. Pox controller [26] is the open flow switch that

allows SDN exploration. POX controller default program is

modified according to our proposed system. Through Pox

custom-built controller will be created for other switch

operation flow. Pox is already installed on the Mininet virtual

machine.

4.2. Flowchart of Proposed Work

The flowchart of SDN implementation is shown in below

Figure 6. Here, the SDN switches help in traffic management

from source to destination nodes. For every new flow

identified in the switch, the SDN controller will send the

routing instruction to the switch and the redirection to its

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 77

RESEARCH ARTICLE

respective network takes place. OpenFlow will look after the

interaction with the controller with the other interface.

4.2.1. Module 1: Network Creation

Mininet is used to create an SDN environment. At the first

controller, switches and nodes are created. We can have any

number of switches while running the host. We have taken the

example of 64 nodes in that 9 switches, 1 controller then

created data plane, controller plane and management plane.

The switch upholds certain data correlated to the traffic flow

and might make available the particular data to the controller

on its demand. Attacks are launched by attacker node by the

user which makes the switch to expose directly to the switch.

4.2.2. Module 2: Packet Transmission

Figure 6 Flowchart of SDN Implementation

In this module, packet transmission is carried out by sending

the packet as the trusted switch. By default, we will send the

packet as trusted flow for the features found in the analysis

part of section 3. Packet count, byte count and the duration

flow are the three features used for the identification of

trusted switch. Packet transmission are measured based on the

number of packets per second. The trusted and malicious flow

are evolved in packet count.

4.2.3. Module 3: Controller

Here, we used POX controller default program. This program

is modified according to our proposed implementation. With

the features made through the analysis part we have set them

alone inbuilt with the controller. Through these specified

switches with the specified condition alone the switch will be

allowed.

SDN controller communicates with the data plane and user

plane for detecting the vulnerabilities in the switches sent

from the transmission. SDN controller with the help of pox

controller will detect the attacker node and makes the

interruption of the switch to travel further.

4.2.4. Module 4: Trusted Flow

By default, the switch will be trusted through the controller

default program. For those switches and for that specified

conditions alone the flow will be considered as trusted. If the

condition is not satisfied, then the flow will be disconnected.

Finally, the normal packet will be sent will be reached

successfully. The trusted flow of the switch will be detected

for further feature classification. If the attacker node is sent,

the flow will be interrupted.

4.2.5. Module 5: Untrusted Flow

For the untrusted flow, we have a file attacker. When sending

them from the host, the switch will be interlinked. The flow

will be disconnected if the flow will be untrusted and it will

not evaluate the features found from the analysis part. The

malicious flow of the network switch looks for vulnerabilities

and security in this module using the SDN controller. When a

DDoS attack happens, the network experiences a packet burst.

Apart from the number of packets, only DDoS has two

patterns: one is a large number of packets from several

sources sent to a single target, and the other is a rapid start.

Unlike a hot subject, which takes time to split and generally

spreads exponentially, a DDoS assault grows like a spark,

unless the perpetrator pretends to be someone else. Another

difference between a hot subject and DDoS is that a hot topic

is generally only seen once, but DDoS requires each bot to

visit the target repeatedly to enhance its efficacy and power.

According to the above-mentioned matching problem, SDN

environments will have two additional side effects.

4.2.5.1. Effect on Switches

Assume that a DDoS attack happens over the whole network,

with bots from the attacker's "botnet" separating in each

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 78

RESEARCH ARTICLE

switch. If no corresponding flow table rule exists, the switch's

storage capacity for uninstructed packets will be depleted, and

the switch will have to delete old or new packets when a new

uninformed packet attains. Another issue is that if the

controller does not properly manage the flow table, each

independent packet with a changed destination and source,

has its own flow table, the flow table space would rapidly run

out of capacity.

4.2.5.2. Effect on Controller

When a DDoS attack occurs, a large number of uninformed

packets are sent through various switches, awaiting the

controller's alert. This rapidly exhausts the controller's

processing capacity, time out and, causes latency, resulting in

packet loss or the controller's complete shutdown, rendering

the network inoperable. Higher specification controller and

switch devices with more capacity and faster processing time

permit the SDN setting to shift more packets, however, this is

insufficient to solve the problem. Other methods to exacerbate

these negative effects are also available.

 A low volume of traffic. According to [26], regardless of

how busy a new stream's traffic is, only the primary

packets of the flow are wrapped in packet-in messages and

forwarded to the controller. As a result, attackers will

favor targeting low-traffic flows in order to have a greater

impact on the controller.

 There is a lot of traffic. On the divergent, we may employ

high traffic, with each packet containing worthless data, to

consume the greatest amount of switch space.

4.2.6. Module 6: Storing the Flow

Both the trusted and untrusted flow of switches will be a text

file. Then those files will be saved as Transmission Control

Protocol (TCP) dumps. If trusted flow means the packet will

reach the switch and the data will be stored as text file. Here,

we consider the trusted flow as the efficient network switch

where the data are saved as text file.

4.3. Algorithm of the Proposed Work

The computation flow of feature classification of trusted flow

is listed in the below Algorithm 1.

1 Start by network creation

2 Initialize n number of nodes in which some are switches

and some are controllers.

3 Next create data plane, controller plane and management

plane.

4 Packet are analyze and compute three features Byte count,

Packet count and Duration for feature classification.

5 Then flow of duration starts, if the duration is high then it

is untrusted flow (0) else it is trusted flow (1).

6 The untrusted flow due to DDoS attacks on switches and

controllers may interpret the flow of switches

7 The exceedance duration is given as 𝑷 = 𝟏𝟎𝟎 ∗ (
𝒎

𝒏+𝟏
)

,Where P is the probability of the trusted flow, m is the

high to low ranking and n denotes mean flow of the

network switch.

8 Firstly, sending packets as trusted using default Pox

controller, if trusted the flow continues and stores as TCP

dumps and text file else the flow gets interrupted.

9 End

Algorithm 1 Computing Feature Classification for Trusted

Flow

5. PERFORMANCE EVALUATION

The performance of trusted flow and untrusted flow with the

evaluation of three features are experimentally proved in the

below figures. Figure 7 shows the Kaggle dataset for the SDN

trusted and untrusted switches. In our work, we address the

malicious switches and the trusted flow of switches from the

network node are classified using the pox controller in

Software Defined Networking (SDN).

Figure 7 Dataset Description

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 79

RESEARCH ARTICLE

Figure 8 Heat Map

Figure 8 describes the heat map which is the packet

visualization method where the features are mentioned in

different colours. To give detailed pictorial of the flow of

trusted and untrusted switch this heat map is used. Heat map

provides the labels mentioned for vertical and horizontal axis.

Figure 9 shows the creation of networks with the needed host,

controller, links and switches.

Figure 10 shows the attacker node of the switch flow. Here

shows the Flow control of S2 since h2 is connected to s2.

Figure 9 Creation of Network

The total count of trusted and untrusted flow is mentioned in

Figure 11. The total number of trusted flows is 7 and

untrusted flow is 3.

Figure 10 Attacker Node

Figure 11 Result of Trusted and Untrusted Flow

If the flow is trusted, duration of the flow denoted the time

taken by the packet to reach the destination. The comparison

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 80

RESEARCH ARTICLE

of duration of flow between trusted (1) and untrusted (0) is

shown in above Figure 12. Duration of flow is measured in

terms of seconds in the y-axis. Figure 13 describes the

comparison of packet count of both trusted and untrusted

label. The packet count is measured for smallest sizes Before

dropping date packet of data per second are measured

comparing the label of trusted (1) and untrusted (0) from 0 to

500.

Figure 12 Duration Vs Trust

Figure 13 Packet Count vs Trust

Figure 14 Byte count vs trust

The comparison of byte count for trusted and untrusted flow

is mentioned in the below Figure 14. If the packet is sent

normally, trusted packet reads from the S2. If we give file

attacker to S2, then S2 will be considered as untrusted switch

label. A byte is order of 8 bits and the label is classified as

trusted (1) and untrusted (0). The below comparison denotes

the byte count from 0 to 30000 with the trusted or trusted

flow. Byte count is measured in terms of total number of bits

per seconds that are determined without dropping data.

Throughput is the rate or rate production deals with the data

sent through network to process the way of nodes travelling.

Computation of throughput shown in Table 2 are carried out

from host to host, host to switch and host to switch are

mentioned in the Figure 15. Bandwidth of host measured in

terms of kb/s. Throughput slot is measured in terms of time

interval.

Host to

Host

Host to

Switch

Switch to

Controller

No of

Host

No of

Switches

18.8 27.6 27.8 64 10

Table 2 Computing Throughput

Figure 15 Throughput in a Host

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 81

RESEARCH ARTICLE

Figure 16 Throughput Comparison

Figure 17 Principal Component Analysis with Normal Flow

Figure 18 Principal Component Analysis During Attack

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 82

RESEARCH ARTICLE

No of

packets

sent

Received

Packets

No of

packet

dropped

Loss

(%)

No of

switches

 Accuracy

Time(ms)

200 180 20 0 2 86%

1022541

600 587 13 2.6 3 87%

1307431

1200 904 296 29.6 5 82%

100600

1600 1400 200 19.886 7 87%

1505892

2100 2066 34 17 9 85%

1670831

Table 3: Results from the Implementation on Different no of Packets

Throughput comparison is computed for already proposed

LeNet[4] architecture with the proposed kaggle dataset in

terms of time are shown in the below Figure 16.

PCA is a technique for highlighting variance and highlighting

significant outlines in a dataset. It's frequently used to make

data exploration and visualization simple. Consider a dataset

with only two dimensions, such as (x is packets sent, y is time

taken). This dataset may be shown as a series of arguments in

a plane. If we wish to isolate variation, PCA creates a new

coordinates system with new (x', y') values for each point.

The axes are "primary components," which are groupings of x

and y that are chosen to provide one axis a lot of variances.

Figure 17 depicts the PCA normal flow without DDos attacks.

Figure 18 illustrates the PCA with DDos attacks. The scatter

plots denote the traffic in attacked flow of switches. X axis is

packets sent and y axis is time interval.

Table 3 lists the total number of packets received, number of

packets losses, percentage of loss, number of switches,

accuracy percentage and the time interval in milliseconds.

6. CONCLUSION AND FUTURE ENHANCEMENTS

In this proposed system, we have experimentally proved that

the flow of switch will be trusted using the features of packet

count, byte count duration, and accuracy of 89 %. Packet

transmission towards the switch flow is illustrated and attack

detection for DDos is determined using SDN. The

comparative study of the feature classification and constant

throughput proves that the flow is the trusted one through

deep learning model. Based on these features trusted and

untrusted switch is found. The future enhancements can be

focused on other features of dataset of SDN which can

transmit the network switch for the energy efficiency and

badge power.

REFERENCES

[1] Oliveira, T.F.; Xavier-de-Souza, S.; Silveira, L.F. Improving Energy

Efficiency on SDN Control-Plane Using Multi-Core
Controllers. Energies, 14, 3161, 2021.

[2] Mohsin Masood, Mohamed Mostafa Fouad, Saleh Seyedzadeh and Ivan

Glesk, “Energy Efficient Software Defined Networking Algorithm for
Wireless Sensor Networks”, 13th International Scientific Conference on

Sustainable, Modern and Safe Transport, 2019.
[3] Madhukrishna Priyadarsini, Padmalochan Bera, and Mohammad

Ashiqur Rahman, “A New Approach for Energy Efficiency in Software

Defined Network”, Fifth International Conference on Software Defined

Systems (SDS), 2018.
[4] Thangaraj Ethilu, Abirami Sathappan, Paul Rodrigues, "Modified Deep

Learning Methodology Based Malicious Intrusion Detection System in

Software Defined Networking", International Journal of Computer
Networks and Applications (IJCNA), 8(4), PP: 381-389, 2021, DOI:

10.22247/ijcna/2021/209704.
[5] Danda B. Rawat and Swetha R. Reddy, Software Defined Networking

Architecture, Security and Energy Efficiency: A Survey,IEEE

communication surveys and tutorials,2019.
[6] W. Meng, W. Li, Y. Xiang and K.-K.R. Choo. A Bayesian Inference-

based Detection Mechanism to Defend Medical Smartphone Networks

Against Insider Attacks. Journal of Network and Computer

Applications, vol. 78, pp. 162-169, Elsevier, 2017.
[7] Rinki Gupta, Sreeraman Rajan, “Comparative Analysis of Convolution

Neural Network Models for Continuous Indian Sign Language

Classification”, Procedia Computer Science 171 (2020) 1542–1550.
[8] P. -W. Chi, M. -H. Wang and Y. Zheng, "SandboxNet: An Online

Malicious SDN Application Detection Framework for SDN

Networking," 2020 International Computer Symposium (ICS), 2020,
pp. 397-402.

[9] Sebbar, A., ZKIK, K., Baddi, Y. MitM detection and defense
mechanism CBNA-RF based on machine learning for large-scale SDN

context. J Ambient Intell Human Comput 11, 5875–5894 (2020).
[10] Nife, F.N., Kotulski, Z. Application-Aware Firewall Mechanism for

Software Defined Networks. J Netw Syst Manage 28, 605–626 (2020).
[11] Neu C. V., Tatsch C. G., Lunardi R. C., Michelin R. A., Orozco A. M.

S.,and Zorzo A. F.: Lightweight IPS for port scan in OpenFlow SDN
networks. In NOMS 2018 IEEE/IFIP Network Operations and Manag.

Symposium, Taipei, Taiwan, pp. 1–6, (2018).
[12] H. Naeem, B. Guo, and M. R. Naeem, ‘‘A light-weight malware static

visual analysis for IoT infrastructure,’’ in Proc. Int. Conf. Artif. Intell.

Big Data (ICAIBD), May 2018, pp. 240–244.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/211627 Volume 9, Issue 1, January – February (2022)

ISSN: 2395-0455 ©EverScience Publications 83

RESEARCH ARTICLE

[13] H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and A. K.

Sangaiah, ‘‘Classification of ransomware families with machine
learning based on N-Gram of opcodes,’’ Future Gener. Comput. Syst.,

vol. 90, pp. 211–221, Jan. 2019.
[14] A. Khalilian, A. Nourazar, M. Vahidi-Asl, and H. Haghighi, ‘‘G3MD:

Mining frequent opcode sub-graphs for metamorphic malware detection

of existing families,’’ Expert Syst. Appl., vol. 112, pp. 15–33, Dec.

2018.
[15] Y.-S. Liu, Y.-K. Lai, Z.-H. Wang, and H.-B. Yan, ‘‘A new learning

approach to malware classification using discriminative feature

extraction,’’ IEEE Access, vol. 7, pp. 13015–13023, 2019.
[16] Chang Y., and Lin T.: Cloud-clustered firewall with distributed SDN

devices. In: 2018 IEEE Wireless Communications and Networking

Conference (WCNC), Barcelona, pp. 1–5. (2018).
[17] J. Yan, Y. Qi, and Q. Rao, ‘‘Detecting malware with an ensemble

method based on deep neural network,’’ Secur. Commun. Netw., vol.

2018, pp. 1–16, Mar. 2018.
[18] D. Gibert, C. Mateu, J. Planes, and R. Vicens, ‘‘Classification of

malware by using structural entropy on convolutional neural networks,’’

in Proc. 32nd AAAI Conf. Artif. Intell., (AAAI), 30th Innov. Appl.
Artif. Intell. (IAAI), 8th AAAI Symp. Educ. Adv. Artif. Intell. (EAAI),

New Orleans, LA, USA, 2018, pp. 7759–7764.
[19] Z. Ma, L. Liu, W. Meng. Towards Multiple-Mix-Attack Detection via

Consensus-based Trust Management in IoT Networks. Computers &

Security, In press (2020).
[20] Y. Meng. The practice on using machine learning for network anomaly

intrusion detection. The 2011 International Conference on Machine

Learning and Cybernetics (ICMLC 2011), IEEE, pp. 576-581, 2011.
[21] Andrzej Kamisiński, Carol Fung,” FlowMon: Detecting Malicious

Switches in Software-Defined Networks”, ACM CCS workshop on

Automated Decision Making for Active Cyber Defense ,2015.
[22] Lis, A.; Sudolska, A.; Pietryka, I.; Kozakiewicz, A. Cloud Computing

and Energy Efficiency: Mapping the Thematic Structure of Research.

Energies 2020, 13, 4117.
[23] Aujla, G.S.; Kumar, N.; Zomaya, A.Y.; Ranjan, R. Optimal Decision

Making for Big Data Processing at Edge-Cloud Environment: An SDN

Perspective. IEEE Trans. Ind. Inform. 2018, 14, 778–789.

How to cite this article:

[24] Xu, G.; Dai, B.; Huang, B.; Yang, J.; Wen, S. Bandwidth-aware energy

efficient flow scheduling with SDN in data center networks. Future
Gener. Comput. Syst. 2017, 68, 163–174.

[25] Fernández-Fernández, A.; Cervelló-Pastor, C.; Ochoa-Aday, L. Energy

Efficiency and Network Performance: A Reality Check in SDN-Based
5G Systems. Energies 2017.

[26] Son, J.; Dastjerdi, A.V.; Calheiros, R.N.; Buyya, R. SLA-Aware and

Energy-Efficient Dynamic Overbooking in SDN-Based Cloud Data
Centers. IEEE Trans. Sustain. Comput. 2017, 2, 76–89.

Authors

Mr. Thangaraj Ethilu, received the M. Tech in
Computer Science and Engineering at Dr. M.G.R

Educational and Research Institute University in Chennai

and B. E degree in Computer Science and Engineering at
Madurai Kamaraj University in Madurai. Presently he is

pursuing the Ph.D. in Department of Computer Science

and Engineering, Annamalai University Chidambaram,
Tamil Nadu India. His area of interest is networking and

cloud computing.

Dr.S. Abirami Sathappan, received the M. E in
Computer Science and Engineering at Annamalai

University in Chidambaram and Ph.D. in Computer
Science and Engineering at Annamalai University in

Chidambaram. Presently she is working as an Assistant

Professor in Computer Science and Engineering,
Annamalai University Chidambaram, Tamil Nadu India.

Her area of interest is Image Processing.

Dr. Paul Rodrigues received the M. E in Computer
Science and Engineering at Mothilal Nehru Regional

Engineering College in Allahabad and Ph.D. in Computer

Science and Engineering at Pondicherry University in
Pondicherry. Presently he is working as a Professor in

Computer Science and Engineering, King Khalid

University, Abha, Saudi Arabia. His area of interest is
networking.

Thangaraj Ethilu, Abirami Sathappan, Paul Rodrigues, “Improving Performance and Efficiency of Software-Defined

Networking by Identifying Malicious Switches through Deep Learning Model”, International Journal of Computer Networks

and Applications (IJCNA), 9(1), PP: 72-83, 2022, DOI: 10.22247/ijcna/2022/211627.

https://www.researchgate.net/profile/Andrzej-Kamisinski
https://www.researchgate.net/profile/Carol-Fung

