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Abstract – Traditional encryption allows encrypted data to be 

decrypted before any computation could be performed on such 

data. This approach could compromise the security of the data 

when an untrusted party is involved in the computation. To be 

able to work on data in its encrypted form, a homomorphic 

encryption approach is recommended. Homomorphic encryption 

allows computation to be done on data that has been encrypted 

and yields the same results that would have been obtained if the 

computation had been performed on the unencrypted form of 

the data. Most of the Homomorphic encryption (HE) algorithms 

are deterministic. These deterministic algorithms produce the 

same ciphertext for a given data on different occasions. This 

could allow an adversary to easily predict a plaintext from a 

ciphertext. Probabilistic algorithms, however, resolve the 

aforementioned challenge of deterministic algorithms. A 

probabilistic encryption algorithm ensures different ciphertexts 

for the same plaintext on different occasions.  Another challenge 

of most homomorphic encryption schemes is the way data is 

encrypted. Most algorithms encrypt data bit-by-bit (i.e. circuit-

based). Circuit-based encryption makes the encryption and 

decryption complex, thereby increasing the running time. To 

reduce the running time, Non-Circuit based encryption and 

decryption are preferred. Here, numeric data need not be 

converted to binary before any encryption is done.  To ensure a 

very secure, efficient but simpler HE scheme, the authors have 

offered a fully homomorphic encryption (FHE) scheme that is 

Probabilistic, Non-Circuit based, and uses symmetric keys.  

Results from the experiment conducted show that the proposed 

scheme is faster than Fully Homomorphic Encryption over the 

Integer (DGHV), A simple Fully Homomorphic Encryption 

Scheme Available in Cloud Computing (SDC), and Fully 

Homomorphic Encryption by Prime Modular Operation (SAM) 

schemes. The proposed scheme has a time complexity of 

O(log(n2)) and consumes less memory space. Even though HE 

schemes are naturally slow, the less memory space consumed by 

the proposed scheme and the time complexity of O (log(n2)), 

makes the proposed scheme suitable for real-life implementation 

such as auction, electronic voting, and in other applications that 

make use of private data. 

Index Terms – Probabilistic Encryption, Homomorphic 

Encryption, Non-Circuit Based Encryption, Information 

Security, Data, Symmetric Keys, Cryptography. 

1. INTRODUCTION 

The use of Information Technology in our everyday life poses 

risks and associated threats that affect the confidentiality and 

integrity of data [1]. Cryptography is highly recommended 

when one wants to ensure data confidentiality, data integrity, 

or authentication [2]. There are always security challenges 

when an untrusted user is involved in the computation of data 

[1]. With an untrusted user, the data must be worked on in its 

encrypted form. Thus, the need for HE. HE helps one to 

compute encrypted data without decrypting ciphertext [3]. 

With HE, all computations that could be performed on 
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plaintexts could also be performed on ciphertexts and yield 

the same results. 

Most of the HE schemes operate on binary data. These 

include: [4, 5,6,7,8,9,10,11,12,13].  These schemes are 

considered circuit-based and are complex in structure [9]. HE 

schemes that operate on real numbers are considered to be 

faster since data need not be converted to binary format 

before any operation could be performed on it [14]. These 

non-circuit-based schemes use simple mathematical functions 

and do not require additional circuit computation overheads 

thereby reducing ciphertext size and speeding up computation 

time [15]. Most of the encryption schemes that operate on 

binary data [4, 5,6,7,8,9,10,11,12,13] are deterministic [16] in 

nature. These deterministic algorithms produce the same 

ciphertext for a given data on different occasions. This could 

allow an adversary to easily predict a plaintext from a 

ciphertext. Probabilistic algorithms, however, resolve the 

aforementioned challenge of deterministic algorithms. A 

probabilistic encryption algorithm ensures different 

ciphertexts for the same plaintext on different occasions. 

Furthermore, the public-key cryptography technique is used 

by most proposed homomorphic encryption schemes. Many 

suggest that public-key cryptography is more secure than 

private-key cryptography. However, public-key cryptography 

is more complex and consumes more resources comparatively 

[17]. Also, private-key cryptography could be secured if the 

private key involved could be exchanged securely. Moreover, 

some applications would inherently require a secret key [9]. 

Though there have been many proposed HE schemes, much 

has not been exploited on an FHE scheme that is probabilistic, 

symmetric [17, 18], and non-circuit based with function 

privacy [19]. The main focus of this study was to secure data 

using an FHE scheme. Specifically, the concern was to design 

an FHE scheme that uses a probabilistic approach in 

generating ciphertexts; that makes use of symmetric keys, and 

that is non-circuit based.  HE schemes are naturally slow. This 

inhibits its use in real-life applications. The less memory 

space consumed by the proposed scheme and the time 

complexity of O (log(n2)) makes the proposed scheme 

appropriate for real-life implementation. 

This paper has been structured as follows: Related studies are 

reviewed in section 2. The tools and methods used in 

designing the proposed scheme are explained in section 3.  

Discussion of Results was done in section 4, and finally, the 

paper was concluded in section 5. 

2. RELATED WORK 

Since the inception of the HE scheme by Rivest, Adleman, 

and Dertouzous in 1978 (Rivest et al, 1978 as cited in [1]), 

there has been improvement in either speed, security, 

efficiency, or simplicity of the scheme [1]. 

Before Gentry’s proposal of an FHE scheme in 2009[4], HE 

schemes were either partial or somewhat homomorphic 

encryption schemes [1].  Since then, numerous variants of 

Gentry’s encryption scheme have been introduced. 

For this study, this section reviews three FHE schemes: 

DGHV, SDC, and SAM Schemes. The review is mainly based 

on the description of algorithms, and the Time and Space 

complexities of these Schemes.  

2.1. DGHV Scheme 

[5] Proposed DGHV Scheme in 2010 [5]. Their scheme was a 

true version of Gentry’s (Gentry, 2009) scheme [14]. Their 

scheme has the following components: Key generation 

(KeyGen), Encryption (Encrypt), Decryption (Decrypt), and 

Evaluation (Evaluate). 

KeyGen: An odd integer p is generated as key, p ∈
[2n−1, 2n )  

Encrypt (p, m): set c = pq + 2r + m, m ∈ {0,1}; p, q is a 

very big multiple of the key and r is a smaller even number. 

“2r is always smaller than p/2.” [5] 

Decrypt (p, c): set m =   (c mod p) mod 2 

Evaluate: Given the binary circuit with ciphertexts, the 

ciphertexts are added or multiplied. 

The time complexity of the DGHV scheme is O(n2). The 

space complexity is also O(1). 

The number of homomorphic operations is limited in DGHV. 

DGHV operations are restricted to binary operations. It means 

DGHV works only on plaintext in bits form. Processing in 

bits requires a higher number of operations in computation. 

This makes the scheme slower. DGHV also uses the public-

key technique. This makes the algorithm complex with a lot 

of overheads. DGHV uses a very long public key which 

makes it difficult to be used in practice. DGHV scheme is, 

therefore, not fit for real-life applications. 

2.2. SDC Scheme 

SDC scheme was proposed by [20] in 2012. Their scheme 

was a version of the Gentry’s cryptosystem. Their scheme 

was to ensure privacy in storing data in the cloud. SDC’s 

scheme involves the effective retrieval of encrypted data. The 

scheme uses only elementary modular arithmetic [20]. The 

scheme has the following components: 

Key Generation (KeyGen), Encryption (Encrypt), Decryption 

(Decrypt) and Retrieval (Retrieval). 

In Key Generation, a random odd integer P is generated as a 

key. During the encryption stage, the ciphertext is generated 

using the expression c = m + p + r * p * q.  m ∈ {0,1}.  
Where r and q are integers. The decryption stage uses the 

algorithm m = c mod p. 
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The ciphertext is retrieved at the final stage using the 

algorithm  R = (ci – cindex) mod q.  

The time complexity of the SDC scheme is O(n2). Similar to 

the DGHV scheme, the SDC scheme also has five variables in 

the encryption algorithm. So total memory requirement is 4 

*5 = 20 bytes. The 20 bytes space is fixed, it does not change 

in the process of executing the algorithm. The space 

complexity is, therefore, O(1). 

Similar to DGHV, SDC operations are also restricted to 

binary data. This makes the algorithm slower since there are a 

lot of operations that are performed in computation. 

2.3. SAM Scheme 

SAM Scheme was proposed by Sarah Shihab Hamad and Ali 

Makki Sagheer in 2018. Unlike DGHV and SDC schemes that 

convert plaintext to 8-bit binary format before encryption, the 

SAM scheme takes the plaintext directly and encrypt using 

the algorithm: c = m + r*p + p*q, where c is the ciphertext 

and m is the plaintext.  m ∈ [0, p − 1], p is a big prime 

integer, q is a constant integer, and r is the noise [17]. The 

scheme has the following components: 

KeyGen: generate secret key p as a big prime integer 

Encrypt(pk, m ∈ [0, p − 1]): encrypt plaintext using the 

equation c = m + r*p + p*q.  

Evaluate (pk, m1 ….mt, c1, …… ct ): add or multiply t 

ciphertexts to get ci, and then decrypt the ci. 

Decrypt (sk, c): Set m=c mod p. 

The time complexity of the SAM scheme is O(log(n2)). 

Similar to DGHV and SDC schemes, the SAM scheme also 

has five variables in the encryption algorithm. So total 

memory requirement is 4 *5 = 20 bytes. The 20 bytes space is 

fixed, it does not change in the process of executing the 

algorithm. The space complexity is, therefore, O(1). 

Though SAM’s scheme is faster than DGHV and SDC, the 

number of primitive operations involved in the encryption 

algorithm will increase the running time of the algorithm. 

Therefore, an algorithm with less primitive operations is 

preferred. 

3. METHODS AND MATERIALS 

This section describes the various approaches used in 

achieving the stated objectives. 

3.1. The Proposed Scheme 

The proposed scheme takes plaintext (m) and generates two 

random numbers (p and r). One of the random numbers (p) is 

taken as a private key. This key (p) is used to decrypt the 

ciphertext when generated. The algorithms for encryption and 

decryption are discussed in Sections 3.1.2 and 3.1.3.  

The scheme uses only numeric values. Therefore, a non-

numeric plaintext is converted to numeric using its ASCII 

code equivalent.  Thus, Plaintext in non-numeric form is 

converted to its corresponding ASCII code before any 

encryption could be done. For instance, a plaintext “a” is 

converted to its ASCII code “65”, the 65 is then encrypted 

using the appropriate algorithm. To apply the homomorphic 

encryption scheme to numeric data, four basic algorithms 

were used. They are Key generation, encryption, decryption, 

and evaluation algorithms.  

These algorithms have the following description: 

KeyGen: select the secret key p to be a randomly generated 

large prime positive integer. The key must have a fixed length 

and must be within a given range. 

Encrypt(p, m ∈ Z+ ): Encrypt a plaintext (m) using the 

encryption equation c = m + (p ∗ r). Here c is the ciphertext, 

m is the plaintext (numeric or ASCII code of a character), p is 

the randomly generated large positive prime integer and r is 

the noise, which is also a randomly generated large positive 

prime integer. 

Evaluate (c1 ….. ct ): add or multiply t ciphertexts and get ci. 

When ci is decrypted it yields the same results as adding or 

multiplying t plaintexts. 

Decrypt (p, c): decrypt ciphertext c using the decryption 

equation m = c mod p. 

These components of the scheme are explained in the next 

sections. Section 3.1.1, 3.12, 3.13, 3.14 gives a detailed 

explanation of the four algorithms. 

3.1.1. The Proposed Key Generation Algorithm 

The proposed key generation algorithm selects randomly a 

symmetric key for the encryption and decryption. The random 

selection of the symmetric key makes the encryption scheme 

probabilistic. The random number selected must also be a 

prime number. The key’s size depends on the number of 

digits used as the parameter in the key generation algorithm. 

A minimum of 10 digits is preferred. The longer the size of 

the key, the more secure the key is.  However, the size of the 

key affects the ciphertext size. 

3.1.2. The Proposed Encryption Algorithm 

The proposed encryption algorithm takes the plaintext m, the 

symmetric key p, and a random number r and transforms the 

plaintext into ciphertext c. The inclusion of a random number 

makes it difficult for an adversary to predict the plaintext even 

when the symmetric key is known. The encryption algorithm 

is C = m + (p * r) 

The plaintext must be less than the encryption key. If the 

plaintext is equal to or greater than the encryption key, the 

decryption results will be undesirable. For this reason, the 
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encryption key must be large enough. The plaintext must also 

be a positive integer. Using negative values yield wrong 

results. The programmer can take care of negative values by 

appending the negative sign to the decrypted results. 

3.1.3. The Proposed Decryption algorithm 

The proposed decryption algorithm uses modular arithmetic. 

The decryption algorithm uses the symmetric key to convert 

the ciphertext into plaintext. ciphertext modulo symmetric key 

gives the plaintext value. That is, the remainder of dividing 

the ciphertext by the symmetric key is the plaintext. m = c % 

p 

3.1.4. The Evaluation Operations 

The evaluation operations, for example, Addition and 

multiplication, are performed on ciphertext in the same 

manner as it is done on the plaintext. For example, for 

ciphertexts c1, c2, and c3, addition is performed as c1+c2+c3, 

and multiplication is performed as c1*c2*c3. Other 

computations such as comparing ciphertexts or ordering 

ciphertexts could be performed on the ciphertexts. The 

evaluation is simply applying the various mathematical 

operations on the ciphertexts. 

3.2. The Experimentation 

This section deals with the implementation of the scheme. 

The various components of the scheme were tested with 

actual data. 

3.2.1. Experimental Set-Up 

All the algorithms stated in this study were implemented 

using the Java Programming Language. The Integrated 

Development Environment (IDE) used was NetBeans. The 

codes were run on an intel® Core ™ i7-7500U CPU @ 2.70 

GHz 2.90 GHz on 64-bit Windows 10 Operating System, an 

x64-based processor with 8.00 GB Installed memory (RAM). 

3.2.2. Key Generation 

Table 1: Results of p and r Values Generated Using the Key 

Generation Algorithm 

Count P value r value 

1 1089333481 1329746303 

2 1680005731 1283849519 

3 1440361501 1333286827 

4 1532538439 1067249569 

5 1573836631 1911291269 

6 1277045633 1153954427 

Math. random () method in Java was used to generate the 

random numbers. Minimum and maximum values of 10-digits 

long were used as arguments in the Math. random method to 

serve as the range to generate the random numbers from. A 

number generated was then verified as a prime. The result is 

shown in Table 1. 

3.2.3. Encryption 

The encryption algorithm is c = m + (p*r). Assuming m = 4, p 

= 1453609901 and r = 1851786169.  

Then c = 4 + (1453609901 * 1453609901) 

         c = 2691774709793259273  

3.2.4. Decryption  

The decryption algorithm is m = c % p. Assuming 

c=2691774709793259273 and p =1453609901 

Then m = 2691774709793259273 % 1453609901 

         m = 4  

3.2.5. Evaluation 

The ciphertexts were evaluated the same way addition and 

multiplication are performed on numeric values.  

Assuming we have three numeric plaintexts m1, m2, and m3. 

Let m1 =4, m2=6, and m3=8. Let the symmetric key (p) and 

random number (r) be p = 1358972137; r = 1487563225. Let 

c1, c2, and c3 be the ciphertext of m1, m2, and m3 

respectively. 

//Encryption Formulas 

c1 = m1 + (p*r) 

c2 = m2 + (p*r) 

c3 = m3 + (p*r) 

// Encrypting Plaintexts 

c1 =4 + (1358972137 * 1487563225) 

c2 =6 + (1358972137 * 1487563225) 

c3 =8 + (1358972137 * 1487563225) 

// ciphertexts 

c1 = 2,021,556,974,800,861,829 

c2 = 2,021,556,974,800,861,831 

c3 = 2,021,556,974,800,861,833 

//addition of ciphertext 

adding c1, c2 and c3 will produce the following: 

CombinedCiphertext = c1 +c2 +c3 

CombinedCiphertext = 2,021,556,974,800,861,829 + 

2,021,556,974,800,861,831 + 2,021,556,974,800,861,833 
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CombinedCiphertext = 6,064,670,924,402,585,493 

//multiplication of ciphertext 

Multiplying c1, c2, and c3 will produce the following: 

ProductCiphertext = c1 * c2 * c3 

ProductCiphertext = 2,021,556,974,800,861,829 * 

2,021,556,974,800,861,831 * 2,021,556,974,800,861,833 

ProductCiphertext = 

82614819341800972182008204407223383683642847677424

71867. 

//Decrypting ciphertexts 

Decrypting CombinedCiphertext will yield the following: 

DecCombinedCiphertext = CombinedCiphertext mod p 

DecCombinedCiphertext = 6,064,670,924,402,585,493 mod 

1358972137 

DecCombinedCiphertext = 18 // proof: 4+6+8 = 18 

Decrypting ProductCiphertext will yield the following: 

DecProductCiphertext = ProductCiphertext mod p 

DecProductCiphertext = 

82614819341800972182008204407223383683642847677424

71867 mod 1358972137 

DecProductCiphertext = 192 // proof: 4*6*8 = 192 

4. RESULTS AND DISCUSSION 

This section analyzes the results obtained when the various 

proposed algorithms were implemented. The main discussion 

is on performance and security. Specifically, key generation 

time, encryption time, decryption time, evaluation time, and 

ciphertext size were measured and analyzed. A comparison 

was made with other fully homomorphic encryption schemes, 

in respect of time and space complexity. The algorithms were 

implemented using the Java Programming Language. 

BigDecimal class in Java was used to handle the large 

ciphertext sizes generated. This allows for large data to be 

handled well. The random () method of the Java MathClass 

was used to generate the various random numbers. NetBeans 

Integrated Development Environment was used to write the 

codes. The codes were run on an intel® Core ™ i7-7500U 

CPU @ 2.70 GHz 2.90 GHz on 64-bit Windows 10 Operating 

System, an x64-based processor with 8.00 GB Installed 

memory (RAM). 

4.1. Performance of the Proposed SCHEME 

4.1.1. Size of Ciphertext 

Ciphertext size was measured by casting the ciphertext to 

String and finding the length of the String. When a 10-digit p 

and r are chosen, the ciphertext size is always 19-digit long. 

Table 2 shows different ciphertexts of 19-digits long. 

Table 2 Results of Encrypting Plaintext, 4, Several Times 

Using Different Values of p and r 

Count p value r value Ciphertext 

1 1453609901 1851786169 2691774709793259273 

2 1769358203 1712993479 3030899063754158241 

3 1737304277 1235295917 2146084879964737013 

4 1672281913 1179802847 1972962961944006315 

5 1527127999 1194191879 1823683854599320125 

6 1863357499 1832429831 3414471866985152673 

4.1.2. Execution Time 

Table 3 Summary of the Execution Time of the Proposed 

Encryption Algorithm 

Size of Plaintext Execution time (in 

milliseconds) 

Execution time 

(in 

Nanoseconds) 

1 byte 0.0002 200 

6 bytes 0.0012 1200 

12 bytes 0.0024 2400 

1 kilobyte 0.2048 2048 

1.4 kilobyte 0.28672 28672 

 

Figure 1 Execution time of the Proposed Encryption 

Algorithm 
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The execution times were measured using Java 

System.nanoTime(). To make the time useful, the time needs 

to be generated before and after the statements whose 

execution time needs to be measured. The difference between 

the two times generated is the execution time of that Java 

statement. Table 3 and Figure 1 summarize the execution time 

of the proposed algorithm using different sizes of plaintext. 

4.1.3. Time and Space Complexities 

The time complexity of the encryption algorithm could be 

deduced as follows: 

Assuming n is the plaintext’s size. Where n ∈ Z+. Using the 

encryption algorithm c = m + (p*r), Let T be the time 

complexity. The time complexity of c will be T(c) = T(m) + 

T(p*r). 

All inputs are in decimal digits. The time complexity of 

decimal digit is Ο(log(n))[17]. 

Therefore, T(c) = T(m) + T(p*r) 

          = O(log(n)) + O(log(n2)) 

          ≡ O(log(n2)) 

The time complexity of the encryption algorithm is, therefore, 

O(log(n2)). 

There are four variables in the encryption algorithm. c, p, r, 

and m ∈ Z+.  All four variables are integer data types; hence 

these variables will consume a memory space of 4 bytes each. 

The total memory space required will, therefore, be 4 *4 = 16 

bytes. The 16 bytes space is fixed, it does not change in the 

process of executing the algorithm. The space complexity is, 

therefore, O(1) 

4.2. Security of the Proposed Scheme 

4.2.1. Random Prime Number Generation 

To make the proposed scheme withstand a Chosen Plaintext 

Attack (CPA), large random prime numbers p and r were 

generated. By Prime Number Theorem, there are nearly 
x

ln x
 

prime numbers. Where p≤ x [20]. Making p and r random 

prime numbers, thwart the effort of the attacker to guess the p 

when having the ciphertext.  

One benefit of using a prime as a symmetric key is that there 

will be only one probable solution when a prime number is 

used [14]. That is, two plaintexts can never generate the same 

ciphertext. 

4.2.2. Symmetric Key Length  

The length of the symmetric key is large enough to withstand 

a brute force attack. The symmetric key length is Ten decimal 

digits which are 80 bits long. Even though the key length 

could be increased to say 12-decimal digits or 15-decimal 

digits, a very long key length could also affect the 

multiplication operations. Multiplication operation generates 

longer ciphertext compared to the Addition operation. It is, 

therefore, appropriate to keep the length moderate.  

4.2.3. One Way Security 

One of the securities of the proposed scheme is one-way 

Security. The knowledge of a given ciphertext does not allow 

adversaries to retrieve the decryption key. The reason is that 

the ciphertext does not disclose anything about the decryption 

key. Therefore, there is one-way security. That is, when an 

adversary has a ciphertext, an adversary would find it difficult 

to recover the associated plaintext.  

4.2.4. The Indistinguishability Under Chosen-Plaintext 

Attack (IND-CPA) 

The proposed scheme’s security could also be described using 

the indistinguishability property of symmetric encryption. A 

Symmetric encryption scheme is usually said to possess an 

indistinguishability property if when given a ciphertext of one 

of two plaintexts, an adversary will find it difficult to guess 

which of the two plaintexts generated the given ciphertext 

[21, 14, 13]. The proposed scheme is Indistinguishable under 

a chosen-plaintext attack (IND-CPA). Because when given a 

ciphertext, an attacker will find it difficult to guess its 

corresponding plaintext due to the randomization of the 

symmetric key. 

4.2.5. Hardness of Large Integer Factorization 

Factoring large integers is difficult. The principle of the 

hardness of large integer factorization explains that Factoring 

N in polynomial time is unattainable if Large Integer 

Factorization is unattainable [20]. To ensure that the 

encryption and decryption key is secure,  large integer values 

p and r were generated. 

4.3. Comparison of the Proposed Scheme to Other Schemes 

This section compares the performance of the proposed 

scheme with the other schemes such as DGHV, SDC, and 

SAM Schemes. The comparison is mainly based on the Time 

and Space complexity of these Schemes.  

4.3.1. Comparison of Time Complexities of Proposed 

scheme, SAM, SDC, and DGHV Schemes 

The time complexity for the encryption algorithm of the 

proposed scheme is O(log(n2)). This is a logarithmic time 

which is quite more efficient than exponential and quadratic 

time. That is, as quadratic time multiplies the time it takes to 

run n inputs, the logarithmic time divides. Therefore, reducing 

the time complexity. From the review, the time complexity of 

the DGHV and the SDC encryption schemes is O (n2). This is 

a quadratic time. It could be easily deduced that the proposed 

scheme is faster than the DGHV and the SDC schemes. The 
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time complexity of the proposed scheme is the same as the 

SAM scheme. It could be deduced from Table 4 that the 

proposed scheme has less execution time comparatively. Even 

though the proposed scheme has the same time complexity as 

SAM, it is faster than SAM. This is due to a few primitive 

operations that are performed in the proposed scheme. The 

proposed scheme is, therefore, suitable for most real-life 

implementation. 

4.3.1.1. Comparison of Space Complexities of the Proposed 

Scheme, SAM, SDC, and DGHV Schemes 

From the above analysis, even though the proposed scheme 

and SAM scheme have the same Time complexity, the 

proposed scheme is more efficient than the SAM scheme due 

to the number of primitive operations involved in the SAM 

Scheme. 

Unlike DGHV, SDC, and SAM schemes which have five 

variables each in its encryption algorithm, the proposed 

scheme has four variables in the encryption algorithm. c, m, p, 

and r.  The four variables are all integer types; hence they will 

consume a memory space of  4 bytes each. The total memory 

space required is, therefore, 4 *4 = 16 bytes. The 16 bytes 

space is fixed, it does not change in the process of executing 

the algorithm. The space complexity is, therefore, O(1). The 

Summary of the comparison is shown in table 4 and Figure 2. 

It could be concluded that the memory requirement of the 

proposed scheme is lesser than DGHV, SDC, and SAM 

schemes which take a total memory requirement of 4*5 =20 

bytes. The less memory requirement contributed to the speed 

of the algorithm. 

Table 4: Summary of Results 

Scheme DGHV[5] SDC[14] SAM[14] PROPOSED 

SCHEME 

Encryption 

Algorithm 
𝑐 = 𝑚 + 2𝑟 + 𝑝 ∗ 𝑞 𝑐 = 𝑚 + 𝑝 + 𝑟 ∗ 𝑝 𝑐 = 𝑚 + 𝑟 ∗ 𝑝 + 𝑝 ∗ 𝑞 𝑐 = 𝑚 + 𝑝 ∗ 𝑟 

Time Complexity 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(log (𝑛2)) 𝑂(log (𝑛2)) 

Space Complexity O(1) O(1) O(1) O(1) 

Memory 

Requirement 
20 𝑏𝑦𝑡𝑒𝑠 20 𝑏𝑦𝑡𝑒𝑠 20 𝑏𝑦𝑡𝑒𝑠 16 bytes 

Operation Bit operation Bit operation Decimal operation Decimal 

operation 

Execution time 

(12 bytes) 

1118 [14] 1180 [14] 1007 [14] 0.0024 

 

 
Figure 2 Comparison of the Execution Time of DGHV [5], SDC [14], SAM [14], and PROPOSED SCHEME 
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5. CONCLUSION 

The main focus of this study was to secure data using a 

probabilistic, symmetric, and non-circuit-based fully 

homomorphic encryption scheme. The scheme works with 

numeric data. Therefore, plaintext in non-numeric format has 

to be converted to numeric before encryption. Symmetric keys 

were used for both encryption and decryption. The keys were 

large prime integers generated randomly from a given range 

of integers. Generating a random large prime integer as a 

symmetric key makes the encryption probabilistic. The 

randomness also improves upon the security of the scheme 

and makes it withstand a Chosen Plaintext Attack. The 

encryption scheme possesses Indistinguishability property.  

The scheme uses fewer memory spaces as compared to 

DGHV, SDC, and SAM schemes. The time complexity of the 

proposed scheme is less than DGHV, and SDC but the same 

as SAM. However, the proposed Scheme runs faster than 

SAM because the SAM scheme has more primitive 

operations. Even though homomorphic encryption is seen to 

be slow in performance, the less execution time of the 

proposed scheme makes it appropriate for real-life 

implementation in most data-centric applications. The running 

time of the encryption algorithm of the proposed scheme is O 

(log (n2 ) ).  The running time of the proposed scheme is 

quadratic. Further studies could be conducted to improve the 

scheme’s running time to linear, that is O (log(n)). 
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