
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 438

RESEARCH ARTICLE

Multi-Objective Fault Tolerance Model for Scientific

Workflow Scheduling on Cloud Computing

S. Anuradha

Department of Computer Science, Shri Sakthikailassh Women’s college, Salem, Tamil Nadu, India

anuradhasphd@gmail.com

P. Kanmani

Department of Computer Science, Thiruvalluvar Government Arts College, Namakkal, Tamil Nadu, India

kanmanip2022@gmail.com

Received: 21 June 2022 / Revised: 23 July 2022 / Accepted: 03 August 2022 / Published: 30 August 2022

Abstract – Cloud computing is used for large-scale applications.

Therefore, a lot of organizations and industries are moving their

data to the cloud. Nevertheless, cloud computing might have

maximum failure rates because of the great number of servers

and parts with a high workload. Reducing the false in scheduling

is a challenging task. Hence, in this study, an efficient multi-

objective fault detector strategy using an improved Squirrel

Optimization Algorithm (ISOA) in cloud computing is proposed.

This method can effectively reduce energy consumption,

makespan, and total cost, while also tolerating errors when

planning scientific workflows. To increase the detection accuracy

of failures, the Active Fault Tolerance Mechanism (PFTM) is

used. Similarly, the reactive fault tolerance mechanism (RFTM)

is used for processor failures. The efficiency of the proposed

approach is analysed based on various measurements and

performance compared to other approaches.

Index Terms – VM Failure, Overloaded, Under Load, Squirrel

Optimization Algorithm, Pro-Active Fault Tolerance, Reactive

Fault Tolerance, Scheduling, Migration.

1. INTRODUCTION

Scientific workflow planning and mapping have long been a

problem in the research of cloud computing. These

optimization problem tasks need to be planned. This

decreases the expense of execution time with the necessary

quality assistance boundary. Cloud computing is considered a

model for empowering helpful, network admittance to a

common arrangement of underlying administrations [1].

Optimal planning of virtual resources has become a top

priority for cloud service providers (CSPs) because it can save

millions of dollars every year [2]. Cloud computing services

are divided into three types [3].It provides quick access to

computer resources like networks, servers, storage, and

applications. Scientific workflows are an excellent form of

workflow which is used in astrology, biometrics, and

gravitational waves [4,5]. The continuous form of organizing

the set of computational tasks and the dependent tasks is

called the workflow. Large-scale scientific workflows need

versatile information and PC assets to carry out science

workflows in the cloud. Work process-based applications can

therefore be determined, implemented, and verified in the

cloud [6,7].

Logical applications are tended to by the work interaction as a

plan of exercises and datasets. There are two kinds of

workflow like business workflow and scientific workflow. A

business workflow is an assortment of exercises and cycles

related with a business. Scientific workflows are illustrative

of scientific applications that rely upon other work that was

perplexing in activity.

Formalizing and organizing complex scientific cycles is

worked with by scientific workflows. Moreover, it accelerates

some scientific discoveries. Scientific workflows in the cloud

can be specified, modified, implemented, and failure handled

and monitored. Science applications can meet the need of the

application by mapping it with VM images. Used in various

fields: astronomy, bioinformatics, seismology, gravitational

wave physics, and marine science workflow [8,9].

The use of virtual machines (VMs) has the potential to reduce

inefficient resource allocation and excessive overhead. A VM

can create a configuration environment that is independent of

one resource and allows multiple environments to be used on

the same resource. An efficient multi-objective fault detector

technique based on the improved squirrel optimization

algorithm (ISOA) can be used in cloud computing.

This method will effectively reduce energy consumption and

overall cost while at the same time tolerating errors when

planning scientific workflows. To increase the accuracy of

diagnosing failures, an active fault tolerance mechanism can

be used. Similarly, the reaction fault tolerance technique can

be used for processor failures. Cloud computing provides an

excellent space for transition between performance and cost.

The proposed approach main contribution is listed here;

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 439

RESEARCH ARTICLE

 Multi-objective function based fault tolerance scientific

workflow scheduling on cloud is proposed.

 To avoid processor failure, reactive fault tolerance is used.

This strategy is used to assign a fresh VM to execute the

workflow task.

 The proactive fault tolerance strategy is introduced to

avoid overloaded VM failure. This strategy is used to

migrate the data task on overloaded VM and avoid further

allocation on overloaded VMs.

 For the scheduling process, ISOA is introduced. This

algorithm is assign the task to VM based on a multi-

objective function.

 The efficiency of the recommended approach is compared

with different metrics and different metrics.

The organization of the paper is presented here, in section 2

literature survey is presented and the workflow model is given

in section 3. In section 4 mathematical model of multi-

objective function is presented and a clear explanation of the

proposed approach is presented in section 5. The experimental

results are presented in section 6 and the conclusion part is

given in section 7.

2. LITERATURE REVIEW

A lot of researchers had developed fault tolerance-based

workflow scheduling on the cloud. Some of those works are

analyzed here;

Heyang Xu et al. [10] introduced cloud workflow scheduling

considering error recovery in the multi-objective optimization

Approach. For analysis, cloud sources consider the

probability of failure during operation. The authors explored

the problem of workflow planning in the clouds. The authors

aimed to develop multi-objective optimization (MOF) model.

In this approach, the purpose of the first and second upgrades

is not only to reduce the overall completion time but also to

reduce the overall processing cost. To reduce the cost, a

heuristic algorithm termed Min-min-based time and cost

transfer (MTCT) was developed. The efficiency of this

approach was compared with existing methods.

Zulfiqar Ahmad et al. [11] introduced managing fault-tolerant

and data-intensive scientific applications using cloud

computing. Cluster-based, fault-tolerant, and data-intense

(CFD) planning is provided in cloud environments of

scientific applications. In this methodology, the information

power of the errands of scientific workflows with bunch

based, issue open minded components were alluded to by the

CFD technique. In this approach, the montage science

workflow was considered a simulation. Zhongjin Li et al.

[12] introduced the Task Replication method in the fault-

tolerant scheduling cloud for scientific workflow. In this

approach, for scientific workflow in the context of cloud

computing by fault-tolerance scheduling (FTS) algorithm was

proposed. The proposed FTS instructions ensured that the task

was successfully implemented in the presence of internal

failure or external failure in terms of task copy. With this

approach, the authors sought to reduce workflow costs with

time constraints through internal and external failures. The

results showed that the FTS algorithms could only ensure the

successful implementation of work.

KokKonjaang and Lina Xu [13] introduced cloud computing

by using a multi-objective workflow optimization strategy

(MOWOS). In this approach, the authors proposed the

MOWOS. The proposed approach was used to reduce

administrative costs and accomplish workload tasks. The

proposed algorithm had three sub algorithms such as the

MaxVM selection algorithm and the MinVM selection

algorithm. This algorithm was significantly increased in its

performance compared to the algorithm of HSLJF and

SECURE.

Yuandou Wang et al [14] introduced MOF and deep-Q-

network-based multi-agent for Scheduling. In this approach,

the authors proposed a multi-agent reinforcement learning

system by using the deep-Q-network model. The authors

considered the Markov game model. Furthermore, the

decentralized DQN-based MARL framework was developed

based on the decentralized DQN. The proposed DQN-based

MARL framework was a combination of the traditional DQN

algorithm for reinforcement learning. The authors have

demonstrated that the proposed method works better than

basic algorithms namely, NSGA-II, MOPSO, and GTBGA.

Prem Jacob and Pradeep [15] introduced Cuckoo particle

swarm optimization for multi-objective optimal task

scheduling in cloud environments. The designed MOF is

based on the costs of resources and tasks. In this approach,

CPSO work was done for task scheduling. This method

reduced the performance costs and user costs, and it relatively

minimize the make-span value of the tasks. From this

approach, the proposed CPSO algorithm has reached the

minimum maturity violation rate compared to other methods.

Amandeep Varma and SakshiKushal [16] introduced a

scientific workflow based on hybrid MOPSO. This method

deals with workflow planning problems with multiple

conflicting objective functions in IaaS clouds. The proposed

heuristic performance was compared with another method.

The heuristic provided better coordination and regular spacing

between solutions compared to others. Neeraj Arora and

Rohitash Kumar Banyal [17] introduced a scientific workflow

scheduling based on a hybrid HPSOGWO algorithm which is

the hybridization of PSO and grey wolf optimization (GWO).

The summary of the survey is given in table 1.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 440

RESEARCH ARTICLE

References Algorithm Proposed Workflow Model Findings

[10]

Min-min based time

and cost transfer

(MTCT)

This paper investigates the

problem of workflow

scheduling in clouds

considering fault

Recovery.

Montage, CyberShake,

Epigenomics, and LIGO

This method does not

find all types of faults.

[11]

fault-tolerance and

data-intensive (CFD)

scheduling

An efficient resource

allocation on the cloud is

proposed

Montage and

CyberShake

This work does not

consider the energy

consumption of

scheduling

[12]

fault-tolerant

scheduling (FTS)

algorithm

Fault-Tolerant Scheduling

for Scientific Workflow

with Task Replication

Method in Cloud is

proposed

Montage, LIGO, SIPHT,

and CyberShake

They only focus on

scheduling and they

attained high energy

consumption

[13]

Multi-objective

workflow optimization

strategy (MOWOS)

An efficient workflow

scheduling is proposed

Montage, Cybershake,

LIGO Inspiral, and

SIPHT

This method has

computation

complexity

[14]

Deep-Q-Network-

Based Multi-Agent

Reinforcement

Learning

Multi-objective workflow

scheduling is proposed

CyberShake,

Epigenomics, Inspiral,

Montage, and Sipht

It takes maximum

time

[15]
Cuckoo Particle Swarm

Optimization

Multi-objective optimal task

scheduling is proposed
Dynamic task

This method attained

better results

compared to other

methods.

[16]
Hybrid Particle Swarm

Optimization

Multi-objective workflow

scheduling is proposed

Montage, EpiGenomics,

cybershake, LIGO, and

SIPHT

The proposed

optimization

algorithm easy to falls

on local optimum

[17]

Combination of

particle swarm

optimization and grey

wolf optimization

Efficient scientific workflow

scheduling on cloud

Montage, Cybershake,

Epigenomics, SIPHT,

and LIGO

It takes maximum

time

Table 1 Summary of Literature Survey

2.1. Problem Definition

Due to the rapid advancement of the cloud, many companies

and industries are using cloud applications. Cloud computing

enables sharing of geographically distributed resources, which

solves data-intensive and large-scale computing applications.

Managing resources belonging to different organizations is

complex as each organization has its own policies.

As the availability of resources varies dynamically, and due to

the heterogeneity of resources, the chances of errors increase

in a phased computing environment. Therefore, an efficient

fault detection and fault handling mechanism is essential for a

cloud computing environment. Nowadays, lot of researcher

had developed task scheduling mechanism. But they not

focused on faults tolerance strategy. Therefore, in this paper,

an efficient fault tolerance based scheduling is proposed in

this paper.

3. MODEL OF WORKFLOW

The structure of cloud computing contains of n number of

physical machines (PM) denoted as  iPiPPP ,1,...,0  . Each

PM is divided into some VMs denoted as  iViVVV ,1,...,0 

.The workflow model is generally represented by the directed

acyclic graph (DAG)  ETWF , , where,

 110 ,...,,...,,  ni ttttT is represented as available tasks and

  TttEE jitt ji
 ,, is represented as edge.

Each task has a weight value that indicates the execution time

 it . The weights assigned to the edges express the amount of

data transferred between tasks. The immediate predecessor

 itePr is calculated using equation (1).

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 441

RESEARCH ARTICLE

    Utttte ijji  ,Pr
 (1)

The immediate successor  iTSucc is evaluated using

equation (2).

    UttttSucc jiji  ,
 (2)

The sample DAG is given in figure 1. In figure 1, a task with

no predecessors is represented as entryT and a task with no

successors is represented as existT
.

Figure 1 DAG Model

4. DESIGN OF MULTI-OBJECTIVE FITNESS MODEL

As the fitness function is designed to evaluate the solution

also it quantitatively measures how to fit a given solution fits

in solving the problem. In this paper, for fitness evaluation,

the multi-objective function is presented. The single objective

function is only focused on a single parameter. This affects

the overall performance of the system. Therefore, the multi-

objective function is designed in this paper. The proposed

MOF is designed using three parameters namely, total

execution cost, Makespan, and energy. From the parameter,

it’s understood the proposed multi-objective function has a

minimization problem. The proposed fitness function is given

in equation (3).

 EnergymakespantFitness  32cos1min  (3)

The first parameter of the objective function is cost. Total

execution cost (TC) is measured based on how much cost is

utilized for the scheduling process. The user wants to utilize

the resources in a VM and the user has to pay the cost for the

task. If the task iW is scheduled jVM , the total CPU and

memory cost is included in the payment. The CPU cost is

calculated using equation (4).

  jijbaset CTCjC cos
 (4)

Where;

ijT The execution time of the task iW on jVM

jC Overall quantity of CPU

baseC  CPU base cost

The memory cost is calculated using equation (5)

  jijbaset MTMjM cos
 (5)

Where;

jM  Total amount of memory

baseM  Memory base cost

The overall execution cost of all tasks is evaluated using

equation (6)

    
 


N

i

N

i
ijtijt XjMXjCTC

1 1
coscos ..

 (6)

Where;

ijX  Assignment matrix

The second parameter of the fitness function is Makespan.

The key parameter of task scheduling is makespan. The

objective of scheduling is to minimize the total completion

time for scheduling the entire task within the available

resources. The makespan is calculated using equation (7);

],[jiMaxCTMakespan 

kiVMjniTi ,...,1,,...,1, 
(7)

CTmax is calculated using equation (8)

 
 


N

i

k

j
ijij XTCT

1 1
max

 (8)

Where;

maxCT  Maximum completion

n Task count

k
 VM count

The third parameter of objective functions is Energy. A good

scheduling system uses a small amount of energy to plan the

entire task from the available resources. The total energy

consumption during scheduling is given in equation (9).

idleEbusyEtotalE 
 (9)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 442

RESEARCH ARTICLE

Energy consumption is calculated using Equation (10) when

all resources are busy.

 
 


n

i

n

i
jiidynamicjisrjspjibusy TPTfVKE

1 1
,,,,

2
,,

 (10)

Where;

jiT , Time to execute the task in using resource rj

spjiV ,,  Task in scheduled to be jr based on voltage sv

srjf , Frequency of resource jr having voltage level s

Dynamic power loss  dynamicP is evaluated using equation

(11).

sfsjVKdynamicP  2
,

(11)

Where;

K Constant parameter associated with dynamic power

2
,sjV Supply voltage

sf  Relevant frequency of
2
,sjV

Energy consumption is calculated using Equation (12) when

all resources are idle.





p

j
jidlejlowestilowestidle TfVKE

1

2

 (12)

 Where;

jlowestV Lowest voltage of resources

jlowestf Lowest frequency of resources

jidleT  Idle period of resource jr

5. PROPOSED MODEL

The main aim of the presented technique is to optimally

schedule the task on cloud resources while tolerating the

faults. An improved squirrel optimization algorithm with

proactive and reactive techniques is used to create a multi-

objective function to achieve this concept. The overview of

the presented technique is given in Figure 2. The proposed

approach contains four phases monitoring phase, analyzer

phase, planner phase, and executer phase. The monitoring

phase collects the task to the user and collects the information

on resources. Then, the analyzer uses ANFIS to predict a load

of resources based on the monitor's feedback. The predicted

values are then sent to the scheduler component, and a

workflow-scheduling algorithm is executed accordingly. To

schedule, a multi-objective ISO algorithm is used, which

combines pro-active and reactive techniques. Finally, at the

executor stage, workflow tasks are assigned to the appropriate

VMs.

Figure 2 Overall Structure of Proposed Methodology

5.1. Monitor Phase

The monitor phase is to gather input information from the

user and collect the resource load information from the data

center. It comes with two sensors, a user sensor, and a

resource sensor. The purpose of the user sensor is to collect

information on the user's workflow tasks such as the size of

the task, type of task and request rate, etc. The resource sensor

is to gather information on the resource load rate such as the

load of the CPU, network traffic, and memory. Monitoring

data are stored in the knowledge base, which is used for

analysis.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 443

RESEARCH ARTICLE

5.2. Analyzer Phase

The analyzer phase is used to analyze and predict future VM

load for error recognition in VMs. At this point, the analyzer

gets the data from the monitor phase, and based on the data,

the future load is predicted.

This technique is used to distribute the over-loaded VM to the

under-loaded VM to avoid VM failure and increases the

optimal performance. In this paper, ANFIS is used for

prediction. During prediction, the time series data i.e., CPU

load is trained by ANFIS. Here, two input variables and one

output are used. The ANFIS description is explained below;

Step 1: Data collection: The research data are collected from

the user's request. These data are considered as the time series

i.e., the data are known at a point y = T to forecast the series

of future values y = T + P. initially, for prediction, the data is

trained based on the user data.

Step 2: for forecasting, “one-step-ahead” framework is

designed. In this step, initially, we map D to a  shaped time

series, is        kykyZky ,...,,1  , to a forecasted

future value  pTy  . In the presented forecast model, the

requested number of each layer is collected and the values D

= 11 1 P are used to estimate the number of services

requested at the next time interval.

We predict  ky from the ten past values of the time series,

that is,    ,,9,10  kyky and  1ky . Therefore the

format of the training data is given in (13)

        kykykyky ;1,...,9,10  (13)

Each input package is split into two sets such as training and

testing.

Step 3: Create ANFIS forecast model: To generate the ANFIS

model, initially, the input data are partitioned using a

subtractive clustering approach. Then based on the clusters

the fuzzy interface system is generated. The steps included in

ANFIS are explained below;

 The universe of discourse for input variables should be

partitioned as follows: Initially, the variables are splinted

based on the minimum maximum method

 Set membership function for output variable: For attained

the output, the Gaussian membership function is used.

Consider, two-period inputs  2,1  kyky and, three

linguistic intervals  3,2,1i which are grouped by using

subtractive clustering in every input variable. Based on the

input and output variable, the fuzzy rules are generated

using equation (14).

      iiikiikik rxvyuyfthenVyxandUyyIf   21 (14)

Where;

   21 ,  kk yxyy  Linguistic variables,

iU , iV  linguistic values (high load, middle load, and low

load),

 kyif 
thi Output value

iriviu ,,
 Parameters

 3,2,1i

 Create a fuzzy inference system: First, the input member

function and the output member function are derived from

the steps above. Secondly, based on the linguistic values

(Ui, Vi) fuzzy if-then rules are generated.

 Train parameter of fuzzy inference system: In this step, the

training data are trained based on the least-square method

and back-spread slope descent method. The training

process is iterated 60 times.

Step 4: Forecast testing datasets: When the forecasting sample

reaches the stop criterion, the FIS parameters are determined

from step 3; the training forecast model is then used to predict

...,,1, kyky respectively, for the target training and the test

datasets.

Step 5: Refine forecasts by the different statistical evaluation

criteria: The forecast test datasets are obtained from step 4. To

change the forecasts with less error in the training database,

we use different statistical evaluation criteria.

5.3. Fuzzy Scheduler Phase

The fuzzy scheduler gets data from the analyzer phase. The

data contains information on the future load of each resource.

The scheduler phase operates based on three fuzzy if-then

rules which are given in table 2.

Table 2 Fuzzy Scheduling Rules

Fuzzy scheduler component rules

If <load>is forecasted as <Normal>

Then<“no change”> in the task

Call ISO algorithm

If < load> is forecasted as <high>

Then “chances for error occur”

Call PFTC strategy to minimize load

If < load> is Forecasted<very high>

Then “Fault happened”

Call RFTC to migration process

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 444

RESEARCH ARTICLE

The first rule says; that if the future resource loads are

forecasted as a normal state by the analyzer phase, then the

fuzzy scheduler calls the ISO algorithm to schedule the

workflow by considering makespan, energy, and the total

cost.

The first rule says; that if the future resource loads are

forecasted as high state, then the fuzzy scheduler phase invites

the PFTC to prevent the fault event. In this PFTC, the

adaptive weight adjustment algorithm is utilized to balance

the load.

The second rule says; that if the future resource loads are

forecasted as too high, then the fuzzy scheduler phase calls

the RFTC, which is used to minimize the server failure. If one

of the available active VMs fails, that error indicates that the

action must be identified and an advance migration algorithm

must be enabled.

5.3.1. Scheduling Using Improved Squirrel Optimization

Algorithm (ISOA)

Scheduling is an important process for tolerating the fault and

reducing the energy consumption of the cloud. To achieve this

concept, the ISO algorithm is presented. The SOA algorithm

is a bio-logical inspiration optimization algorithm, which is

developed based on the food search behavior of the flying

squirrels. The most fascinating reality about flying squirrels is

that they don't fly, rather they utilize a special technique for

locomotion for example "Gliding" which is viewed as

enthusiastically modest, permitting little mammals to cover

enormous distances rapidly and proficiently. This method

provides efficient search space exploration as the seasonal

surveillance level is linked. Furthermore, there are three types

of trees in the forest, such as the common tree, the oak tree,

and the hickory tree, which preserve population diversity and

enhance algorithmic studies. Further, to improve the

performance of SOA, opposition-based learning (OBL) is

adapted to SOA. The OBL strategy improves the searching

ability of SOA. The step-by-step process of the fault-tolerant-

based task scheduling process is explained in table 3.

Table 3 Solution Encoding Format

No. of

task

No. of

VM

T1 T2 T3 T4 T5 T6 T7 T8 T9

VM1 1 0 1 0 1 0 0 0 1

VM2 0 1 0 0 0 1 0 1 0

VM3 0 0 0 1 0 0 1 0 0

Step 1: Solution encoding: Initialization of the parameter used

in this paper is done in this section. Count of workflow tasks,

amount of VMs, population size, CPU capacity, maximum

iteration, and ISOA parameters. The solutions are then

randomly generated. The solution consists of VM and task.

The solution encoding format is given in table 1.

In table 1, there are nine tasks and three VMs are considered.

In the table, “1” represent, the corresponding task assigned to

VM, and the “0” represent, the task is not assigned to the VM.

Only one VM is assigned a task.

Step 2: Opposite solution generation: Based on initial

solutions, opposite solutions are developed. By creating

opposite solutions, search efficiency is increased. Where,

 baS , is the real number. The opposite solution S is

estimated by using equation (15);

SbaS  (15)

Step 2: Fitness Evaluation: The fitness value of the solutions

is essential in determining which solutions to select to create

the next iteration. For fitness, in this paper, MOF is designed

which is based on the makespan, total processing cost, and

power consumption. A good scheduling system should reduce

the fitness function. The fitness function is given in equation

(16).

 EnergymakespantFitness  32cos1min  (16)

Step 3: Solution updation: The solutions are updated after the

fitness calculation. Solutions will be updated as they progress

through the following phases.

Sort, declare, and random selection process: Each solution's

fitness values are sorted ascending after being determined. In

the hickory nut tree, the best location (i.e. minimum exercise)

is considered to be. Acorn nuts in trees and hickory nuts are

the next two best solutions, as well as the squirrel that tries to

go towards them. The left is thought to be in ordinary trees on

the squirrel. The announcement states that some squirrels are

chosen at random to travel to the hickory nut tree. Due to the

presence of hunters on squirrels of all kinds, the algorithm is

designed to take into account the probability that the predator

is present  Pprob .

Generate new locations: based on the hunting probability (

probp) the squirrel locations are updated. The following

norms are used for updation process.

Norm 1: Flying squirrels on the acorn nut trees (
i

AS) will

more often than not move towards the hickory nut tree which

is given in condition (17).

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 445

RESEARCH ARTICLE

 




 



otherwiseRand

prSSggS
S

prob

i

A

i

Hconstdist

i

Ai

A
;

; 11 (17)

Norm 2: Flying squirrels lying on the typical trees (
i

NS)

probably travel towards acorn nut trees which are given in

equation (18).

 




 



otherwiseRand

prSSggS
S

prob

i

N

i

Aconstdist

i

Ni

N
;

; 21 (18)

Norm 3: Squirrels flying over normal trees (
i

NS) try to move

towards hickory nut trees given in equation (19).

 




 



otherwiseRand

prSSggS
S

prob

i

N

i

Hconstdist

i

Ni

N
;

; 31 (19)

The above equations, random gliding distance is represented

as distg ;  9.1constg represents the gliding constant, i and

1i refers the new and following iteration;
i

AS ,
i

HS and
i

NS

denotes the location of the flying squirrel. Also,
1r ,

2r and

3r are arbitral value among [0, 1].

Aerodynamics of gliding: The flying squirrel at the standard

angle of landing at the horizontal angle is defined as the lift-

to-drag ratio (also called the rate of glide), which is calculated

using equation (20)

tan

1


d

E
G (20)

The above equation indicates the glide angle, which is

calculated using equation (21).











E

d
arctan

 (21)

The small value  helps increase the glide path length of the

squirrels. Also, the lift force equation is represented in (22).

LTE
E

coef

22

1




 (22)

Further, frictional drag is calculated using equation (23)

LTd
d

coef

22

1


 (23)

Where)204.1(3 kgm indicates the mass of air;

125.5  msT represents speed;
2154cmL  specifies

the outside area of the body; coefE and coefd describes the lift

coefficient and drag coefficients respectively.

Seasonal monitoring condition: This is because seasonal

change plays an important role in the search for food for

flying squirrels. Here are some of the steps involved in

mathematically expressing seasonal monitoring are given in

table 4.

Table 4 Seasonal Monitoring Condition

calculate seasonal constant (
)(i

sc) by,

 



z

j

i

jH

i

jA

i

s SSc
1

2

,,

)(
, where 3,2,1i

is the iteration count

Find low seasonal constant using,

  max

5.2

6

0

365

10

i

i

e
c



 , where maxi is the maximum

iteration

// Analyze seasonal monitoring condition

if  0cc i

s 

Perform random relocation

Else  0cc i

s 

Flying squirrels themselves explores for the

best food source

5.3.2. Random Relocation During the Winter Season

Observations indicate active squirrels that can explore their

ideal food source according to their seasonal position. The

random migration strategy is also being used to make sure

that squirrels surviving but unexplored find their optimal food

source. Using the Levy distribution, random relocation occurs

here (24):

   minmaxmin SSmlevySSN 

(24)

Where  ylevy indicates the levy distribution which is

calculated using equation (25).

 



1

01.0

q

p

u

u
ylevy




 (25)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 446

RESEARCH ARTICLE

In this paper, we used the constant 5.1 and random

number pu and qu distributed normally within [0,1]. Also, 

is calculated using equation (26).

 










1

2
1

2
2

1

2
sin1


























 
















 

 (26)

Where:
   !1 yy

Termination condition: The termination condition is

performed the best solution is reached or when the maximum

number of repetitions is reached. At the end of ISOA, the

optimal scheduled task are found, which are used for

scheduling.

5.3.3. PFTC

Due to the high load on the VMs, the process on the VM

layers fails, which is considered a fault. The ultimate

objective of PFTC is to avoid incoming workload to the fault

zone and it does not assign new loads to overloaded VMs.

The fault detection rules of the proactive controller are

explained below;

 If a VM is recognized as having an additional load by the

analyzer phase, a higher load situation will occur. In this

scenario, the PFTC calculates the exact load weight of the

VM and priority parameter for the target VM relative to

the current CPU usage status. By changing the weight

value, the load balancer sends low-responsibility

solicitations to this VM to guarantee that the CPU is

secure.

 The situation under load is recognized when the usage of

CPU resources is reduced at regular intervals (i.e., the

number of resource-driven workflow tasks is small and

often inactive). By increasing the weight and priority value

of idle VMs to meet higher workflow requirements, the

PFTC reduces the possibility of other VMs failing due to

failures on idle VMs.

5.3.4. RFTC

In the proposed work, the fuzzy scheduling stage calls on the

RFTC to tolerate the error if the analyst level considers the

property load to be exceptionally overestimated. This

indicates that present dynamic VMs is vulnerable, which

should be differentiated as a fault reaction, and fault tolerance

cycles will be quickly placed in the program, in these ways, a

displacement mechanism will be implemented. VM migration

is a strategy to work with development providers to oversee

the production of cloud assets [41]. A direct VM migration is

the transfer of an overloaded VM to another VM without

interrupting the new operation of utility services. The resource

utilization is calculated using equation (27).

HostTotalRAM

RAMqTotal

HostBandwidthTotal

BandqTotal

HostMipsTotal

BandqTotal
vmnUtilizatio

i

ReReRe


 (27)

The total VM utilization is calculated using equation (28)

ii CapacityVMnUtilizatioutilizedVMTotal 
 (28)

The overall migration time is calculated using equation (29)

migrateddataTotalVMsthecopytotakenTimeTimeMigrationTotal 

 (29)

Time taken to copy the VMs is calculated using equation (30).

loadHostTemporaryVMsthecopytotakenTime 
 (30)

Temporary is calculated using equation (31)

3

111

HostofBandwidthTotal

n

i

BAN
iVM

HostofRAMTotal

n

i

RAM
iVM

HostofMipsTotal

n

i

CPU
iVM

Temporary











 (31)

Total data migration is calculated using equation (32)

loadHostthresholdMaximummigrateddataTotal 
(32)

5.4. Executer Component

Once scheduling process is completed, the executor

component is assigning the task to the corresponding CVMs.

The actual execution of the actions determined by the

scheduling components is the responsibility of this

component.

6. RESULTS EVALUATION

The results obtained from the presented approach are

explained in this section. The suggested technique is

implemented using JAVA and Windows 10 operating system.

Montage, cyber shake, and LIGO workflows are used in

experimental analysis. The workflow system is shown in

Figure 3.

(a) (b) (c)

Figure 3: Experimental Used Workflow Models (a) Montage,

(b) CyberShake, and (c) LIGO

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 447

RESEARCH ARTICLE

6.1. Experimental Analysis Based on Energy Consumption

Energy consumption is a very important parameter for

scheduling and resource allocation on the cloud. We properly

allocate the task on resources means; we can reduce energy

consumption. In this work, the MOF has focused on energy

consumption also. The comparative analysis based on energy

for different workflow models is presented in this section.

Figure 4 Comparative Analysis Based on Energy for Montage

Workflow

In figure 4, for Montage workflow, the efficiency is discussed

using on energy. The total energy consumed by the execution

of all tasks is called energy consumption. A good scheduling

system should have minimum energy consumption. When

analysing figure 4, our proposed approach is consumes less

amount of energy of 574J for scheduling Montage workflow

which is 785J for SOA-based scheduling, 925J for SMO-

based scheduling, and 1127J for PSO-based scheduling. Due

to the OBL strategy with SOA, in this paper, our proposed

approach has achieved minimal energy consumption

compared to other methods. Because the OBL strategy

increases the searching ability of SOA.

Figure 5 Comparative Analysis Based on Energy for

CyberShake Workflow

In figure 5, energy of Cybershake workflow is analysed. In

this figure, we analyse the different methods namely SOA,

SMO, and PSO with our approach. According to figure 5, the

proposed ISOA-based scheduling has achieved better results

and the PSO-based scheduling has achieved the worst output

compared to other methods. In figure 6, the comparative

analysis results of proposed against existing based on energy

consumption are analyzed. Here, the proposed approach

achieved better results than already.

Figure 6 Comparative Analysis Based on Energy for LIGO

Workflow

6.2. Experimental Analysis Based on Cost

One of the important parameter of scheduling is cost. The cost

is varies for task and VM. In this section, the efficiency of

recommended technique is analysed in terms cost. A good

scheduling system should complete its execution at a

minimum cost. The outcome came from three workflows are

described below:

Figure 7: Experimental Results Based on Cost Using Montage

Workflow

In figure 7, ISOA performance is analyzed in terms of cost

using montage workflow. Any user who wants to schedule

their task on resource, pay some amount. The resource cost is

related to CPU and memory. When analyzing figure 7, our

proposed approach is takes the minimum cost of 118$ for

scheduling montage workflow which is 241$ for SOA-based

montage workflow scheduling, 321$for SMO-based montage

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 448

RESEARCH ARTICLE

workflow scheduling, and 408 for PSO-based montage

workflow scheduling. The effectiveness of ISOA is analyzed

based on cost using Cybershake work scheduling given in

figure 8. As expressed in Figure 8, our recommended model

achieved improved results compared to the other method.

Similarly, in figure 9, the proposed approach takes minimum

cost for scheduling LIGO workflow compared to other

methods.

Figure 8 Experimental Results Based on Energy Using

Cybershake Workflow

Figure 9 Experimental Results Based on Cost for LIGO

Workflow

6.3. Comparative Analysis Based on Makespan

The results obtained by various workflow model based on

makespan is analyzed in this section.

Figure 10 illustrates the makespan of the proposed and other

algorithm using Montage workflow. When analyzing figure

10, ISOA based scheduling approach attained the makespan

of 124s which is 186s for SOA-based scheduling, 224s for

SMO-based scheduling, and 267s for PSO-based scheduling.

The graph shows that the makespan of ISOA-based

scheduling is lesser than the SOA, SMO, and PSO-based

workflow scheduling. This is due to the adaptation of ISOA.

In figure 11, the effectiveness of the proposed approach is

analyzed based on makespan using Cybershake workflow. For

the scheduling process, makespan is an important parameter.

The task flow affects the makespan of the scheduling.

Compared to another method, ISOA attained the minimum

makespan. Figure 12 illustrates the makespan using the LIGO

workflow. According to figure 12, the ISOA technique takes a

minimum makespan of 4157s. From figures 10-12, we

understand, that the ISOA-based workflow scheduling

technique takes a minimum makespan of 124s, 387s, and

4157s for Montage, Cybershake, and LIGO respectively.

Figure 10 Comparative Analysis Based on Makespan for

Montage Workflow

Figure 11 Comparative Analysis Based on Makespan for

Cybershake Workflow

Figure 12 Comparative Analysis Based on Makespan for

LIGO Workflow

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 449

RESEARCH ARTICLE

6.4. Comparative Analysis Based on Fault Ratio

In this section, the recommended approach efficiency is

discussed based on fault ratio. A good scheduling system

should have minimum faults. The following graphs clearly

show the outcome of the proposed method.

Table 4 Comparative Analysis Based on Fault Ratio for

Montage Workflow

Number

of tasks

Proposed

ISOA
SOA SMO PSO

25 4 5 6 7

50 6 8 10 12

100 8 10 12 15

500 10 12 14 17

1000 12 14 16 20

Table 5 Comparative Analysis Based on Fault Ratio for

Cybershake Workflow

Number

of tasks

Proposed

ISOA
SOA SMO PSO

25 5 7.3 10.1 10.8

50 5.5 8 11.3 11.9

100 7.5 9.5 12.1 12.8

500 8.2 10.2 13.5 14.2

1000 10 11.5 14.3 15.1

Table 6 Comparative Analysis Based on Fault LIGO for

Montage Workflow

Number

of task

Proposed

ISOA
SOA SMO PSO

25 5.5 6 7.5 7.9

50 4.3 5.5 7 7.2

100 10 12 12.3 13

500 11.2 12.8 13 13.8

1000 13.5 16 16.8 17.5

In table 4, a comparative analysis based on the error rate is

given. The error rate gradually increases as the number of

tasks is maximized. The minimum failure rate increases the

system performance. In this proposed approach, to reduce the

failure rate, we use CPU load prediction using ANFIS and we

replace the faulty VM with new VMs. Similarly, the approach

proposed in table 5 and 6 achieved a better error rate

compared to the other methods. It is clear from the results that

the suggested model has yielded the best results compared to

other methods. This is due to the ANFIS-based CPU load

prediction; ISOA-based scheduling, and reactive and pro-

active fault tolerant strategy.

7. CONCLUSION

In this paper, a multi-objective fault tolerance model based on

scientific workflow scheduling on the cloud has been

proposed. The fault was tolerated based on ANFIS-based

CPU prediction, the faulty VM was replaced by a new VM

with, a proactive and reactive fault tolerance strategy.

Similarly, the workflow schedule has been done based on the

ISOA. For scheduling multi-objective function has been

designed by considering energy cost and makespan. The

mathematical model of each algorithm has been clearly

explained. The experimental result has been carried out based

on three workflows namely, Montage, Cybershake, and

LIGO. The effectiveness of the recommended approach has

been analysed based on cost, makespan, energy, and the fault

ratio.

REFERENCES

[1] S.M.Jaybhaye and Vahida Z. Attar, “A Review on Scientific Workflow

Scheduling in Cloud Computing”, Proceedings of the 2nd International

Conference on Communication and Electronics Systems (ICCES 2017)
IEEE Xplore Compliant - Part Number: CFP17AWO-ART, ISBN: 978-

1-5090-5013-0

[2] Bhaskar Prasad Rimal, Martin Maier, “Workflow Scheduling in Multi-

Tenant Cloud Computing Environments”, IEEE Transactions on

parallel and distributed systems , Vol 28, No. 1, Jan 2017, pp 290-304.

[3] G. Natesan and A. Chokkalingam, “Multi-Objective Task Scheduling
Using Hybrid Whale Genetic Optimization Algorithm in Heterogeneous

Computing Environment,” Wireless Personal Communications, 2019.

[4] G. Juve and E. Deelman, “Scientific Workflows in the Cloud,” Grids,
Clouds and Virtualization, pp. 71–91, 2011

[5] S. Saeedi, R. Khorsand, S. Ghandi Bidgoli, and M. Ramezanpour,

“Improved many-objective particle swarm optimization algorithm for
scientific workflow scheduling in cloud computing,” Computers and

Industrial Engineering, vol. 147, no,June, p. 106649, 2020

[6] Juve, Gideon, Ann Chervenak , EwaDeelman, ShishirBharathi, Gaurang
Mehta, and Karan Vahi, “Characterizing and profiling scientific

workflows”, Future Generation Computer Systems, Vol. 29, Issue 3 ,
2013: 682-692.

[7] Fan Zhang, Junwei Cao, Kai Hwang,Keqin Li, and Samee U. Khan,

“Adaptive Workflow Scheduling on Cloud Computing Platforms with
Iterative Ordinal Optimization”, IEEE Transaction on cloud computing ,

Vol 3, No. 2, April/June 2015, pp 156-168.

[8] Tongyi Zheng and Weili Luo, “An Improved Squirrel Search Algorithm
for Optimization”, Hindawi Complexity Volume 2019, Article ID

6291968, 31 pages

[9] Yong Zhao, IoanRaicu, Shiyong Lu, Wenhong Tian, Heng Liu,
Enabling scalable scientific workflow management in the Cloud”,

Future Generation Computer Systems, 23 October 2014.

[10] Heyang Xu, Bo Yang, Weiwei Qi and Emmanuel Ahene, “A Multi-
objective Optimization Approach to Workflow Scheduling in Clouds

Considering Fault Recovery”, KSII Transations on internet and

information system vol. 10, NO 3, Mar. 2016.
[11] Ahmad, Z.; Jehangiri, A.I Ala’anzy, M.A. Othman, M.Umar, A.I.

“Fault-Tolerant and Data-Intensive Resource Scheduling and

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/214505 Volume 9, Issue 4, July – August (2022)

ISSN: 2395-0455 ©EverScience Publications 450

RESEARCH ARTICLE

Management for Scientific Applications in Cloud Computing”, Sensors

2021, 21, 7238.
[12] Zhongjin Li, Jiacheng Yu, Haiyang Hu, Jie Chen, Hua Hu, Jidong Ge

and Victor Chang, “Fault-Tolerant Scheduling for Scientific Workflow

with Task Replication Method in Cloud”, The 3rd International
Conference on Internet of Things, Big Data and Security (IoTBDS

2018), pages 95-104 ISBN: 978-989-758-296-7

[13] J. KokKonjaang and Lina Xu, “Multi-objective workflow optimization
strategy (MOWOS) for cloud computing”, Journal of Cloud Computing:

Advances, Systems and Applications, (2021) 10:11

[14] Yuandou Wang, Hang Liu, Wanbo Zheng, Yunni Xia, Yawen Li, Peng
Chen, KunyinGuo, and Hong Xie, “Multi-Objective Workflow

Scheduling With Deep-Q-Network-Based Multi-Agent Reinforcement

Learning”, Special Section on Mobile Service Computing with Internet
of Things, February 11, 2019.

[15] T. Prem Jacob, K. Pradeep, “A Multi-Objective Optimal Task

Scheduling in Cloud Environment Using Cuckoo Particle Swarm

Optimization”, Wireless Personal Communications · November 2019

DOI: 10.1007/s11277-019-06566-w.

[16] Amandeep Varma, SakshiKushal, “A hybrid multi-objective Particle
Swarm Optimization for scientific workflow scheduling”, Parallel

computing volume 62, February 2017, Pages 1-19.
[17] Neeraj Arora, Rohitash Kumar Banyal, “HPSOGWO: A Hybrid

Algorithm for Scientific Workflow Scheduling in Cloud Computing”,

(IJACSA) International Journal of Advanced Computer Science and
Applications, Vol. 11, No. 10, 2020.

How to cite this article:

Authors

S. Anuradha is a Research scholar from Periyar
University, Salem. Presently I am working as

Assistant Professor in Department of Computer

Science at Shri Sakthikailassh Women’s College,
Salem. My research interest includes Fault

Tolerence, Load Balancing and Optimization.

Dr. P. Kanmani received her Ph.D from Mother

Terasa Women’s University, Kodaiknal in 2014.
Presently she is working as Assistant Professor in

Department of Computer Science at Thiruvalluvar

Govt. Arts College, Rasipuram. Her research interest

includes Mobile Computing, Fault Tolerence.

S. Anuradha, P. Kanmani, “Multi-Objective Fault Tolerance Model for Scientific Workflow Scheduling on Cloud

Computing”, International Journal of Computer Networks and Applications (IJCNA), 9(4), PP: 438-450, 2022, DOI:

10.22247/ijcna/2022/214505.

