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Abstract – Cloud computing is used for large-scale applications. 

Therefore, a lot of organizations and industries are moving their 

data to the cloud. Nevertheless, cloud computing might have 

maximum failure rates because of the great number of servers 

and parts with a high workload. Reducing the false in scheduling 

is a challenging task. Hence, in this study, an efficient multi-

objective fault detector strategy using an improved Squirrel 

Optimization Algorithm (ISOA) in cloud computing is proposed. 

This method can effectively reduce energy consumption, 

makespan, and total cost, while also tolerating errors when 

planning scientific workflows. To increase the detection accuracy 

of failures, the Active Fault Tolerance Mechanism (PFTM) is 

used. Similarly, the reactive fault tolerance mechanism (RFTM) 

is used for processor failures. The efficiency of the proposed 

approach is analysed based on various measurements and 

performance compared to other approaches. 

Index Terms – VM Failure, Overloaded, Under Load, Squirrel 

Optimization Algorithm, Pro-Active Fault Tolerance, Reactive 

Fault Tolerance, Scheduling, Migration. 

1. INTRODUCTION 

Scientific workflow planning and mapping have long been a 

problem in the research of cloud computing. These 

optimization problem tasks need to be planned. This 

decreases the expense of execution time with the necessary 

quality assistance boundary. Cloud computing is considered a 

model for empowering helpful, network admittance to a 

common arrangement of underlying administrations [1]. 

Optimal planning of virtual resources has become a top 

priority for cloud service providers (CSPs) because it can save 

millions of dollars every year [2]. Cloud computing services 

are divided into three types [3].It provides quick access to 

computer resources like networks, servers, storage, and 

applications. Scientific workflows are an excellent form of 

workflow which is used in astrology, biometrics, and 

gravitational waves [4,5].  The continuous form of organizing 

the set of computational tasks and the dependent tasks is 

called the workflow. Large-scale scientific workflows need 

versatile information and PC assets to carry out science 

workflows in the cloud. Work process-based applications can 

therefore be determined, implemented, and verified in the 

cloud [6,7]. 

Logical applications are tended to by the work interaction as a 

plan of exercises and datasets. There are two kinds of 

workflow like business workflow and scientific workflow. A 

business workflow is an assortment of exercises and cycles 

related with a business. Scientific workflows are illustrative 

of scientific applications that rely upon other work that was 

perplexing in activity.  

Formalizing and organizing complex scientific cycles is 

worked with by scientific workflows. Moreover, it accelerates 

some scientific discoveries. Scientific workflows in the cloud 

can be specified, modified, implemented, and failure handled 

and monitored. Science applications can meet the need of the 

application by mapping it with VM images. Used in various 

fields: astronomy, bioinformatics, seismology, gravitational 

wave physics, and marine science workflow [8,9]. 

The use of virtual machines (VMs) has the potential to reduce 

inefficient resource allocation and excessive overhead. A VM 

can create a configuration environment that is independent of 

one resource and allows multiple environments to be used on 

the same resource. An efficient multi-objective fault detector 

technique based on the improved squirrel optimization 

algorithm (ISOA) can be used in cloud computing.  

This method will effectively reduce energy consumption and 

overall cost while at the same time tolerating errors when 

planning scientific workflows. To increase the accuracy of 

diagnosing failures, an active fault tolerance mechanism can 

be used. Similarly, the reaction fault tolerance technique can 

be used for processor failures. Cloud computing provides an 

excellent space for transition between performance and cost. 

The proposed approach main contribution is listed here; 
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 Multi-objective function based fault tolerance scientific 

workflow scheduling on cloud is proposed.  

 To avoid processor failure, reactive fault tolerance is used. 

This strategy is used to assign a fresh VM to execute the 

workflow task.  

 The proactive fault tolerance strategy is introduced to 

avoid overloaded VM failure. This strategy is used to 

migrate the data task on overloaded VM and avoid further 

allocation on overloaded VMs. 

 For the scheduling process, ISOA is introduced. This 

algorithm is assign the task to VM based on a multi-

objective function. 

 The efficiency of the recommended approach is compared 

with different metrics and different metrics.  

The organization of the paper is presented here, in section 2 

literature survey is presented and the workflow model is given 

in section 3. In section 4 mathematical model of multi-

objective function is presented and a clear explanation of the 

proposed approach is presented in section 5. The experimental 

results are presented in section 6 and the conclusion part is 

given in section 7. 

2. LITERATURE REVIEW 

A lot of researchers had developed fault tolerance-based 

workflow scheduling on the cloud. Some of those works are 

analyzed here; 

Heyang Xu et al. [10] introduced cloud workflow scheduling 

considering error recovery in the multi-objective optimization 

Approach. For analysis, cloud sources consider the 

probability of failure during operation. The authors explored 

the problem of workflow planning in the clouds. The authors 

aimed to develop multi-objective optimization (MOF) model. 

In this approach, the purpose of the first and second upgrades 

is not only to reduce the overall completion time but also to 

reduce the overall processing cost. To reduce the cost, a 

heuristic algorithm termed Min-min-based time and cost 

transfer (MTCT) was developed. The efficiency of this 

approach was compared with existing methods.  

Zulfiqar Ahmad et al. [11] introduced managing fault-tolerant 

and data-intensive scientific applications using cloud 

computing. Cluster-based, fault-tolerant, and data-intense 

(CFD) planning is provided in cloud environments of 

scientific applications. In this methodology, the information 

power of the errands of scientific workflows with bunch 

based, issue open minded components were alluded to by the 

CFD technique.  In this approach, the montage science 

workflow was considered a simulation.  Zhongjin Li et al. 

[12] introduced the Task Replication method in the fault-

tolerant scheduling cloud for scientific workflow. In this 

approach, for scientific workflow in the context of cloud 

computing by fault-tolerance scheduling (FTS) algorithm was 

proposed. The proposed FTS instructions ensured that the task 

was successfully implemented in the presence of internal 

failure or external failure in terms of task copy. With this 

approach, the authors sought to reduce workflow costs with 

time constraints through internal and external failures. The 

results showed that the FTS algorithms could only ensure the 

successful implementation of work. 

KokKonjaang and Lina Xu [13] introduced cloud computing 

by using a multi-objective workflow optimization strategy 

(MOWOS). In this approach, the authors proposed the 

MOWOS. The proposed approach was used to reduce 

administrative costs and accomplish workload tasks. The 

proposed algorithm had three sub algorithms such as the 

MaxVM selection algorithm and the MinVM selection 

algorithm. This algorithm was significantly increased in its 

performance compared to the algorithm of HSLJF and 

SECURE.  

Yuandou Wang et al [14] introduced MOF and deep-Q-

network-based multi-agent for Scheduling. In this approach, 

the authors proposed a multi-agent reinforcement learning 

system by using the deep-Q-network model. The authors 

considered the Markov game model. Furthermore, the 

decentralized DQN-based MARL framework was developed 

based on the decentralized DQN. The proposed DQN-based 

MARL framework was a combination of the traditional DQN 

algorithm for reinforcement learning. The authors have 

demonstrated that the proposed method works better than 

basic algorithms namely, NSGA-II, MOPSO, and GTBGA. 

Prem Jacob and Pradeep [15] introduced Cuckoo particle 

swarm optimization for multi-objective optimal task 

scheduling in cloud environments. The designed MOF is 

based on the costs of resources and tasks. In this approach, 

CPSO work was done for task scheduling. This method 

reduced the performance costs and user costs, and it relatively 

minimize the make-span value of the tasks. From this 

approach, the proposed CPSO algorithm has reached the 

minimum maturity violation rate compared to other methods. 

Amandeep Varma and SakshiKushal [16] introduced a 

scientific workflow based on hybrid MOPSO. This method 

deals with workflow planning problems with multiple 

conflicting objective functions in IaaS clouds. The proposed 

heuristic performance was compared with another method. 

The heuristic provided better coordination and regular spacing 

between solutions compared to others. Neeraj Arora and 

Rohitash Kumar Banyal [17] introduced a scientific workflow 

scheduling based on a hybrid HPSOGWO algorithm which is 

the hybridization of PSO and grey wolf optimization (GWO). 

The summary of the survey is given in table 1. 

 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2022/214505                 Volume 9, Issue 4, July – August (2022) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       440 

     

RESEARCH ARTICLE 

References Algorithm Proposed Workflow Model Findings 

[10] 

Min-min based time 

and cost transfer 

(MTCT) 

This paper investigates the 

problem of workflow 

scheduling in clouds 

considering fault 

Recovery. 

Montage, CyberShake, 

Epigenomics, and LIGO 

This method does not 

find all types of faults. 

[11] 

fault-tolerance and 

data-intensive (CFD) 

scheduling 

An efficient resource 

allocation on the cloud is 

proposed 

Montage and 

CyberShake 

This work does not 

consider the energy 

consumption of 

scheduling 

[12] 

fault-tolerant 

scheduling (FTS) 

algorithm 

Fault-Tolerant Scheduling 

for Scientific Workflow 

with Task Replication 

Method in Cloud is 

proposed 

Montage, LIGO, SIPHT, 

and CyberShake 

They only focus on 

scheduling and they 

attained high energy 

consumption 

[13] 

Multi-objective 

workflow optimization 

strategy (MOWOS) 

An efficient workflow 

scheduling is proposed 

Montage, Cybershake, 

LIGO Inspiral, and 

SIPHT 

This method has 

computation 

complexity 

[14] 

Deep-Q-Network-

Based Multi-Agent 

Reinforcement 

Learning 

Multi-objective workflow 

scheduling is proposed 

CyberShake, 

Epigenomics, Inspiral, 

Montage, and Sipht 

It takes maximum 

time  

[15]  
Cuckoo Particle Swarm 

Optimization 

Multi-objective optimal task 

scheduling is proposed 
Dynamic task 

This method attained 

better results 

compared to other 

methods. 

[16] 
Hybrid Particle Swarm 

Optimization 

Multi-objective workflow 

scheduling is proposed 

Montage, EpiGenomics, 

cybershake, LIGO, and 

SIPHT 

The proposed 

optimization 

algorithm easy to falls 

on local optimum  

[17] 

Combination of 

particle swarm 

optimization and grey 

wolf optimization 

Efficient scientific workflow 

scheduling on cloud 

Montage, Cybershake, 

Epigenomics, SIPHT, 

and LIGO 

It takes maximum 

time 

Table 1 Summary of Literature Survey 

2.1. Problem Definition 

Due to the rapid advancement of the cloud, many companies 

and industries are using cloud applications. Cloud computing 

enables sharing of geographically distributed resources, which 

solves data-intensive and large-scale computing applications. 

Managing resources belonging to different organizations is 

complex as each organization has its own policies.  

As the availability of resources varies dynamically, and due to 

the heterogeneity of resources, the chances of errors increase 

in a phased computing environment. Therefore, an efficient 

fault detection and fault handling mechanism is essential for a 

cloud computing environment. Nowadays, lot of researcher 

had developed task scheduling mechanism. But they not 

focused on faults tolerance strategy. Therefore, in this paper, 

an efficient fault tolerance based scheduling is proposed in 

this paper. 

3. MODEL OF WORKFLOW 

The structure of cloud computing contains of n number of 

physical machines (PM) denoted as  iPiPPP ,1,...,0  . Each 

PM is divided into some VMs denoted as  iViVVV ,1,...,0 

.The workflow model is generally represented by the directed 

acyclic graph (DAG)  ETWF , , where, 

 110 ,...,,...,,  ni ttttT  is represented as available tasks and 

  TttEE jitt ji
 ,,  is represented as edge.  

Each task has a weight value that indicates the execution time

 it . The weights assigned to the edges express the amount of 

data transferred between tasks. The immediate predecessor 

 itePr  is calculated using equation (1). 
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    Utttte ijji  ,Pr
                             (1) 

The immediate successor  iTSucc is evaluated using 

equation (2). 

    UttttSucc jiji  ,
                (2) 

The sample DAG is given in figure 1. In figure 1, a task with 

no predecessors is represented as entryT  and a task with no 

successors is represented as existT
. 

 

Figure 1 DAG Model 

4. DESIGN OF MULTI-OBJECTIVE FITNESS MODEL 

As the fitness function is designed to evaluate the solution 

also it quantitatively measures how to fit a given solution fits 

in solving the problem. In this paper, for fitness evaluation, 

the multi-objective function is presented. The single objective 

function is only focused on a single parameter. This affects 

the overall performance of the system. Therefore, the multi-

objective function is designed in this paper. The proposed 

MOF is designed using three parameters namely, total 

execution cost, Makespan, and energy. From the parameter, 

it’s understood the proposed multi-objective function has a 

minimization problem. The proposed fitness function is given 

in equation (3). 

 EnergymakespantFitness  32cos1min      (3) 

The first parameter of the objective function is cost. Total 

execution cost (TC) is measured based on how much cost is 

utilized for the scheduling process. The user wants to utilize 

the resources in a VM and the user has to pay the cost for the 

task. If the task iW  is scheduled jVM , the total CPU and 

memory cost is included in the payment. The CPU cost is 

calculated using equation (4).   

  jijbaset CTCjC cos
                              (4) 

Where; 

ijT The execution time of the task iW   on jVM  

jC Overall quantity of CPU 

baseC  CPU base cost 

The memory cost is calculated using equation (5) 

  jijbaset MTMjM cos
 (5) 

Where; 

jM  Total amount of memory 

baseM  Memory base cost 

The overall execution cost of all tasks is evaluated using 

equation (6) 

    
 


N

i

N

i
ijtijt XjMXjCTC

1 1
coscos ..

             (6) 

Where;  

ijX  Assignment matrix 

The second parameter of the fitness function is Makespan. 

The key parameter of task scheduling is makespan. The 

objective of scheduling is to minimize the total completion 

time for scheduling the entire task within the available 

resources. The makespan is calculated using equation (7); 

],[ jiMaxCTMakespan 

kiVMjniTi ,...,1,,...,1, 
(7) 

CTmax is calculated using equation (8) 

 
 


N

i

k

j
ijij XTCT

1 1
max

  (8) 

Where; 

maxCT  Maximum completion  

n Task count 

k
 VM count 

The third parameter of objective functions is Energy. A good 

scheduling system uses a small amount of energy to plan the 

entire task from the available resources. The total energy 

consumption during scheduling is given in equation (9).  

idleEbusyEtotalE 
               (9) 
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Energy consumption is calculated using Equation (10) when 

all resources are busy. 

 
 


n

i

n

i
jiidynamicjisrjspjibusy TPTfVKE

1 1
,,,,

2
,,

  (10) 

Where; 

jiT , Time to execute the task in  using resource rj 

spjiV ,,  Task in scheduled to be jr  based on voltage sv  

srjf , Frequency of resource jr having voltage level s 

Dynamic power loss  dynamicP  is evaluated using equation 

(11). 

sfsjVKdynamicP  2
,

  
(11) 

Where; 

K Constant parameter associated with dynamic power 

2
,sjV Supply voltage  

sf  Relevant frequency of 
2
,sjV  

Energy consumption is calculated using Equation (12) when 

all resources are idle. 





p

j
jidlejlowestilowestidle TfVKE

1

2

               (12)

 Where; 

jlowestV Lowest voltage of resources  

jlowestf Lowest frequency of resources 

jidleT  Idle period of resource jr  

5. PROPOSED MODEL 

The main aim of the presented technique is to optimally 

schedule the task on cloud resources while tolerating the 

faults. An improved squirrel optimization algorithm with 

proactive and reactive techniques is used to create a multi-

objective function to achieve this concept. The overview of 

the presented technique is given in Figure 2. The proposed 

approach contains four phases monitoring phase, analyzer 

phase, planner phase, and executer phase. The monitoring 

phase collects the task to the user and collects the information 

on resources. Then, the analyzer uses ANFIS to predict a load 

of resources based on the monitor's feedback. The predicted 

values are then sent to the scheduler component, and a 

workflow-scheduling algorithm is executed accordingly. To 

schedule, a multi-objective ISO algorithm is used, which 

combines pro-active and reactive techniques. Finally, at the 

executor stage, workflow tasks are assigned to the appropriate 

VMs. 

 

Figure 2 Overall Structure of Proposed Methodology 

5.1. Monitor Phase 

The monitor phase is to gather input information from the 

user and collect the resource load information from the data 

center. It comes with two sensors, a user sensor, and a 

resource sensor. The purpose of the user sensor is to collect 

information on the user's workflow tasks such as the size of 

the task, type of task and request rate, etc. The resource sensor 

is to gather information on the resource load rate such as the 

load of the CPU, network traffic, and memory. Monitoring 

data are stored in the knowledge base, which is used for 

analysis. 
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5.2. Analyzer Phase 

The analyzer phase is used to analyze and predict future VM 

load for error recognition in VMs. At this point, the analyzer 

gets the data from the monitor phase, and based on the data, 

the future load is predicted.  

This technique is used to distribute the over-loaded VM to the 

under-loaded VM to avoid VM failure and increases the 

optimal performance. In this paper, ANFIS is used for 

prediction. During prediction, the time series data i.e., CPU 

load is trained by ANFIS. Here, two input variables and one 

output are used. The ANFIS description is explained below; 

Step 1: Data collection: The research data are collected from 

the user's request. These data are considered as the time series 

i.e., the data are known at a point y = T to forecast the series 

of future values y = T + P. initially, for prediction, the data is 

trained based on the user data.  

Step 2: for forecasting, “one-step-ahead” framework is 

designed.  In this step, initially, we map D to a  shaped time 

series, is        kykyZky ,...,,1  , to a forecasted 

future value  pTy  . In the presented forecast model, the 

requested number of each layer is collected and the values D 

= 11 1 P are used to estimate the number of services 

requested at the next time interval. 

We predict  ky  from the ten past values of the time series, 

that is,     ....,,9,10  kyky and  1ky . Therefore the 

format of the training data is given in (13) 

        kykykyky ;1,...,9,10  (13) 

Each input package is split into two sets such as training and 

testing.  

Step 3: Create ANFIS forecast model: To generate the ANFIS 

model, initially, the input data are partitioned using a 

subtractive clustering approach. Then based on the clusters 

the fuzzy interface system is generated. The steps included in 

ANFIS are explained below; 

 The universe of discourse for input variables should be 

partitioned as follows: Initially, the variables are splinted 

based on the minimum maximum method 

 Set membership function for output variable: For attained 

the output, the Gaussian membership function is used. 

Consider, two-period inputs  2,1  kyky and, three 

linguistic intervals  3,2,1i which are grouped by using 

subtractive clustering in every input variable. Based on the 

input and output variable, the fuzzy rules are generated 

using equation (14). 

      iiikiikik rxvyuyfthenVyxandUyyIf   21   (14) 

Where; 

   21 ,  kk yxyy  Linguistic variables,  

iU , iV  linguistic values (high load, middle load, and low 

load),  

 kyif 
thi  Output value 

iriviu ,,
 Parameters

 3,2,1i
 

 Create a fuzzy inference system: First, the input member 

function and the output member function are derived from 

the steps above. Secondly, based on the linguistic values 

(Ui, Vi) fuzzy if-then rules are generated.  

 Train parameter of fuzzy inference system: In this step, the 

training data are trained based on the least-square method 

and back-spread slope descent method. The training 

process is iterated 60 times.  

Step 4: Forecast testing datasets: When the forecasting sample 

reaches the stop criterion, the FIS parameters are determined 

from step 3; the training forecast model is then used to predict

...,,1, kyky respectively, for the target training and the test 

datasets. 

Step 5: Refine forecasts by the different statistical evaluation 

criteria: The forecast test datasets are obtained from step 4. To 

change the forecasts with less error in the training database, 

we use different statistical evaluation criteria. 

5.3. Fuzzy Scheduler Phase 

The fuzzy scheduler gets data from the analyzer phase. The 

data contains information on the future load of each resource. 

The scheduler phase operates based on three fuzzy if-then 

rules which are given in table 2. 

Table 2 Fuzzy Scheduling Rules 

Fuzzy scheduler component rules  

If   <load>is forecasted as <Normal> 

Then<“no change”> in the task 

Call ISO algorithm 

If < load> is forecasted as <high> 

Then “chances for error occur” 

Call PFTC strategy to minimize load 

If < load> is Forecasted<very high> 

Then “Fault happened” 

Call RFTC to migration process 
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The first rule says; that if the future resource loads are 

forecasted as a normal state by the analyzer phase, then the 

fuzzy scheduler calls the ISO algorithm to schedule the 

workflow by considering makespan, energy, and the total 

cost. 

The first rule says; that if the future resource loads are 

forecasted as high state, then the fuzzy scheduler phase invites 

the PFTC to prevent the fault event. In this PFTC, the 

adaptive weight adjustment algorithm is utilized to balance 

the load. 

The second rule says; that if the future resource loads are 

forecasted as too high, then the fuzzy scheduler phase calls 

the RFTC, which is used to minimize the server failure. If one 

of the available active VMs fails, that error indicates that the 

action must be identified and an advance migration algorithm 

must be enabled. 

5.3.1. Scheduling Using Improved Squirrel Optimization 

Algorithm (ISOA) 

Scheduling is an important process for tolerating the fault and 

reducing the energy consumption of the cloud. To achieve this 

concept, the ISO algorithm is presented. The SOA algorithm 

is a bio-logical inspiration optimization algorithm, which is 

developed based on the food search behavior of the flying 

squirrels. The most fascinating reality about flying squirrels is 

that they don't fly, rather they utilize a special technique for 

locomotion for example "Gliding" which is viewed as 

enthusiastically modest, permitting little mammals to cover 

enormous distances rapidly and proficiently. This method 

provides efficient search space exploration as the seasonal 

surveillance level is linked. Furthermore, there are three types 

of trees in the forest, such as the common tree, the oak tree, 

and the hickory tree, which preserve population diversity and 

enhance algorithmic studies. Further, to improve the 

performance of SOA, opposition-based learning (OBL) is 

adapted to SOA. The OBL strategy improves the searching 

ability of SOA. The step-by-step process of the fault-tolerant-

based task scheduling process is explained in table 3. 

Table 3 Solution Encoding Format 

No. of      

task 

No. of 

VM 

T1 T2 T3 T4 T5 T6 T7 T8 T9 

VM1 1 0 1 0 1 0 0 0 1 

VM2 0 1 0 0 0 1 0 1 0 

VM3 0 0 0 1 0 0 1 0 0 

Step 1: Solution encoding: Initialization of the parameter used 

in this paper is done in this section. Count of workflow tasks, 

amount of VMs, population size, CPU capacity, maximum 

iteration, and ISOA parameters. The solutions are then 

randomly generated. The solution consists of VM and task. 

The solution encoding format is given in table 1. 

In table 1, there are nine tasks and three VMs are considered. 

In the table, “1” represent, the corresponding task assigned to 

VM, and the “0” represent, the task is not assigned to the VM. 

Only one VM is assigned a task.  

Step 2: Opposite solution generation: Based on initial 

solutions, opposite solutions are developed. By creating 

opposite solutions, search efficiency is increased. Where, 

 baS , is the real number. The opposite solution S  is 

estimated by using equation (15); 

SbaS  (15) 

Step 2: Fitness Evaluation: The fitness value of the solutions 

is essential in determining which solutions to select to create 

the next iteration. For fitness, in this paper, MOF is designed 

which is based on the makespan, total processing cost, and 

power consumption. A good scheduling system should reduce 

the fitness function. The fitness function is given in equation 

(16). 

 EnergymakespantFitness  32cos1min     (16)
 

Step 3: Solution updation: The solutions are updated after the 

fitness calculation. Solutions will be updated as they progress 

through the following phases. 

Sort, declare, and random selection process: Each solution's 

fitness values are sorted ascending after being determined. In 

the hickory nut tree, the best location (i.e. minimum exercise) 

is considered to be. Acorn nuts in trees and hickory nuts are 

the next two best solutions, as well as the squirrel that tries to 

go towards them. The left is thought to be in ordinary trees on 

the squirrel. The announcement states that some squirrels are 

chosen at random to travel to the hickory nut tree. Due to the 

presence of hunters on squirrels of all kinds, the algorithm is 

designed to take into account the probability that the predator 

is present  Pprob . 

Generate new locations: based on the hunting probability (

probp ) the squirrel locations are updated. The following 

norms are used for updation process.  

Norm 1: Flying squirrels on the acorn nut trees (
i

AS  ) will 

more often than not move towards the hickory nut tree which 

is given in condition (17). 
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 




 



otherwiseRand

prSSggS
S

prob

i

A

i

Hconstdist

i

Ai

A
;

; 11  (17) 

Norm 2: Flying squirrels lying on the typical trees (
i

NS ) 

probably travel towards acorn nut trees which are given in 

equation (18). 

 




 



otherwiseRand

prSSggS
S

prob

i

N

i

Aconstdist

i

Ni

N
;

; 21   (18) 

Norm 3: Squirrels flying over normal trees (
i

NS ) try to move 

towards hickory nut trees given in equation ( 19). 

 




 



otherwiseRand

prSSggS
S

prob

i

N

i

Hconstdist

i

Ni

N
;

; 31   (19) 

The above equations, random gliding distance is represented 

as distg ;  9.1constg  represents the gliding constant, i and 

1i refers the new and following iteration;
i

AS ,
i

HS and
i

NS

denotes the location of the flying squirrel. Also, 
1r , 

2r  and 

3r are arbitral value among [0, 1]. 

Aerodynamics of gliding: The flying squirrel at the standard 

angle of landing at the horizontal angle is defined as the lift-

to-drag ratio (also called the rate of glide), which is calculated 

using equation (20) 

tan

1


d

E
G                                (20) 

The above equation indicates the glide angle, which is 

calculated using equation (21). 











E

d
arctan

                               (21) 

The small value   helps increase the glide path length of the 

squirrels. Also, the lift force equation is represented in (22). 

LTE
E

coef

22

1




                  (22) 

Further, frictional drag is calculated using equation (23) 

LTd
d

coef

22

1


                   (23) 

 

Where )204.1( 3 kgm indicates the mass of air; 

125.5  msT represents speed; 
2154cmL   specifies 

the outside area of the body; coefE and coefd describes the lift 

coefficient and drag coefficients respectively. 

Seasonal monitoring condition: This is because seasonal 

change plays an important role in the search for food for 

flying squirrels. Here are some of the steps involved in 

mathematically expressing seasonal monitoring are given in 

table 4. 

Table 4 Seasonal Monitoring Condition 

calculate seasonal constant (
)(i

sc ) by, 

 



z

j

i

jH

i

jA

i

s SSc
1

2

,,

)(
, where 3,2,1i

is the iteration count 

Find low seasonal constant using, 

  max

5.2

6

0

365

10

i

i

e
c



 , where maxi is the maximum 

iteration 

// Analyze seasonal monitoring condition  

if  0cc i

s   

Perform random relocation  

Else  0cc i

s   

Flying squirrels themselves explores for the 

best food source 

5.3.2. Random Relocation During the Winter Season 

Observations indicate active squirrels that can explore their 

ideal food source according to their seasonal position. The 

random migration strategy is also being used to make sure 

that squirrels surviving but unexplored find their optimal food 

source. Using the Levy distribution, random relocation occurs 

here (24): 

   minmaxmin SSmlevySSN 

 
(24) 

Where  ylevy indicates the levy distribution which is 

calculated using equation (25). 

 



1

01.0

q

p

u

u
ylevy




               (25) 
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In this paper, we used the constant 5.1  and random 

number pu and qu distributed normally within [0,1]. Also,   

is calculated using equation (26). 

 










1

2
1

2
2

1

2
sin1


























 
















 

 

   (26) 

Where: 
   !1 yy

   

Termination condition: The termination condition is 

performed the best solution is reached or when the maximum 

number of repetitions is reached. At the end of ISOA, the 

optimal scheduled task are found, which are used for 

scheduling. 

5.3.3. PFTC 

Due to the high load on the VMs, the process on the VM 

layers fails, which is considered a fault. The ultimate 

objective of PFTC is to avoid incoming workload to the fault 

zone and it does not assign new loads to overloaded VMs. 

The fault detection rules of the proactive controller are 

explained below; 

 If a VM is recognized as having an additional load by the 

analyzer phase, a higher load situation will occur. In this 

scenario, the PFTC calculates the exact load weight of the 

VM and priority parameter for the target VM relative to 

the current CPU usage status. By changing the weight 

value, the load balancer sends low-responsibility 

solicitations to this VM to guarantee that the CPU is 

secure. 

 The situation under load is recognized when the usage of 

CPU resources is reduced at regular intervals (i.e., the 

number of resource-driven workflow tasks is small and 

often inactive). By increasing the weight and priority value 

of idle VMs to meet higher workflow requirements, the 

PFTC reduces the possibility of other VMs failing due to 

failures on idle VMs. 

5.3.4. RFTC 

In the proposed work, the fuzzy scheduling stage calls on the 

RFTC to tolerate the error if the analyst level considers the 

property load to be exceptionally overestimated. This 

indicates that present dynamic VMs is vulnerable, which 

should be differentiated as a fault reaction, and fault tolerance 

cycles will be quickly placed in the program, in these ways, a 

displacement mechanism will be implemented. VM migration 

is a strategy to work with development providers to oversee 

the production of cloud assets [41]. A direct VM migration is 

the transfer of an overloaded VM to another VM without 

interrupting the new operation of utility services. The resource 

utilization is calculated using equation (27).  

HostTotalRAM

RAMqTotal

HostBandwidthTotal

BandqTotal

HostMipsTotal

BandqTotal
vmnUtilizatio

i

ReReRe


    (27) 

The total VM utilization is calculated using equation (28) 

ii CapacityVMnUtilizatioutilizedVMTotal 
   (28) 

The overall migration time is calculated using equation (29) 

migrateddataTotalVMsthecopytotakenTimeTimeMigrationTotal 

  (29)
 

Time taken to copy the VMs is calculated using equation (30). 

loadHostTemporaryVMsthecopytotakenTime 
   (30)

 

Temporary is calculated using equation (31) 

3

111

HostofBandwidthTotal

n

i

BAN
iVM

HostofRAMTotal

n

i

RAM
iVM

HostofMipsTotal

n

i

CPU
iVM

Temporary











    (31) 

Total data migration is calculated using equation (32) 

loadHostthresholdMaximummigrateddataTotal 
(32) 

5.4. Executer Component 

Once scheduling process is completed, the executor 

component is assigning the task to the corresponding CVMs. 

The actual execution of the actions determined by the 

scheduling components is the responsibility of this 

component. 

6. RESULTS EVALUATION 

The results obtained from the presented approach are 

explained in this section. The suggested technique is 

implemented using JAVA and Windows 10 operating system. 

Montage, cyber shake, and LIGO workflows are used in 

experimental analysis. The workflow system is shown in 

Figure 3. 

 
(a)                   (b)                           (c) 

Figure 3: Experimental Used Workflow Models (a) Montage, 

(b) CyberShake, and (c) LIGO 
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6.1. Experimental Analysis Based on Energy Consumption 

Energy consumption is a very important parameter for 

scheduling and resource allocation on the cloud. We properly 

allocate the task on resources means; we can reduce energy 

consumption. In this work, the MOF has focused on energy 

consumption also. The comparative analysis based on energy 

for different workflow models is presented in this section. 

 

Figure 4 Comparative Analysis Based on Energy for Montage 

Workflow 

In figure 4, for Montage workflow, the efficiency is discussed 

using on energy. The total energy consumed by the execution 

of all tasks is called energy consumption. A good scheduling 

system should have minimum energy consumption. When 

analysing figure 4, our proposed approach is consumes less 

amount of energy of 574J for scheduling Montage workflow 

which is 785J for SOA-based scheduling, 925J for SMO-

based scheduling, and 1127J for PSO-based scheduling. Due 

to the OBL strategy with SOA, in this paper, our proposed 

approach has achieved minimal energy consumption 

compared to other methods. Because the OBL strategy 

increases the searching ability of SOA. 

 

Figure 5 Comparative Analysis Based on Energy for 

CyberShake Workflow 

In figure 5, energy of Cybershake workflow is analysed. In 

this figure, we analyse the different methods namely SOA, 

SMO, and PSO with our approach. According to figure 5, the 

proposed ISOA-based scheduling has achieved better results 

and the PSO-based scheduling has achieved the worst output 

compared to other methods. In figure 6, the comparative 

analysis results of proposed against existing based on energy 

consumption are analyzed. Here, the proposed approach 

achieved better results than already. 

 

Figure 6 Comparative Analysis Based on Energy for LIGO 

Workflow 

6.2. Experimental Analysis Based on Cost 

One of the important parameter of scheduling is cost. The cost 

is varies for task and VM. In this section, the efficiency of 

recommended technique is analysed in terms cost. A good 

scheduling system should complete its execution at a 

minimum cost. The outcome came from three workflows are 

described below: 

 

Figure 7: Experimental Results Based on Cost Using Montage 

Workflow 

In figure 7, ISOA performance is analyzed in terms of cost 

using montage workflow. Any user who wants to schedule 

their task on resource, pay some amount. The resource cost is 

related to CPU and memory. When analyzing figure 7, our 

proposed approach is takes the minimum cost of 118$ for 

scheduling montage workflow which is 241$ for SOA-based 

montage workflow scheduling, 321$for SMO-based montage 
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workflow scheduling, and 408 for PSO-based montage 

workflow scheduling. The effectiveness of ISOA is analyzed 

based on cost using Cybershake work scheduling given in 

figure 8. As expressed in Figure 8, our recommended model 

achieved improved results compared to the other method. 

Similarly, in figure 9, the proposed approach takes minimum 

cost for scheduling LIGO workflow compared to other 

methods. 

 

Figure 8 Experimental Results Based on Energy Using 

Cybershake Workflow 

 

Figure 9 Experimental Results Based on Cost for LIGO 

Workflow 

6.3. Comparative Analysis Based on Makespan 

The results obtained by various workflow model based on 

makespan is analyzed in this section. 

Figure 10 illustrates the makespan of the proposed and other 

algorithm using Montage workflow. When analyzing figure 

10, ISOA based scheduling approach attained the makespan 

of 124s which is 186s for SOA-based scheduling, 224s for 

SMO-based scheduling, and 267s for PSO-based scheduling. 

The graph shows that the makespan of ISOA-based 

scheduling is lesser than the SOA, SMO, and PSO-based 

workflow scheduling. This is due to the adaptation of ISOA. 

In figure 11, the effectiveness of the proposed approach is 

analyzed based on makespan using Cybershake workflow. For 

the scheduling process, makespan is an important parameter. 

The task flow affects the makespan of the scheduling. 

Compared to another method, ISOA attained the minimum 

makespan. Figure 12 illustrates the makespan using the LIGO 

workflow. According to figure 12, the ISOA technique takes a 

minimum makespan of 4157s. From figures 10-12, we 

understand, that the ISOA-based workflow scheduling 

technique takes a minimum makespan of 124s, 387s, and 

4157s for Montage, Cybershake, and LIGO respectively. 

 

Figure 10 Comparative Analysis Based on Makespan for 

Montage Workflow 

 

Figure 11 Comparative Analysis Based on Makespan for 

Cybershake Workflow 

 

Figure 12 Comparative Analysis Based on Makespan for 

LIGO Workflow 
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6.4. Comparative Analysis Based on Fault Ratio 

In this section, the recommended approach efficiency is 

discussed based on fault ratio. A good scheduling system 

should have minimum faults. The following graphs clearly 

show the outcome of the proposed method. 

Table 4 Comparative Analysis Based on Fault Ratio for 

Montage Workflow 

Number 

of tasks 

Proposed 

ISOA 
SOA SMO PSO 

25 4 5 6 7 

50 6 8 10 12 

100 8 10 12 15 

500 10 12 14 17 

1000 12 14 16 20 

Table 5 Comparative Analysis Based on Fault Ratio for 

Cybershake Workflow 

Number 

of tasks 

Proposed 

ISOA 
SOA SMO PSO 

25 5 7.3 10.1 10.8 

50 5.5 8 11.3 11.9 

100 7.5 9.5 12.1 12.8 

500 8.2 10.2 13.5 14.2 

1000 10 11.5 14.3 15.1 

Table 6 Comparative Analysis Based on Fault LIGO for 

Montage Workflow 

Number 

of task 

Proposed 

ISOA 
SOA SMO PSO 

25 5.5 6 7.5 7.9 

50 4.3 5.5 7 7.2 

100 10 12 12.3 13 

500 11.2 12.8 13 13.8 

1000 13.5 16 16.8 17.5 

In table 4, a comparative analysis based on the error rate is 

given. The error rate gradually increases as the number of 

tasks is maximized. The minimum failure rate increases the 

system performance. In this proposed approach, to reduce the 

failure rate, we use CPU load prediction using ANFIS and we 

replace the faulty VM with new VMs. Similarly, the approach 

proposed in table 5 and 6 achieved a better error rate 

compared to the other methods. It is clear from the results that 

the suggested model has yielded the best results compared to 

other methods. This is due to the ANFIS-based CPU load 

prediction; ISOA-based scheduling, and reactive and pro-

active fault tolerant strategy. 

7. CONCLUSION 

In this paper, a multi-objective fault tolerance model based on 

scientific workflow scheduling on the cloud has been 

proposed. The fault was tolerated based on ANFIS-based 

CPU prediction, the faulty VM was replaced by a new VM 

with, a proactive and reactive fault tolerance strategy. 

Similarly, the workflow schedule has been done based on the 

ISOA. For scheduling multi-objective function has been 

designed by considering energy cost and makespan. The 

mathematical model of each algorithm has been clearly 

explained. The experimental result has been carried out based 

on three workflows namely, Montage, Cybershake, and 

LIGO. The effectiveness of the recommended approach has 

been analysed based on cost, makespan, energy, and the fault 

ratio. 
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