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Abstract – Virtual machine placement (VMP) involves selecting 

the most appropriate physical machine (PM) to run a virtual 

machine (VM) in cloud data centers (CDCs). Unfortunately, 

current VMP methods only consider limited resources, resulting 

in load imbalance and unnecessary activation of certain PMs in 

the data center (DC). This paper proposes a new approach called 

Multi-Objective Seagull Optimization Algorithm Virtual 

Machine (MOSOAVMP) to address these issue s and 

enhance resource management in CDCs. The aim is to optimize 

resource utilization, minimize energy consumption, reduce SLA 

violations, and improve overall DC efficiency. The aim is to 

achieve an optimal deployment that will meet these different 

objectives while minimizing the costs associated with operating 

the CDCs. The results show the proposed MOSOAVMP's 

efficiency compared with existing algorithms for the different 

measurements considered.  These experimental results show that 

MOSOAVMP reduces resource wastages, and energy 

consumption by 5.44%, improves average CPU usage by 

14.84%, memory usage by 11.54%, average storage usage by 

5.37%, and average bandwidth usage by 6.88%. 

Index Terms – Cloud Computing, Seagull Optimization 

Algorithm, Metaheuristics Algorithm, SLA, Virtual Machine 

Placement, Data Center, Power Consumption. 

1. INTRODUCTION 

In recent years, cloud computing has become a leading IT 

model for providing and managing services over the Internet. 
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Its adoption is now ubiquitous and constantly growing, 

offering great scalability and various services. Cloud 

computing significantly impacts our daily life, particularly 

through social and sensor networks. The rise of smart devices 

has accelerated its adoption, leading to rapid growth in the 

number and size of cloud data centers. Additionally, it helps 

reduce network infrastructure costs. 

Various techniques and technologies are used to meet user 

requirements and optimize cloud performance. These include 

migration, which consists of transferring a virtual machine 

(VM) from a physical server (PM) with insufficient resources 

to another with the necessary resources. What's more, 

virtualization is central to cloud computing. Virtualization has 

revolutionized IT operations in data centers (DCs), where 

virtual machines (VMs) are deployed on physical machines 

(PMs) to run users' applications [1]. Optimum placement of 

these VMs on physical hosts is crucial to guarantee good 

performance. This VMP problem is an optimization challenge 

whose objective is to determine the best VM allocation 

among the available PMs. Placement can be static or 

dynamic, depending on whether PMs can be replaced due to 

changes in the DC environment; such as variations in 

workload, resource availability, or hardware constraints. 

Migration of VMs may be necessary to balance the load, even 

though this may result in a breach of service level agreements 

(SLAs) [2]. However, it is important to avoid excessive 

resource utilization, as this can lead to performance 

degradation. The Cloud also makes it easier to store and 

analyze large volumes of data [3], which means that several 

challenges, such as safety [4], need to be considered. While 

cloud computing offers many advantages, it also presents 

several challenges. One of the most important is to reduce 

energy consumption in cloud-based data centers. In addition, 

optimizing the use of different cloud resources is also crucial. 

To overcome these challenges, various metrics are taken into 

account and analyzed.  

It is therefore essential to find an optimal solution for VMP 

that meets the above-mentioned objectives. This implies 

finding a balance between the different objectives, as 

improving one of them may lead to the deterioration of 

another. A multi-objective optimization approach is therefore 

needed to effectively solve this VMP problem. 

This article presents a new algorithm, designed to address the 

challenge of optimizing the placement of VMs on PMs to 

improve IT resource management. The proposed algorithm 

has three main objectives. The first objective focuses on 

reducing energy consumption in CDCs by minimizing the 

number of active physical servers. The second objective is to 

reduce the waste of various cloud resources while optimizing 

the VMP. Finally, the algorithm aims to minimize and reduce 

the SLAs among active PMs in CDCs. In addition, the 

algorithm considers other factors such as CPU usage, 

memory, bandwidth, storage space, as well as the number of 

active machines and migrations. 

The use of this solution significantly reduced the number of 

migrations to CDCs. The proposed MOSOAVMP algorithm 

was compared with other commonly used algorithms such as 

DMOSCA-SSA [4], MOILP [5], PIAS [6], MGGAVP [7], 

and MBFD [8]. As demonstrated earlier in the summary, the 

proposed approach demonstrated substantial improvements 

over the aforementioned methods. The metrics used for this 

comparison include, among others, energy consumption, 

utilization of various resources (CPU, RAM, storage, and 

network), migrations, as well as compliance with service level 

agreements (SLAs). 

The remainder of this article is organized as follows: The 

second section reviews the various algorithms, instead of 

works. Section 3 gives a general introduction to the various 

mathematical concepts of the Seagull Optimization Algorithm 

(SOA), and is followed by the mathematical formulation of 

the multi-objective optimization applied to VMP, and the 

description of the proposed algorithm is found in section 4. 

Section 5 presents the results of the performance evaluation of 

the proposed method in comparison to other commonly used 

algorithms. Finally, section 6 provides conclusions and 

outlines prospects for future work. 

2. RELATED WORK 

As mentioned above, VMP aims to ensure good cloud 

performance and optimal resource management. There are 

many algorithms available to solve this problem, and in this 

section, we review some of the work that addresses the VMP 

problem.   

Lu et al. [9] proposed an improved genetic algorithm (I-GA) 

to address the VMP problem, aiming to optimize the 

availability and energy consumption of CDCs. A combination 

of virtual hierarchy architecture and GA was utilized to 

achieve a near-optimal solution, to improve energy 

consumption and resource availability. A key step in their 

approach is the generation of the initial I-GA population, 

which is achieved using finite element analysis in the 

background. CloudSim is employed for simulating the 

experiments. The results demonstrate a significant 

improvement in energy management and high availability in 

the DCs. Their model presents better results based on the 

benchmark results of the different state-of-the-art methods 

used for the VMP optimization problem. The authors 

efficiently optimize the VMP by utilizing the I-GA approach, 

contributing to better resource management and reduced 

energy consumption in CDCs. 

Caviglione et al [10] proposed a multi-objective approach to 

determine the best techniques for VMP. It takes into account 

the impact of hardware failures, DC power consumption, and 

user satisfaction in terms of performance. A deep 
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reinforcement framework facilitates the selection of the best 

heuristic for the placement of VMs. Their results demonstrate 

that the method exceeds the performance of current state-of-

the-art heuristics for both real and synthetic workloads [10]. 

Alharbi et al [11] introduced a method combining the 

assignment of different applications and the VMP of a DC to 

optimize the energy efficiency of enterprise distribution 

centers. They formulated the problem related to energy 

optimization of enterprise DCs as an Int2LBP (Integrated 

Two-Layer Bin Packing) problem. This approach was 

considered as an initial solution and was further developed to 

optimize the energy efficiency of corporate distribution 

centers. In terms of energy efficiency, the various simulations 

carried out on DC prove the performance of the 

Int2LBP_FFD algorithm compared with the 

Consec2LBP_FFD algorithm. In addition, the Int2LBP_ACS 

algorithm outperforms the Int2LBP_FFD in efficient energy 

management. The Int2LBP_FFD and Int2LBP_ACS 

algorithms are well suited to managing different applications 

and VMs on DCs for large enterprises.  

Ghetas et al. [12] introduced a new method called MBO-VM 

based on the VMP Monarch Butterfly Optimization (MBO) 

algorithm. This method aims to maximize packaging 

performance and reduce PMs. The CloudSim simulator was 

utilized to implement and assess the performance of this 

approach. This tool also enabled them to test real and 

synthetic workloads in the cloud. The results obtained from 

the simulations demonstrate that MBO-VM outperforms 

known VMP techniques in terms of performance. By using 

MBO-VM, it is possible to more effectively reduce the 

number of active hosts while maximizing packaging 

efficiency. This approach thus offers an optimal solution for 

VMP, improving the overall efficiency of CDCs. 

To solve the VMP optimization problem, a new multi-

objective ILP algorithm has been presented by Regaieg et al 

[5], considering that at cloud service providers (CSPs) the 

environment is made up of VMs of homogeneous and 

heterogeneous types. This model aims to reduce resource 

wastage while maximizing the number of VMs that are hosted 

on physical servers, thereby reducing the number of PMs 

used. Due to the diversity of the different types of VMs 

available in a heterogeneous cloud environment, the test 

results showed the effectiveness of achieving the above 

objectives. These results have the advantage of reducing the 

costs associated with operating DCs while maintaining a high 

level of Quality of Service (QoS). 

Rashida et al. [13] presented a VMP algorithm called 

MGGAVP, which considers correlation and addresses the 

VMP problems. This algorithm is based on escalation 

algorithm hybridization and genetic clustering and is extended 

to operate in a multi-cloud environment. After simulation, the 

results reveal the net performance offered by their algorithm 

to those of the other benchmark algorithms. It achieves energy 

savings of 51.93% and reduces energy costs by 70.41%. 

Rahimi Zadeh et al. [6] proposed a new scheduling scheme 

called PIAS (Profit-aware Interference-aware Scheduling) for 

the efficient consolidation of VMs in the Infrastructure-as-a-

Service (IaaS) model. The PIAS scheme takes into account 

several factors such as profit, energy costs, operational 

interference, resource utilization, and SLAs. To minimize 

workload execution costs and increase vendor profit, the 

optimization problem was modeled in the form of stochastic 

dynamic programming, mimicking the operational behavior 

of VMs. Simulations based on real workloads show that PIAS 

outperforms competing approaches on average, with 

improvements of at least 40% for profit, 29% for energy 

efficiency, and 35% for service downtime. 

To improve quality of service (QoS) and efficient traffic 

management in Internet of Things (IoT) networks, a meta-

heuristic based on enhanced seagull optimization is proposed 

by Gharehpasha et al. [14]. This approach enables better 

management of packet forwarding and a significant 

improvement in QoS in terms of delay. The performance of 

this method has been evaluated and compared with previous 

methods, demonstrating its accuracy, efficiency, and 

superiority. 

Nabavi et al. [15] presented a multi-objective approach to 

VMP in edge-cloud DCs. To optimize network traffic and 

traffic power, an SOA-based model was presented. The 

strategy focuses on trying to reduce network traffic between 

PMs while consolidating VM communications on the same 

PMs. This reduces data transfer across the network and lowers 

PMs power consumption. The authors conducted simulations 

using CloudSim and tested the proposed approach on two 

network topologies, VL2, and three-tier. The results highlight 

the proposed method's effectiveness in significantly 

decreasing energy consumption and network traffic in edge-

cloud environments. Test results for the proposed algorithm 

show a clear reduction in energy efficiency of 5.5%, a 

remarkable 70% reduction in network traffic, and an 80% 

reduction in the energy consumption of network components. 

Table 1 provides a summary of these various state-of-the-art 

works. It presents the methodology used, the objectives, the 

weaknesses, the simulator used, and the proposed method. 

The choice of the MOSOAVMP algorithm to optimize the 

placement VMs in the cloud is based on the inherent qualities 

of the SOA algorithm. These include its simplicity, ease of 

implementation, and ability to converge rapidly on optimal 

solutions, even with many iterations. This testifies to its 

robustness and ability to solve complex problems such as VM 

placement. The analysis presented in Table 1 reveals a 

thorough evaluation of the metrics used in previous work, 

enabling us to discern which metrics are paramount and 
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which are often overlooked. This analysis enabled us to select 

a wide range of metrics relevant to our study, ensuring a 

comprehensive and rigorous assessment of cloud 

performance. 

Table 1 Summary of the Work Reviewed 

Algorithm Vulnerability Objectives  Methodology Applied Simulator 

I-GA [9] Very long runtimes and 

certain metrics such as 

storage and bandwidth 

are not taken into use. 

Ensure availability and optimize the 

energy consumption of a DC 

Proposal of an I-GA algorithm 

to optimize VMP problems. 

CloudSim 

DLR-VMP 

[10] 

Resource wastage VM placement while ensuring Quality 

of Experience (QoE), by reducing the 

power used. 

Placement strategies are 

determined through a deep 

reinforcement learning 

framework that identifies the 

optimal placement heuristic for 

each VM within the workload. 

Python 

ACS, 

Int2LBP 

[11] 

Runtime execution, 

applications are 

allocated dynamically, 

dynamic VMP, VM 

consolidation, and VM 

migration 

Implementation of the Int2LBP_FFD 

algorithm and the Int2LBP_ACS 

algorithm, based on the initial results 

of the first algorithm, to optimize the 

energy efficiency of corporate 

distribution centers. 

To solve the problem of energy 

consumption in an enterprise 

DC, the authors call it Int2LBP 

Amazone 

EC2 T2 

MBO-VM 

[12] 

Storage, Bandwidth, 

and SLA 

Minimize the number of active 

physical hosts in the DC to optimize 

energy consumption and lower 

maintenance costs. 

Server consolidation and 

resource utilization 

CloudSim 

MOILP [5] The effect of workload 

on efficient energy 

consumption is not 

taken into account. 

Minimize DC operating costs to 

increase customer satisfaction. 

Optimizing hosted VMs, 

limiting the waste of different 

resources, and reducing the 

number of active physical 

servers to reduce energy 

consumption in DCs. 

Amazone 

EC2, Julia 

Language 

(JL) 

MGGAVP 

[13] 

QoS, SLA Hybridization of metaheuristic 

escalation algorithms and genetic 

clustering for optimization in a multi-

cloud environment 

Optimization of the VMP 

problem in a heterogeneous 

environment. 

MATLAB 

R2015 

PIAS [6] Lack of peak period 

prediction to increase or 

reduce DC capacity 

during peak or idle 

periods. To avoid 

saturation, VM resource 

utilization should 

remain below. 

Cost of energy efficiency, operational 

VM interference, reduced resource 

utilization, and SLA optimization. 

VM behavior is modeled using 

stochastic dynamic 

programming to minimize 

workload execution costs and 

maximize provider profit. 

CloudSim 

ISOA [14] Many of the metrics 

(e.g. CPU, RAM, 

storage, ...) to assess the 

efficiency of the cloud 

have not been taken 

into account. 

improve QoS and efficient traffic 

management in Internet of Things 

(IoT) networks. 

Use SOA to minimize lead 

times, average implementation 

times, virtual server computing 

costs, and network costs. 

MATLAB 

R2017 
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SOAVMP 

[15] 

Little use of test 

resources, SLA, and 

resources wastage 

Traffic, power, and energy Reduced energy consumption 

thanks to consolidation 

technology and reduced network 

traffic between PMs by 

concentrating as many VMs as 

possible on a single PM. 

CloudSim 

Our 

method 

Security and task 

scheduling 

Energy consumption, SLA, resource 

utilization(CPU, RAM, Storage, and 

Bandwidth), Migration, and resource 

wastage. 

MOSOAVMP optimizes virtual 

machine placement 

CloudSim 

3. SEAGULL VIRTUAL MACHINE PLACEMENT 

OPTIMIZATION ALGORITHM 

3.1. Bio-Inspired Paradigm 

Optimization in general is a field that has been developing 

steadily over the last few years, with new bio-inspired 

algorithms [16], [17], [18] as well as hybrid algorithms [19], 

[20]. Inspired by the natural migration and attack patterns of 

seagulls in the wild, SOA is a metaheuristic that was proposed 

by Dhiman and Kumar in 2017[21]. This algorithm is 

population-based and uses migratory movements to search for 

abundant food sources. Their positions are updated according 

to the best position found, while fascination and attack 

strategies are used to attract prey. The algorithm is divided 

into diversification and intensification, the two main phases, 

and can switch from one phase to the other depending on the 

position of the prey. Seagulls can continuously modify their 

angle of attack during migration [22]. 

The migratory behavior of seagulls is characterized by the 

following features [23]: 

 Seagulls move in groups during migration, adopting a 

collective movement strategy to avoid collisions between 

them; 

 Within the group, seagulls can adjust their trajectory by 

moving in the direction that ensures the best survival for 

the oldest seagull. In other words, they may follow the 

direction chosen by the most experienced seagull to 

maximize their chances of survival. 

This noisy bird lives, feeds, and sleeps in colonies. Its food 

consists of insects, their larvae, earthworms, small 

crustaceans, mollusks, and small fish caught in flight. As 

shown in Figure 1, during the attack they perform a spiral 

movement. 

 

 
Figure 1 Migration and Attack Phases of Seagull Behavior [21] 

3.2. Mathematical Formulation 

This algorithm simulates the movement of a group of seagulls 

from one location to another during migration. During this 

migration phase, three conditions must be met by each of the 

seagulls: 

3.2.1. Migration phase (or Exploration phase) 

Collision Avoidance: To prevent collisions with other 

seagulls when computing the new position of the search 

agent, a variable named A is introduced. [24]. 

𝐶𝑠
⃗⃗  ⃗ = 𝐴 × 𝑃𝑠

⃗⃗  ⃗(𝑥)             (1) 

In Equation (1), 𝐶𝑠
⃗⃗  ⃗ is a representation of the search agent's 

position that avoids collisions between neighbors, 𝑃𝑠 

represents its current position, 𝑥  designates the current 

iteration, and A characterizes the agent's various movements 

within the search space. Figure 2 shows how search agents 

avoid colliding with each other. These variables are applied to 

compute the optimal position for the search agent while 
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avoiding collisions with other agents[24], [25]. This is shown 

in Equations (2) and (3). 

𝐴 = 𝑓𝑐 − (𝑥 × (
𝑓𝑐

𝑀𝑎𝑥𝑖𝑡

))           (2) 

 x = 0,1,2, … ,𝑀𝑎𝑥𝑖𝑡                       (3) 

In Equation (2), variable 𝐴 reproduces the motion behavior of 

the search agent. The parameter 𝑓𝑐 controls this variable and 

decreases nearly from 𝑓 𝑐  to 0. The maximum number of 

iterations used is represented by 𝑀𝑎𝑥𝑖𝑡 . These elements are 

essential for regulating the agent's movement and defining the 

limits of the optimization process. Figure 3 shows how the 

different agents move and search for the best neighbor. 

 

Figure 2 Avoiding Search Agent Collisions 

 

Figure 3 Moving Agents and Finding the Best Neighbor 

Seagulls head for the best-performing seagull in their group, 

ensuring cohesion. This is represented in the mathematical 

equation (4)[26], [27]:  

𝑀𝑠
⃗⃗⃗⃗  ⃗ = 𝐵 × (𝑃𝑏𝑠

⃗⃗ ⃗⃗  ⃗(𝑥) − 𝑃𝑠
⃗⃗  ⃗(𝑥))               (4) 

Where 𝑀𝑠
⃗⃗⃗⃗  ⃗represents the position of the 𝑃𝑠

⃗⃗  ⃗ of gulls in relation 

to the 𝑃𝑏𝑠 of the best-performing seagulls.  

Control parameter 𝐵, as indicated by reference [28], plays a 

pivotal role in establishing equilibrium between 

diversification and intensification. It is represented 

mathematically in Equation (5)[27],[29] where Ran denotes a 

random number within the range of [0; 1][28]: 

𝐵 = 2 × 𝐴2 × 𝑅𝑎𝑛                          (5) 

Approaching the Optimal Seagull: Seagulls actively seek out 

food sources during their migration, moving in the direction 

that offers the best opportunities for survival. Figure 4 

illustrates the updating of the search agent's position relative 

to the position of the best search agent. 

 

Figure 4 Approaching the Optimal Search Agent 

In this case, updates of other seagull's positions rely on the 

position of the best seagull. The Equation (6) below 

represents this update [30]: 

𝐷𝑠
⃗⃗⃗⃗ = |𝐶𝑠

⃗⃗  ⃗ + 𝑀𝑠
⃗⃗⃗⃗  ⃗|          (6) 

3.2.2. Attack Phase (or Exploitation Phase) 

In the exploitation phase, the seagulls utilize their previous 

knowledge and experience. They can constantly adjust their 

angle of attack and speed. To maintain altitude, they use their 

wings and body weight. 

 
Figure 5 Natural Behavior of Seagull Attack 
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As illustrated in Figure 5, the seagulls engage in a spiral 

motion while attacking their prey in the air. The Equations 

(7)-(10) below, calculate the three dimensions  (𝑥, 𝑦, 𝑧) of this 

behavior [31], [32], [33]: 

𝑥 = 𝑟 × cos(𝜃)                      (7) 

𝑦 = 𝑟 × sin(𝜃)                     (8) 

𝑧 = 𝑟 × 𝜃                                (9) 

𝑟 = 𝑣 × 𝑒𝜃𝑢                           (10) 

Updating the search agent's position within the spiral involves 

the utilization of various parameters. The radius of the spiral 

is represented by 𝑟, while 𝜃 is a random element between[0 <
θ < 2π][34]. The parameters and 𝑢 influence the shape of the 

spiral. Using the natural logarithm of base 𝑒, the following 

Equation (11) calculates the updated position of the search 

agent [35], [36]: 

𝑃𝑠
⃗⃗  ⃗(𝑥) = (𝐷𝑠

⃗⃗ ⃗⃗ ⃗⃗  × 𝑥 × 𝑦 × 𝑧) + 𝑃𝑏𝑠
⃗⃗ ⃗⃗  ⃗(𝑥)       (11) 

The 𝑃𝑠
⃗⃗  ⃗(𝑥) variable in this equation plays an essential role in 

maintaining the best available option and taking into account 

the current situation of the other search agents. It maintains a 

reference to the best solution throughout the process. 

4. MATHEMATICAL FORMULATION AND 

MOSOAVMP FOR VIRTUAL MACHINE 

PLACEMENT 

4.1. Problem Formulation 

The optimal placement of VMs in CDCs is pivotal in cloud 

computing. The primary aim is to minimize energy 

consumption, resource wastage, SLA violations, and 

maximize DC efficiency. 

Cloud computing presents complex challenges when it comes 

to VMP. The issue of VMP in a CDC is unpredictable and 

follows no consistent pattern. The complexity of this problem 

can be illustrated by the fact that the maximum number of 

VM mappings on PMs is equal to 𝑚𝑛  , where 𝑛    is the 

number of VMs and  𝑚  is the number of PMs. With this 

context, we determine the first objective, which is to 

minimize the energy consumption of the PMs in the CDC. 

The various mathematical symbols used in the mathematical 

formulation are described in Table 2. Recent research has 

shown a linear correlation between CPU usage and server 

energy consumption in CDC. A linear equation can be used to 

precisely calculate energy consumption in the context of 

cloud computing. This relationship shows that when CPU 

utilization is increased, host power demand increases 

proportionally [37], [38], [39]: 

𝑃𝑖
𝑝𝑜𝑤𝑒𝑟

= {
(𝑃𝑖

𝑏𝑢𝑠𝑦
− 𝑃𝑖

𝑖𝑑𝑑𝑙𝑒) × 𝑈𝑖
𝑐𝑝𝑢

+   𝑃𝑖
𝑖𝑑𝑑𝑙𝑒        𝑖𝑓 𝑈𝑖

𝑐𝑝𝑢
> 0   (12)

0,                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
 

Equation (12) is used to determine the energy consumption of 

a PM in a DC. These different variables 𝑃𝑖
𝑝𝑜𝑤𝑒𝑟

, 𝑃𝑖
𝑏𝑢𝑠𝑦

, 

𝑃𝑖
𝑖𝑑𝑑𝑙𝑒and 𝑈𝑖

𝑐𝑝𝑢
 represent, respectively, the amount of energy 

consumed when the machine is fully loaded, idle, and 

inactive, and CPU utilization in MIPS. According to this 

equation, power consumption is directly proportional to CPU 

utilization. As a result, an increase in CPU will lead to an 

increase in power consumption in the DCs. 

Energy consumption in CDCs is directly linked to CPU power 

consumption. The increase in the CPU usage of the PMs will 

directly influence the increase in the energy consumption of 

the CDCs. Consequently, the overall energy consumption in 

the CDCs can be calculated based on the following Equation 

(13): 

∑𝑃𝑖
𝑝𝑜𝑤𝑒𝑟

𝑚

𝑖=1

= ∑𝑏𝑖

𝑚

𝑖=1

× ((𝑃𝑖
𝑏𝑢𝑠𝑦

− 𝑃𝑖
𝑖𝑑𝑙𝑒)

× ∑𝑎𝑗𝑝. 𝐶𝑗 + 𝑃𝑖
𝑖𝑑𝑙𝑒           (13)

𝑚

𝑣=1

 

Table 2 Various Mathematical Symbols and Descriptions 

Symbol Descriptions 

P Group of PMs 

V Group of VMs 

𝛼 F1 balance coefficient 

𝛽 F2 balance coefficient 

𝛿 F3 balance coefficient 

𝑎, 𝑏 Binary variables 

𝑃𝑖
𝑖𝑑𝑑𝑙𝑒  Power consumption in inactivity mode 

𝑃𝑖
𝑝𝑜𝑤𝑒𝑟

 Power consumption of PM 𝑖 

𝑃𝑖
𝑏𝑢𝑠𝑦

 Energy consumption of PMs during periods 

of activity 

𝑈𝑖
𝑐𝑝𝑢

 The normalized CPU utilization of PM 𝑖 

𝑈𝑖
𝑚𝑒𝑚𝑜 The normalized RAM utilization of PM 𝑖 

𝑅𝑖
𝑤𝑎𝑠𝑡𝑎𝑔𝑒

 Inefficient use of PM resources 

𝑁𝑅𝑖
𝑐𝑝𝑢

 Normalized remaining CPU of PM  

𝑁𝑅𝑖
𝑚𝑒𝑚𝑜 Normalized remaining memory of PM 

𝑇𝑈𝐶𝑃𝑈 Global CPU usage PMs in operation 

𝑇𝑈𝑚𝑒𝑚𝑜 Global memory usage PMs in operation  

𝑇𝑈𝑠𝑡𝑜 Global storage usage PMs in operation  
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𝑇𝑈𝐵  Global bandwidth usage PMs in operation  

𝑇𝑖
𝑐𝑝𝑢

 Peak CPU usage of PMs 

𝑇𝑖
𝑚𝑒𝑚𝑜 Peak memory usage of PMs  

𝑇𝑖
𝑠𝑡𝑜 Peak storage usage of PMs  

𝑇𝑖
𝑏𝑎𝑛𝑑 Peak bandwidth usage of PMs 

𝐶𝑗 CPU request of VM 𝑗 in MIPS 

𝑀𝑗 Memory request of VM 𝑗 in MB 

𝐻𝑗 Storage request of VM 𝑗 in GB 

𝐵𝑗  Bandwidth request of VM 𝑗 in Mbps 

Preventing wasted resources is a crucial aspect of placing 

VMs in CDCs. Each server has hardware resources that must 

be optimally utilized to host VMs. Efficient management of 

unused server resources is essential. Equation (14) quantifies 

the waste of resources [40]. 

   𝑅𝑖
𝑤𝑎𝑠𝑡𝑎𝑔𝑒

=
∣ 𝑁𝑅𝑖

𝑐𝑝𝑢
− 𝑁𝑅𝑖

𝑚𝑒𝑚𝑜 ∣

∣ 𝑈𝑖
𝑐𝑝𝑢

  + 𝑈𝑖
𝑚𝑒𝑚𝑜   ∣

+ 𝜀                     (14) 

Equation (14) is used to quantify the remaining unused 

resources on a PM p in a CDC. 𝑁𝑅𝑖
𝑐𝑝𝑢

p represents the amount 

of unused CPU, while 𝑁𝑅𝑖
𝑚𝑒𝑚𝑜 p represents the amount of 

memory unused by VMs on that same PM 𝑖. The variables 

𝑈𝑖
𝑐𝑝𝑢

and 𝑈𝑖
𝑚𝑒𝑚𝑜 represent CPU and memory usage, 

respectively, by VMs on the PM 𝑖 in the CDC. Equation (15) 

represents the total quantity of the various resources 

consumed in (CDC). 

 ∑Ri
wastage

m

i=1

 

= ∑[ai ×
|(Ti

cpu
− ∑ (bji. Cj)

n
j=1 ) − (Ti

memo − ∑ (bji. Bj)
n
j=1 )| + ε

(∑ (bji. Cj)
n
j=1 + (∑ (bji. Mj)

n
j=1

]    (15)

m

p=1

 

When the values 𝑎𝑖  and 𝑏𝑣𝑖  are equal, this indicates that the 

PM 𝑃 is active and hosting the VM 𝑣. 

To guarantee a minimum level of service between the cloud 

service provider and the customer, an SLA contract must be 

respected. Equation (16) represents this SLA: 

𝑆𝐿𝐴 = 
1

1 + 𝑒𝑈𝑐𝑝𝑢−0.9   (16)  

The objectives of placing VMs on PMs in CDCs are defined 

from the previous equations, and include the following: 

𝑀𝑖𝑛 𝐹(𝑥) = 𝛼𝐹1(𝑥) + 𝛽𝐹2(𝑥) + 𝛿𝐹3(𝑥)                  (17) 

The objective function used in Equation (17) takes into 

account several objectives in the placement of VMs. The 

coefficients α, β and 𝛿 keep these objectives in balance. The 

first objective, F1, concerns the energy consumption of the 

PMs. The second objective, F2, measures resource wastage. 

Finally, the third objective, F3, takes into account SLA 

compliance. The values of these functions can be determined 

through the following Equations (18)-(20): 

𝑀𝑖𝑛 ∑𝑃𝑖
𝑝𝑜𝑤𝑒𝑟

                (18)

𝑚

𝑖=1

 

𝑀𝑖𝑛  ∑𝑅𝑖
𝑤𝑎𝑠𝑡𝑎𝑔𝑒

          (19)

𝑚

𝑖=1

 

𝑀𝑖𝑛 ∑𝑆𝐿𝐴                    (20)

𝑚

𝑖=1

 

When optimally placing VMs on PMs in a CDC, several 

constraints must be taken into account, including: 

∑𝑏𝑗𝑖 = 1

𝑚

𝑖=1

                                                    (21) 

∑𝑏𝑗𝑖 = 𝑏𝑖𝑗

𝑚

𝑗=1

. 𝐶𝑗 ≤ 𝑇𝑖
𝑐𝑝𝑢

. 𝑎𝑖𝑇𝑈𝐵                 (22) 

∑𝑏𝑗𝑖 = 𝑏𝑖𝑗

𝑚

𝑗=1

. 𝑀𝑗 ≤ 𝑇𝑖
𝑚𝑒𝑚𝑜 . 𝑎𝑖                   (23) 

∑𝑏𝑗𝑖 = 𝑏𝑖𝑗

𝑚

𝑗=1

. 𝐻𝑗 ≤ 𝑇𝑖
𝑠𝑡𝑜 . 𝑎𝑖                         (24) 

∑𝑏𝑗𝑖 = 𝑏𝑖𝑗

𝑚

𝑗=1

. 𝐵𝑗 ≤ 𝑇𝑖
𝑏𝑎𝑛𝑑 . 𝑎𝑖                      (25) 

Each VM is assigned to a single PM, as shown in equation 

(21). Equations (22), (23), (24) and (25) ensure that the 

cumulative of resources (CPU, memory, storage space, and 

bandwidth) demanded by the various VMs on a PM cannot 

exceed the capacity of that PM. 

4.2. Proposed Algorithm 

In CDCs, a collection of homogeneous or non-homogeneous 

VMs utilize the hardware resources of the PMs to run their 

different services. Hosting these VMs is the responsibility of 

the PMs in these centers. More hardware resources are needed 

to meet the growing request for cloud services, and this is 

driving up costs. Optimizing VMP will maximize the use of 

available resources while enabling each PM to host a 

significant number of VMs. This approach avoids wasting the 

various resources available in the cloud and also makes the 

most of the processing power, memory, and storage systems 
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of the PMs. This guarantees the performance of a cloud-based 

DC.  

This study presents a new solution based on MOSOAVMP, a 

discrete multi-objective approach to optimal VMP. The main 

objective is to optimize resource management, minimize 

energy consumption, and reduce the SLA in the CDC. 

Algorithm 1 shows the solution proposed in this work. 

Input: Initializing the agent population 

Output: The best solution for optimizing VMP 

Begin 

1. Initialize SOA Parameters 

2. Set the population size of the Seagulls 

3. Compare the cost function of each agent 

4. Determine the maximum number of iterations 

5. Initialize the seagull position randomly 

While t < maxiter do 

For each search agent do 

Apply mutation and crossover on the solutions as migration 

and seagull behavior 

Calculate objectives values for all search agents  

End for 

Update seagull position 

For each i=1 to number of seagulls do 

Compute the costs involved with using all search agents 

Generate the most effective solutions using the latest search 

agents 

End for 

Consider the most efficient solution. 

End While 

Return the best solution 

Algorithm 1 MOSOAVMP 

The first phase of all metaheuristic algorithms is the random 

phase called initialization, where random solutions are 

generated within the search space. This phase significantly 

influences the algorithm's efficiency and final results. To 

achieve an optimal solution, a specific number of agents is 

defined. In this version of AOS, which is proposed in 

Algorithm 1, the various steps are as follows: 

Step 1: This is the crucial step of initializing the parameters 

taken into account in this algorithm. It involves mapping 

VMP in the CDC to the seagull and resetting the VM position. 

The maximum number of iterations, the number of agents, 

and the dimensions of the space are taken into account during 

initialization; 

Step 2: This is the first phase in the search for the optimal 

solution. This solution is obtained as a function of resource 

constraints, using the equation representing the objective 

function. The solution with the smallest value is then 

considered to be the optimal solution; 

Step 3: This step involves updating the seagull's position;  

Step 4: The search process is interrupted if the maximum 

number of iterations is reached. At this point, the position of 

the leading agent is considered. If the maximum iterations are 

not yet reached, the process returns to step 2. 

5. RESULTS AND DISCUSSIONS 

5.1. Performance and Evaluation 

This section presents the configuration used, the various 

performance measurements, as well as the different 

simulation results of the new algorithm(MOSOAVMP), 

evaluated and compared against various existing algorithms 

dealing with the VMP problem such as DMOSCA-SSA 

MOILP, MBO-VM, PIAS, MGGAVP, and MBFD.  

The main objective is to perform the optimal placement of 

VMs on PMs in a Cloud environment to limit resource 

wastage, energy consumption costs, and SLA, and maximize 

total performance.  In this study, we took into account several 

key evaluation metrics such as resource wastage, energy 

consumption, and utilization of different resources (CPU, 

memory, storage, and bandwidth). Added to this are the 

number of active machines and migration. 

The experimental study of the MOSOAVMP algorithm was 

carried out using the CloudSim simulator version 5.0[41]. The 

CloudSim simulator supports the modeling and simulation of 

a cloud-based DC [42].  It was chosen for its flexibility in 

implementing many IaaS functionalities such as energy 

management, and resource management, as well as evaluating 

new applications before implementation in a real 

environment.  

The experiments were carried out on a computer equipped 

with an AMD Ryzen 5800U processor clocked at 4.4 GHz 

with 8 cores and logical processors equal to 16, plus 16 GB of 

3200MHz RAM, running the Windows 11 operating system. 

To conduct simulations of the heterogeneous Cloud 

environment, a single DC is established, comprising 1800 

PMs with two configurations, as outlined in Table 3.  

This is done for a set ranging from 200 to 2,000 VMs, with an 

interval of 200 VMs for each iteration. The specifications of 

the VMs are detailed in Table 3. 
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Table 3 Different Test Configurations 

 Host name Parameter and value 

 

 

 

 

 

 

 

 

Host 

Type 

 

 

 

 

PMs 

HP ProLiant 

ML110 G3 

MIPS: 3000 

RAM: 4GB 

Cores: 2 

Storage: 1024 GB 

Bandwidth: 3Gbps 

HP ProLiant 

G4 

MIPS: 3720 

RAM: 4GB 

Cores: 2 

Storage: 1024 GB 

Bandwidth: 3Gbps 

 

VMs 

 

- 

MIPS: 2000 

RAM: 1024MB 

Cores: 1 

Storage: 2.5GB 

Bandwidth: 512MB 

 

 

Figure 6 Power Energy Consumption 

Figure 6 shows the energy consumption results for the 

algorithms used in the tests. Energy consumption increases 

with the number of VMs active in the CDC. In all cases, 

MOSOAVMP shows a clear improvement in energy 

consumption over the other algorithms compared. 

Considering the basic configuration of 400 VMs, the 

proposed MOSOAVMP model shows a low power 

consumption of 5.28% on average, compared with the state-

of-the-art DMOSCA-SSA, MOILP, PIAS, and MGGAVP 

algorithms. For the maximum configuration of 200 VMs, 

MOSOAVMP demonstrates a 6.18% improvement over the 

other models evaluated. Overall, the proposed algorithm 

achieves a 5.44% reduction in energy consumption compared 

to other advanced algorithms. 

Figure 7 shows VM migration comparisons. The proposed 

method shows the performance and stability of migration 

numbers. To migrate these VMs, we consider the resources 

available on the physical servers. In the case of state-of-the-

art algorithms, VM correlation, and sudden resource changes 

are not taken into account, generating a large number of VMs 

that need to be migrated. The proposed algorithm limits VM 

migration while respecting the constraints since it is based on 

resource correlation. To achieve the best performance, the 

proposed algorithm minimizes the competition that can arise 

between VMs hosted on the same host by selecting the most 

appropriate VMs and PMs. 

 

Figure 7 Number of Migration 

The results in Figure 7 show the effectiveness of 

MOSOAVMP with the lowest migration costs, followed by 

DMOSCA-SSA, MOILP, PIAS, MGGAVP, and MBFD. In 

general, VM migration involves a considerable amount of 

data transfer. To obtain an optimal VMP, we reduce the 

number of migrations while placing VMs on the minimum 

possible PMs. In this way, the proposed algorithm reduces the 

number of active PMs and network links, while prioritizing 

the placement of VMs. In this way, the algorithm will reduce 

the number of active servers while prioritizing the placement 

of correlated VMs on the same server or neighboring servers.  

Figure 8 shows the results for the number of active PMs in 

proportion to the number of VMs hosted on them. The test 

results show that the proposed MOSOAVMP algorithm 
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requires fewer physical hosts to host VMs than the state-of-

the-art algorithms. This improvement becomes significant as 

the number of VMs assigned to it increases. On average, 

MOSOAVMP improves by 7.92% over the compared 

algorithms. For example, let's compare MOSOAVMP with 

DMOSCA-SSA, the second best-performing algorithm. We 

see an improvement of 5.22% when using a configuration of 

200VMs for both algorithms and an improvement of 1.22% in 

the case of 2000VMs. In the case of the MBFD algorithm, 

which presents the weakest results, MOSOAVMP shows a 

clear improvement of 19.92% for the 200VMs configuration 

and 8.10% for the 200% configuration. For all test 

configurations, MOSOAVMP performed well against 

DMOSCA-SSA, MOILP, PIAS, MGGAVP, and MBFD. 

 

Figure 8 Number of Active PMs 

 

Figure 9 Average CPU Usage 

Figure 9, Figure 10, Figure 11, and Figure 12 represent 

respectively the average use of PM resources such as CPU, 

memory, storage, and bandwidth as a function of active VMs 

in the DC. The results demonstrate the effectiveness of the 

proposed method in all situations.  For CPU usage, 

MOSOAVMP shows an average improvement of 14.84% 

compared to state-of-the-art algorithms, followed by 

DMOSCA-SSA. For memory, MOSOAVMP shows an 

11.54% improvement, a 5.37% improvement in storage space, 

and a 6.88% improvement in bandwidth. 

 

Figure 10 Average RAM Usage 

 

Figure 11 Average Storage Usage 

Maintaining effective resource management in a cloud 

environment is a primary objective. Resource wastage 

significantly impacts cloud computing performance, as 

highlighted in the other metrics discussed earlier. According 
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to the findings illustrated in Figure 13, the proposed algorithm 

effectively reduces resource wastage in the cloud when 

compared to existing algorithms. 

 

Figure 12 Average Bandwidth 

 

Figure 13 Resources Wastages 

SLA reduction translates into a more reliable user experience 

and customer satisfaction. Figure 14 shows the effectiveness 

of the proposed MOSOAVMP algorithm when managing 

SLA in cloud computing, compared with DMOSCA-SSA, 

MOILP, PIAS, MGGAVP, and MBFD.  

The various previous fluctuations observed with the existing 

algorithms have been reduced. As shown in Figure 14, the 

results demonstrate the superior performance of 

MOSOAVMP compared to state-of-the-art algorithms. 

 

Figure 14 SLA 

The convergence time for finding an optimal solution to 

various problems is crucial for metaheuristics. This includes 

the time elapsed during both the exploration and exploitation 

phases. To evaluate the performance of MOSOAVMP against 

state-of-the-art algorithms, the number of iterations is set to 

100. Figure 15 illustrates the performance of the proposed 

method in comparison to other algorithms. As the number of 

iterations increases, the fitness of the DMOSCA-SSA, 

MOILP, PIAS, MGGAVP, and MBFD algorithms decreases. 

Under the same conditions, the MOSOAVMP algorithm 

demonstrates high efficiency. Increasing the number of 

iterations allows the proposed method to converge faster to 

the optimal solution than the other algorithms. Like any 

metaheuristic, it must balance between the local optimum 

value and the global optimum value throughout the search for 

the best solution. This balance determines MOSOAVMP's 

ability to effectively solve complex problems, particularly 

VMP problems. 

 

Figure 15 Convergence Time 
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Figure 16 shows the comparison between the time of 

execution of the method that is proposed and the state 

methods for finding an optimal solution for VMP.  To carry 

out this comparison, a range from 100VMs to 500VMs is 

used to see the evolution of execution time. Referring to 

Figure 15, MOSOAVMP is better at finding the optimal VMP 

solution at different problem sizes than other algorithms. 

 

Figure 16 Average Storage Usage 

5.2. Discussion and Limitation 

The results show that the MOSOAVMP algorithm 

outperforms other leading algorithms in terms of energy 

consumption and resource management in cloud-based data 

centers. As shown in Figure 56, energy consumption increases 

proportionally with the number of active virtual machines 

(VMs). However, MOSOAVMP reduces energy consumption 

by 5.44% on average compared to DMOSCA-SSA, MOILP, 

PIAS, and MGGAVP, notably with a 6.18% improvement for 

200 VMs. 

In terms of VM migrations (Figure 57), the proposed 

algorithm demonstrates superior stability by minimizing the 

number of migrations required. By taking resource correlation 

into account, MOSOAVMP optimizes VM placement, 

reducing the number of active physical servers and associated 

costs. For example, for 2000 VMs, MOSOAVMP improves 

efficiency by 1.22% over DMOSCA-SSA and by 8.10% over 

MBFD. 

Figures 59 to 62 illustrate that MOSOAVMP optimizes the 

use of PM resources such as CPU, memory, storage, and 

bandwidth, with respective improvements of 14.84%, 

11.54%, 5.37%, and 6.88% compared to other algorithms. 

This efficient resource management is crucial to reducing 

waste and improving overall cloud computing performance. 

When it comes to meeting SLAs, MOSOAVMP shows 

increased efficiency (Figure 64), reducing the fluctuations 

observed with other algorithms and guaranteeing a more 

reliable user experience. Finally, Figure 65 shows that 

MOSOAVMP converges faster to an optimal solution by 

increasing the number of iterations, demonstrating its 

robustness in solving complex VM placement problems. 

The MOSOAVMP algorithm proves to be a superior solution 

for minimizing energy consumption, optimizing resources, 

and ensuring effective SLA management in cloud 

environments, systematically outperforming the other 

algorithms. Although the proposed method offers all these 

advantages, some improvements can be made by enhancing 

evaluation metrics such as workload handling, flexibility, 

adaptability, and security. These metrics, which have not been 

considered in this work, may impact QoS, highlighting a 

weakness of the proposed approach. 

6. CONCLUSION 

Cloud data centers consist of various power-intensive 

technologies, such as physical servers, switching devices, and 

cooling systems. However, the power consumption of these 

devices raises operational expenses and can lead to significant 

heat generation issues.  In this paper, we propose an algorithm 

that can help optimize the VMP, intending to reduce energy 

consumption, enhance resource utilization, and minimize 

service level agreement violations. We formulate this problem 

as a multi-purpose problem optimization and employ a 

seagull-based approach for its solution. The test results show 

that the proposed solution achieves all the objectives set out in 

this work, compared with the algorithms of existing works. 

MOSOAVMP showed good exploitation and exploration 

performance. Regarding accuracy and speed of finding the 

best solution, MOSOAVMP has a better convergence speed. 

In future research, we plan to compare this method with new 

metaheuristic algorithms such as [43], [44], [45], [46], [47], 

while considering additional metrics such as cloud security 

and task scheduling. Additionally, our objectives include 

exploring the placement of containers in the cloud using 

metaheuristics and deep learning. Furthermore, we will 

investigate the integration of game theory to enhance the 

optimization process. 
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