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Abstract – Over the years, it has been observed that standard 

protocols designed for wired networks do not perform 

adequately when used for wireless networks. Researchers have 

proposed various protocols to enhance the functionalities of 

wireless network layers. TCP-Transmission Control Protocol is a 

transport layer protocol that experiences significant 

performance degradation in wireless networks. This is primarily 

because TCP considers any packet loss as a cause of network 

congestion, leading to an unnecessary reduction in transmission 

rate even when losses occur due to other reasons. This research 

work focuses in reviewing the existing approaches for 

improvement of TCP Congestion Control for wireless networks 

along with proposing TCP-RLACC (TCP with Reinforcement 

Learning based Adaptive Congestion Control). TCP-RLACC 

explores the network to select the most appropriate growth 

(linear, quadratic polynomial or exponential) of Cwnd – 

Congestion Window for adjusting transmission rate. TCP-

RLACC is implemented in NS-3 simulator and evaluated with 

TCP Westwood+ for large number of wireless network 

scenarios. TCP-RLACC has shown significant improvements in 

terms of average throughput and end to end packet delivery 

ratio. 

Index Terms – TCP, Congestion Control, Reinforcement 

Learning, Cwnd-Congestion Window, Throughput, Packet 

Delivery Ratio. 

1. INTRODUCTION 

Computer Networks were initially implemented as wired 

networks where the physical connections of cables carry the 

signals for the communications. With the introduction of 

wireless networks, the medium of communication is changed 

to the air. Wireless networks provide more flexible and 

convenient infrastructure as compared to the wired networks. 

While wired networks are preferred for large scale networks, 

wireless networks are preferred for networks such as home or 

office networks, sensor networks, ad hoc networks or IoT 

networks. Some wireless networks such as MANETs - Mobile 

Ad hoc Networks provide mobility without dedicated network 

infrastructure for setup which makes them suitable to form 

networks on temporary or emergency basis [1-3]. 

Computer networks, whether wired or wireless are operative 

with protocols at different layers of the service models to 

provide specific services in coordination with the available 

hardware resources. The protocols designed for wired 

networks may not provide satisfactory performances when 

used for wireless networks due to fundamental differences 

between wired and wireless communications. Wired networks 

are more reliable and stable due to physical connections 

whereas wireless networks are more vulnerable from 

transmission issues such as noise, attenuation, interference, 

physical obstacles etc. Wireless networks introduce high error 

rates and packet losses due to issues such as signal fading, 

multipath propagation, and collisions among wireless 

transmissions. One challenging issue in wireless networks is 

congestion control where it is necessary to identify whether 

packet losses are due to congestion or any other issues. Wired 

networks are configured with static topologies whereas 

wireless networks, specifically MANETs have dynamic 

topologies allowing nodes to move while being involved in 

communications. Routing is challenging in wireless networks 

due to mobility patterns and network partitions. As compared 

to wired networks, wireless networks often experience 

bandwidth and throughput constraints due to limited 

frequency bands. Wireless networks are inherently more 

vulnerable to unauthorized access and security issues 

compared to wired networks. As the wireless networks are 

more challenging to deploy with satisfactory performances, 

researchers have been actively participating towards 

proposing solutions to address specific issues [2-5]. 

TCP - Transmission Control Protocol is a transport layer 

protocol to provide process-to-process communication 

between two end devices. TCP provides congestion control, 

flow control and error control to ensure reliable 

communication. Congestion control and flow control set the 

transmission rate as per the capacities of network and receiver 

respectively. Error control supports acknowledgement based 

retransmissions. Over the years, numerous TCP variants are 

proposed to improve end to end performance for wireless 

networks. Many of these solutions are based on some 

heuristics or static rules, enabling them to improve 

performance for some specific type of wireless networks or 

scenarios. Proposing a TCP solution which is adaptive for 
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different wireless networks and diverse set of scenarios has 

been an active area of research [6-8].  

Adaptive TCP observes the real time network conditions to 

adjust its mechanism for better decision making. As TCP is 

strongly associated with end to end congestion control, 

network conditions such as throughput, delay, error rate, ACK 

patterns can be monitored to set transmission rate accurately. 

Though many existing TCP variants are adaptive, they are 

often limited in their adaptability to handle dynamic network 

conditions effectively or may not be effective for wireless 

networks [6-8]. 

This research work reviews existing approaches for 

improvement of TCP Congestion Control for wireless 

networks along with proposing a reinforcement learning 

based solution for adaptive congestion control. The proposed 

solution is named TCP-RLACC (TCP with Reinforcement 

Learning based Adaptive Congestion Control). TCP-RLACC 

explores the network to select the most appropriate growth 

(linear, quadratic polynomial or exponential) of Cwnd – 

Congestion Window for adjusting transmission rate. This 

solution is expected to be adaptive to form its decision 

making policy for any network through Reinforcement 

Learning. It is implemented in NS-3 simulator and evaluated 

with large number of wireless network scenarios. Section-2 

discusses review of existing approaches. Section-3 discusses 

the proposed solution and Section-4 discusses results with key 

observations. Section-5 is conclusion. 

2. RELATED WORK 

This section reviews some of the recent work related with 

improvements of TCP’s congestion control. The review starts 

with discussing how ML-Machine Learning can be used for 

networking followed by discussions of recent TCP variants. 

The discussion covers TCP variants that do not utilize ML, 

followed by those that do incorporate ML techniques. 

2.1. Machine Learning and Networking 

A workflow for ML for networking is given [1] to discuss 

how RL-Reinforcement Learning is suitable for designing a 

congestion control algorithm that fits all network states. A 

discussion on feasibility is also given with reference of 

computation load. A state-of-the-art discussion on using ML 

in communication networks is given along with future 

directions [2]. A detail discussion on basis of TCP and types 

of TCP CC-Congestion Control algorithms is given [3]. The 

proposed algorithms are classified into loss-based algorithms, 

delay-based algorithms and hybrid algorithms (combination 

of loss-based and delay-based methods). This work also 

discussed how online learning based TCP solutions are better 

as compared with offline learning based TCP solutions due to 

their abilities to adapt to the network conditions on the fly 

instead of using fixed mappings and pre-defined actions. 

Application of ML in Wireless Networks along with open 

issues is given [4]. It is stated that ML in wireless 

communications is still at initial stage and needs further 

investigation. A review of ML for End to end Congestion 

Control is given [5]. It is discussed that the conventional rule-

based algorithms are more susceptible to unpredictable 

factors, resulting in poor performance. ML based algorithms 

can learn from network environment to take decision 

accurately. A review of TCP performance enhancement in IoT 

and MANET is given highlighting approaches, tools and open 

issues [6]. A discussion on ML algorithms for wireless sensor 

networks and challenges of security is given [7]. Role of ML 

algorithms for WSN and IoT is discussed along with analysis 

of issues and future directions [8]. 

TCP Congestion Window is a TCP state variable to set 

transmission rate of sender. It is number of bytes TCP sender 

can transmit before waiting for an acknowledgement. The 

Congestion Control algorithm used by TCP sets the 

congestion window value dynamically by monitoring the 

network statistics.  Throughout the paper, the term Cwnd will 

refer to the Congestion Window, RTT will refer to Round Trip 

Time, RL will refer to Reinforcement Learning. 

2.2. TCP Variants – Traditional Approaches 

NexGen D-TCP - Next Generation Dynamic TCP congestion 

control algorithm has adaptive increase adaptive decrease 

paradigm to adjust Cwnd by estimating accessible bandwidth 

[9]. This approach enables full utilization of bandwidth with 

minimization of packet loss due to congestion and wireless 

loss. A discussion on TCP for Low-Power and Lossy 

Networks is given [10]. The main objective of this work is to 

address challenges like fitting full scale TCP in limited 

memory of LLN platforms and integration of TCP from 

traditional OS to embedded OS. It is shown that modern low-

power sensor platforms are capable of running full-scale TCP 

efficiently. TCP-NACK – TCP with Negative 

Acknowledgement is proposed to differentiate congestion 

losses from other losses due to issues related to wireless 

communications [11]. NACK notification informs the sender 

for reception of corrupted packets so they can be retransmitted 

immediately without reducing Cwnd. FAIR+ algorithm 

initiates congestion control based on queue level notification 

by relay node and sets value of Cwnd based on TCP flow's 

utilization level [12]. This approach is ECN - Explicit 

Congestion Notification based and implemented with DQDM, 

GBRC, and AWR algorithm. DQDM - Dual Queue Dual 

Marking algorithm analyzes congestion severity, GBRC - 

Growth Based Rate Control algorithm initiates Cwnd 

reduction, and the AWR algorithm implements faster 

recovery by increasing the Cwnd. BCCPS is BBR-based 

Congestion Control and Packet Scheduling scheme [13]. BBR 

- Bottleneck Bandwidth and Round-trip propagation time is 

used for dynamically adjusting the sending rates of each sub-

flow in MPTCP - Multipath TCP according to real probing 
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rates, rather than relying solely on loss information. The 

packet scheduling scheme is used for managing the order of 

packet delivery in heterogeneous wireless networks. BBRp is 

a new BBR version that allows fine-tuning the congestion 

control pace to correctly aggregate packets at the wireless 

bottleneck and exploit the bottleneck bandwidth [14]. 

Dynamic adjustment of Cwnd for TCP Westwood is given by 

calculating threshold value using RTT – Round Trip Time 

value. Binomial algorithm is introduced for nonlinear growth 

of Cwnd [15]. TCP CERL+ is an advancement to TCP CERL 

- Congestion Control Enhancement for Random Loss that 

uses dynamic threshold for RTT which is calculated as 

average RTT and its minimum measurements made over the 

connection to estimate the queue length of the bottleneck link 

for congestion evaluation [16]. TCP-TACK presents a new 

acknowledgement called Tame ACK [17]. The conventional 

ACK scheme is received packet driven. TACK balances byte 

counting ACK and periodic ACK for controlled ACK 

frequency that improves performance by handling contention 

related issues effectively. This scheme reduces number of 

ACKs while carrying more information in ACKs. TCP-WBQ 

is a backlog queue based congestion control mechanism for 

heterogeneous wireless networks to notice real congestion and 

shield against random packet loss and oscillations of latency 

[18]. Backlog queue is maintained at sender and does not 

require ECN capability. This approach introduces 

multiplicative increase instead of additive increase of Cwnd. 

TCP-LoRaD is a Loss Recovery and Differentiation algorithm 

for TCP improvement over MANETs under noisy channels 

[19]. This solution uses loss differentiation algorithm to 

identify the packet loss more efficiently as compared to TCP-

WELCOME. TCP-AW is a combination of TCP Westwood 

and Adaptive Reno. The lightweight ERE - Eligible Rate 

Estimation calculation resembles TCP-AW but does not 

require ACK history. An improved TCP optimization with 

flow control and acknowledgment aggregation is proposed for 

removing the bottleneck of packet losses through flow control 

and AMC -Adaptive Modulation Coding [20]. This solution is 

specifically designed to communicate over time varying 

channels. 

2.3. TCP Variants – Machine Learning based Approaches 

QTCP is a reinforcement learning based congestion control 

solution to set Cwnd for high throughput and low delay using 

Q-Learning [21]. The state space has variables such as 

average interval between sending two packets, average 

interval between receiving two ACKs and average RTT. The 

action space has three options to increase, decrease and no 

change in Cwnd. Reward function is formed using throughput 

and RTT. This solution is evaluated with TCP NewReno. 

TCP-Drinc -Deep ReInforcement learNing-based Congestion 

control adjusts Cwnd efficiently [22]. The state space has 

variables such as Cwnd difference, RTT, minimum RTT over 

RTT ratio, inter-arrival time of ACKs etc. The action space 

has five options to set increase / decrease Cwnd linearly / 

exponentially and no change. The reward function is formed 

using RTT and goodput. This solution is evaluated with TCP 

NewReno, TCP Cubic, TCP Hybla, TCP Vegas and TCP 

Illinois. Eagle is deep reinforcement learning based solution 

[23]. The state space has variables related with RTT, loss rate, 

delay, delivery rate etc. The action space has seven options to 

increase / decrease Cwnd by a factor of 2.89, 1.5, 1.05 and no 

change. The reward function is formed using goodness that is 

calculated as the ratio between the current Cwnd and the 

Cwnd that gave us the best utility. This solution is evaluated 

with TCP BBR and some other variants too. ML techniques 

(PCA - Principal Component Analysis, LR - Linear 

Regression and RF - Random Forest) are used to study the 

effect of link speed, received signal strength, RTT, and 

number of available access points on TCP throughput in WiFi 

[24]. Cell vs WiFi dataset is used for all three types of 

analyses. The first principal component from PCA is observed 

to be highly correlated with RTT. It is observed that LR model 

is unable to find relationship between throughput and other 

variables. It is also observed that RF model predicts 

throughput more accurately with RTT as compared to other 

variables. TCP - PPO2 -TCP with Proximal Policy 

Optimization algorithm is deep reinforcement learning based 

solution [25]. The state space has variables such as connection 

time, current size of Cwnd, number of unacknowledged bytes, 

RTT, throughput, number of packets losses etc. The action 

space has various levels of increase or decrease of Cwnd 

based on speed of network. Reward function is formed using 

observed throughput and latency. This solution is evaluated 

with TCP Cubic. PBQ-Enhanced QUIC is QUIC with Deep 

Reinforcement Learning Congestion Control Mechanism [26]. 

PBQ -  Proximal Bandwidth-delay Quick optimization 

combines traditional bottleneck bandwidth and round-trip 

propagation time of BBR with PPO - Proximal Policy 

Optimization. PPO agent improves itself according to network 

state to set value of Cwnd. BBR specifies the pacing rate of 

the client. The state space has variables such as current Cwnd, 

average RTT, average packet loss, average throughput etc. 

The action space is continuous with CwndRatio is used to set 

value of Cwnd. Reward function is formed using observed 

throughput and packet loss rate. This solution is evaluated 

with QUIC variants with (TCP-BBR, TCP-BIC, TCP-Cubic, 

LEDBAT, TCP-NewReno, Remy and TCP-Vegas). Deep 

Reinforcement Learning Based TCP Congestion Control in 

UAV Assisted Wireless Networks is proposed for improving 

average throughput and reducing average latency by 

controlling the number of packets passing through the 

bottleneck link between UAV base stations [27]. DRLFcc is 

proposed for facilitating real-time adaptation of the 

congestion window for dynamic changes in network 

conditions while incorporating fast recovery mechanisms, 

thereby effectively enhancing network throughput and 

improving data transmission capacity recovery in high-loss 
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wireless networks [28]. A distributed congestion control 

protocol is proposed using CatBoost algorithm that uses 

gradient boosting on decision trees [29]. Decision trees are 

used to predict whether the packets to be transmitted over the 

network will reach their destination on time or not. Network 

load state is represented with parameters related with 

utilization of transmission channels and occupancy of buffers. 

A dissemination protocol is also designed to make parameters 

available to all nodes in the network. A real time packet loss 

prediction is designed with ECN - Explicit Congestion 

Notification to inform a sender to reduce transmission rate 

before packet loss would have happened [30]. XGBoost 

model is used with training data arranged by running 

emulated iPerf TCP tests using mininet network emulation. 18 

features related with values of Cwnd, RTT, SSThresh, RTO 

etc. are used. This solution is evaluated with TCP Reno and 

TCP Cubic. Table 1 shows outcome of literature review in a 

concise manner. 

Table 1 Machine Learning based TCP 

No. Type of TCP 

solutions 

Advantages Limitations 

1 Traditional TCP 

Variants 

Suitable for wired networks.  

They can handle congestion 

effectively.  

Do not perform satisfactorily when used for wireless 

networks.  

Not able to handle channel losses, random errors 

effectively. 

2 TCP Variants using 

Supervised Learning 

Suitable to include decision 

making capability to set 

parameters based on network 

conditions more accurately. 

Do not perform satisfactorily when used for unknown 

network scenarios. 

Training dataset arrangement is a critical task. So, these 

variants become useful for limited types of network 

scenarios for which they are trained. 

3 TCP Variants using 

Reinforcement 

Learning 

Suitable to include decision 

making capability to set 

parameters based on network 

conditions more accurately. 

Suitable to find solutions which 

are adaptive and generalize for 

any network scenario. 

These variants can also be used for unknown network 

scenarios as they will form their decision making policies 

by exploring the environments.  

There is no need of prior training so dataset is not 

required. But these algorithms take time to form accurate 

policy. 

TCP Westwood+ differentiates congestion losses from 

random losses that are common in wireless networks by 

AIAD – Adaptive Increase / Adaptive Decrease congestion 

control. Westwood+ estimates network’s bandwidth to adjust 

value of Cwnd. TCP Westwood performs bandwidth sampling 

every ACK while TCP Westwood+ performs bandwidth 

sampling every RTT, leading to more accurate estimations. 

TCP Westwood+ is selected as base variant to implement our 

proposed solution. 

3. PORPOSED SOLUTION 

RL-Reinforcement Learning is a branch of ML-Machine 

Learning to enable an agent to interact with its environment to 

learn through trials. RL algorithms do not need prior training 

phase as needed in supervised learning algorithms. An RL 

agent explores its environment to form a decision making 

policy to select next action based on current state. To form 

decision making policy, RL agent needs to receive feedback 

from the environment that is in the form of rewards or 

penalties. RL algorithm forms a decision making policy that 

maximizes cumulative reward on long run. The component of 

an RL based system include the agent, the environment, state 

space, action space and a reward signal. The general flow of 

RL based system is shown in Figure 1 and Figure 2 [31]. 

 

Figure 1 Reinforcement Learning [31] 

 

Figure 2 Agent Environment Interaction [31] 
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The proposed work is TCP-RLACC - TCP with 

Reinforcement Learning based Adaptive Congestion Control. 

The components of TCP-RLACC along with its algorithm are 

discussed in this section. 

3.1. TCP-RLACC Environment & Agent 

TCP-RLACC learns from the network over which it facilitates 

end to end communication. This solution is specifically 

designed to improve end to end performance in wireless 

networks, so the environment is any wireless network under 

which TCP based communication is initiated. TCP based 

congestion control is primarily implemented with TCP Sender 

to set transmission rate by setting value of Cwnd. The agent of 

TCP-RLACC is congestion control algorithm at TCP sender.    

3.2. TCP-RLACC State Space 

As TCP is end to end  protocol for which the statistics at the 

intermediate nodes and specific to the lower layers are not 

accessible. Though researchers have proposed cross-layer 

solutions for TCP, a wide range of TCP variants are still 

layered solutions. This makes the environment partially 

observable for TCP.  

TCP-RLACC forms state based on analyzing values of Cwnd 

– Congestion Window, RTT-Round Trip Time and RTO – 

Retransmission Time Out status. The state is formed as a 

binary number of three bits – B2 B1 B0. So the state space has 

8 possible states. 

B2 represents change in EWMA - Exponentially Weighted 

Moving Average of RTT value. At any particular moment, 

current value of EWMA of RTT is calculated as shown in 

equation (1). 

𝐸𝑊𝑀𝐴𝑅𝑇𝑇𝑁𝑒𝑤
= (1 − 𝛼) ∗ 𝐸𝑊𝑀𝐴𝑅𝑇𝑇𝑂𝑙𝑑 

+ (𝛼) ∗  𝑅𝑇𝑇𝑁𝑒𝑤     

  

 (1) 

B2 is set to 1 if 𝐸𝑊𝑀𝐴𝑅𝑇𝑇𝑁𝑒𝑤
>  𝐸𝑊𝑀𝐴𝑅𝑇𝑇𝑂𝑙𝑑

, otherwise 0. 

B1 represents change in Cwnd. It is set 1 if Cwnd is 

decreased, otherwise 0. 

B0 is set to 1 if RTO is occurred, otherwise 0. 

The state is formed as binary number from bits B2 B1 B0. 

TCP-RLACC keeps maintaining state as and when new or 

updated values of RTT, Cwnd and RTO status are available. 

So it is a continuous process of deriving state. The reason of 

transforming continuous values in to a single discrete number 

representation is to simplify the state space by enabling finite 

number of possibilities.  

Moreover, TCP-RLACC is RL implementation within a 

network protocol, specifically for wireless networks, so it 

should be as light as possible due to resource constraints and 

for faster execution. 

3.3. TCP-RLACC Action Space 

TCP-RLACC follows congestion control mechanism of 

underlying algorithm till any of these three conditions happen. 

1. Retransmission Time Out, 2. Arrival of three DUPACKs,    

3. Cwnd reaches SSThresh. TCP variants which are based on 

AIMD- Additive Increase Multiplicative Decrease has two 

types of increases (linearly and exponentially) for Cwnd. 

TCP-RLACC introduces increasing Cwnd with Quadratic 

Polynomial growth, where Cwnd is increased faster than 

linear growth and slower than exponential growth.  

Linear Growth of Cwnd is considered as shown in equation 

(2). 

𝐶𝑤𝑛𝑑𝑁𝑒𝑤 = 𝐶𝑤𝑛𝑑𝑂𝑙𝑑 + 1                                        (2)     (2) 

Quadratic Polynomial Growth of Cwnd is considered as 

shown in equation (3). 

𝐶𝑤𝑛𝑑𝑁𝑒𝑤 = 𝐶𝑤𝑛𝑑𝑂𝑙𝑑 ∗ 0.1 ∗
 (𝑁𝑜. 𝑜𝑓 𝑅𝑇𝑇𝑠 𝑠𝑖𝑛𝑐𝑒 𝑙𝑎𝑠𝑡 𝑢𝑝𝑑𝑎𝑡𝑒)2                        (3)       (3) 

Exponential Growth of Cwnd is considered as shown in 

equation (4). 

𝐶𝑤𝑛𝑑𝑁𝑒𝑤 = 𝐶𝑤𝑛𝑑𝑂𝑙𝑑 ∗ 2                                         (4)        (4) 

TCP-RLACC action space has five possibilities. 1. Increase 

Cwnd with linear growth, 2. Increase Cwnd with quadratic 

polynomial growth, 3. Increase Cwnd with exponential 

growth. 4. Decrease Cwnd by dividing it by 2 and 5. Decrease 

Cwnd by setting it to its initial value. 

3.4. TCP-RLACC Utility and Reward 

The utility is calculated for the duration of communication 

between two consecutive actions taken by TCP-RLACC. It is 

formed with average values of throughput, RTT and loss rate. 

Utility is calculated as shown in equation (5) with constant 

values show the importance factors for respective values. 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑁𝑒𝑤 =  0.5 ∗ 𝐴𝑣𝑔𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 +  0.3 ∗ 𝐴𝑣𝑔𝑅𝑇𝑇 +  

 0.2 ∗ 𝐴𝑣𝑔𝐿𝑜𝑠𝑠𝑟𝑎𝑡𝑒                                                      (5)        (5) 

Reward is 1 if 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑁𝑒𝑤 >  𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑂𝑙𝑑 , otherwise 0. 

3.5. TCP-RLACC Algorithm 

TCP-RLACC is inspired from Q-TCP [21] which uses Q-

Learning algorithm for learning purpose. The Q-matrix is a 

tabular representation of state-action spaces. The state space 

of Q-TCP is formed using avg_send: average interval between 

sending two packets, avg_ack: average interval between 

receiving two consecutive ACKs and avg_rtt: the average 

RTT. The action space of Q-TCP is formed to increase Cwnd 

by 10, to decrease Cwnd by -1 or no change in Cwnd. Utility 

function is formed using throughput and RTT values. This 

work has been main source of interest to propose TCP-

RLACC. 
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TCP-RLACC’s Q-matrix has 8 states and 5 actions leading to 

a matrix of 8 rows X 5 columns. Initially this matrix is 

initialized with 0. Subsequently, TCP-RLACC keeps updating 

this matrix (each of the 40 values) as it progresses with 

learning via interacting with the environment.  Initial Q-

Matrix is given in Table 2. 

Table 2 TCP-RLACC – Initial Q Matrix 

Q-Matrix Action as per Section 3.3 

State as per section 3.2 1 2 3 4 5 

000 0 0 0 0 0 

001 0 0 0 0 0 

….. ….. ….. ….. ….. ….. 

111 0 0 0 0 0 

The flow of TCP-RLACC is shown in Figure 3. TCP-RLACC 

is shown in algorithm 1. It is based on Q-Learning is shown 

below. 𝛼 is learning rate which is most commonly set as 0.9. 

𝛾 is discount factor which is most commonly set as 0.5. 

 

Figure 3 TCP-RLACC Flow 

On any of these three conditions: 

1. Retransmission Time Out,  

2. Arrival of three DUPACKs,  

3. Cwnd reaches SSThresh, follow below steps. 

1. Derive StateNew as per section 3.2 

2. Derive Utility and Reward as per section 3.4 

3. Select ActionNew from Q-Matrix (Action is selected for 

StateNew with maximum value). 

4. Update Q 

     T1 = (1 - 𝛼) * Q [StateOld] [ActionOld]  

     T2 = 𝛼 * (Reward + (𝛾 ∗ Q [StateNew] [ActionNew] )) 

     Q [StateOld] [ActionOld] = T1 + T2 

5. Perform ActionNew as per section 3.3 

6. Set values for next trial for learning 

      StateOld = StateNew 

      ActionOld = ActionNew 

      UtilityOld = UtilityNew 

Algorithm 1 TCP-RLACC 

4. RESULTS AND DISCUSSIONS 

TCP-RLACC is implemented with NS 3.28 simulator and 

evaluated with large number of wireless network scenarios to 

compare its performance with TCP Westwood+ [32,33]. TCP 

Westwood+ has got wide acceptance due to its ability to 

improve performance significantly over wireless networks. 

TCP-RLACC is implemented with TCP NewReno which is 

AIMD based traditional TCP variant. This section includes 

details of experimental setup and performance analysis. 

4.1. Experimental Setup 

The experimental setup is divided into two parts: WiFi 

Networks and MANETs – Mobile Ad hoc Networks. WiFi 

Networks are infrastructure based without mobility of nodes 

whereas MANETs are infrastructure-less with node mobility. 

Table 3 shows parameters for network scenarios of 

experimental setup. In addition, MANETs have random 

mobility of nodes with speed of 5 meters / second. 

Table 3 Experimental Setup – Parameters of Networks 

No. Parameter Values 

1 (No. of Nodes , TCP Flows) (5,2), (10,5), 

(15,7) 

2 Simulation Time (Second) 60, 120, 180 

3 Loss Range (Meter) 70, 60, 50 

4 Received Signal Strength (dBm) -30, -40, -50 
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Table 4 shows Experimental Setup summary. The total 

scenarios are setup with all possible combination of selected 

values of parameters mentioned in Table 3. All scenarios are 

evaluated twice (WiFi and MANETs). 1st with TCP 

Westwood+ and then with TCP-RLACC. Table 4 is summary 

for one TCP variant. 

Table 4 Experimental Setup –Summary 

. Point WiFi MANETs Total 

1 No. of scenarios  81 81 162 

2 No. TCP flows 378 378 756 

3 Simulation (Hours) 162 162 324 

4.2. Performance Analysis 

As discussed in 4.1, performance of TCP-RLACC is 

evaluated with TCP Westwood+ for a large number of 

network scenarios differ in terms of number of nodes, TCP 

flows, simulation time and other parameters. Evaluating 

individual TCP flow and presenting observation in a tabular 

or graphical manner would have been very complex. At the 

same time, it would be difficult to justify the overall impact of 

TCP-RLACC.  

Average performances of both TCP variants under evaluation 

are measured at different groups of network scenarios for 

comprehensive presentation. This leads us to observer some 

interesting characteristics of both approaches based on their 

unique features. Some of the important performance analysis 

and observations are shown in the subsequent tables and 

figures.  

4.3. Average Throughput (Kbps) 

Table 5 and Figure 4 represent results in terms of average 

throughput (Kbps) grouping network scenarios based on 

number of nodes. Table-6 and Figure-5 represent results in 

terms of average throughput (Kbps) grouping network 

scenarios based on simulation time. 

Table 5 Performance Analysis -1 – Number of Nodes 

No. Average Throughput 

(Kbps) 

TCP 

Westwood+ 

TCP-

RLACC 

1 WiFi (5 Nodes) 2.46 2.68 

2 MANETs (5 Nodes) 2.22 2.43 

3 WiFi (10 Nodes) 2.17 2.56 

4 MANETs (10 Nodes) 1.87 1.93 

5 WiFi (15 Nodes) 1.34 1.43 

6 MANETs (15 Nodes) 1.24 1.28 

 

Figure 4 Performance Analysis -1 – Number of Nodes 

Table 6 Performance Analysis -3 – Simulation Time 

No. Average Throughput 

(Kbps) 

TCP 

Westwood+ 

TCP-

RLACC 

1 WiFi (60 Seconds) 2.65 2.55 

2 MANETs (60 Seconds) 2.53 2.48 

3 WiFi (120 Seconds) 2.78 2.89 

4 MANETs (120 Seconds) 2.59 2.67 

5 WiFi (180 Seconds) 2.82 2.95 

6 MANETs (180 Seconds) 2.64 2.83 

 

 

Figure 5 Performance Analysis -3 – Simulation Time 

4.4. Packet Delivery Ratio (%) 

Table-7 and Figure-6 represent results in terms of packet 

delivery ratio (%) grouping network scenarios based on 

number of nodes. Table-8 and Figure-7 represent results in 

terms of packet delivery ratio (%) grouping network scenarios 

based on simulation time. 

0 0.5 1 1.5 2 2.5 3

WiFi (5 Nodes)

MANETs (5 Nodes)

WiFi (10 Nodes)

MANETs (10 Nodes)
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Average Throughput (Kbps)

TCP-RLACC TCP Westwood+

2.2 2.4 2.6 2.8 3
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Table 7 Performance Analysis -2 – Number of Nodes 

No. Packet Delivery Ratio 

(% - Percentage) 

TCP 

Westwood+ 

TCP-

RLACC 

1 WiFi (5 Nodes) 97.34 97.78 

2 MANETs (5 Nodes) 96.53 96.88 

3 WiFi (10 Nodes) 97.23 97.45 

4 MANETs (10 Nodes) 95.34 96.31 

5 WiFi (15 Nodes) 95.12 95.56 

6 MANETs (15 Nodes) 94.63 94.77 

 

 

Figure 6 Performance Analysis -2 – Number of Nodes 

Table 8 Performance Analysis -4 – Simulation Time 

No. Packet Delivery Ratio 

(% - Percentage) 

TCP 

Westwood+ 

TCP-

RLACC 

1 WiFi (60 Seconds) 95.34 95.47 

2 MANETs (60 Seconds) 94.89 95.12 

3 WiFi (120 Seconds) 95.76 95.94 

4 MANETs (120 Seconds) 95.18 95.36 

5 WiFi (180 Seconds) 96.69 96.95 

6 MANETs (180 Seconds) 96.54 96.82 

 

 

Figure 7 Performance Analysis -4 – Simulation Time 

4.5. Discussions 

Performance analysis of TCP-RLACC with significantly large 

number of network scenarios enabled us to accept it as an 

improvement over TCP Westwood+. The adaptive nature of 

RL algorithm and diverse network scenarios in terms of 

number of nodes, number of TCP flows, simulation time, and 

other relevant parameters made our analysis more generic. 

Following are some key observations derived through this 

research work. 

1. TCP Westwood+ is one of the most widely accepted TCP 

variants for wireless networks. TCP-RLACC has shown a 

significant improvement over it. Average performances are 

measured and compared over subsets of diverse network 

scenarios for a more comprehensive analysis. The average 

performances are taken into result analysis as they represent 

overall impact of various solutions and useful to deduct more 

generic observations, rather than deducting observations from 

a few network scenarios with very less number of TCP 

connections. 

2. Two categories of wireless networks have been 

implemented to evaluate performance of TCP-RLACC: WiFi 

Networks and MANETs. The observation was that average 

throughput and packet delivery ratio are higher in WiFi 

Networks compared to MANETs for same scenarios. This is 

mainly due to the infrastructure-less nature and node mobility 

support of MANETs. 

3. Any RL algorithm needs time to develop an accurate policy 

through interaction with its environment. Over the time, RL 

algorithm gets more opportunities to fine-tune its decision 

making policy for convergence. The same is reflected in our 

work as performances of same network scenarios over 

different simulation times. TCP-RLACC performance is more 

improved for long running scenarios. 

5. CONCLUSION 

Over the years, improving the performance of TCP for 

wireless networks has remained an active area of research. 

Recently, many solutions have begun to incorporate machine 

learning for more accurate decision-making. Our proposed 

solution, TCP-RLACC, is a reinforcement learning-based 

approach for adaptive congestion control. It has been 

evaluated against TCP Westwood+, a widely accepted 

solution for wireless networks. The performance analysis was 

conducted for two types of wireless networks: WiFi networks 

and MANETs. A large number of network scenarios were 

designed, diverse in terms of the number of nodes, TCP 

flows, simulation time, and other relevant parameters. Based 

on the comprehensive performance analysis of TCP-RLACC 

across these scenarios, it is evident that TCP-RLACC offers 

substantial improvements over TCP Westwood+. The level of 

improvement depends on network scenarios, traffic 

conditions, and various other parameters, making it difficult 

93 94 95 96 97 98 99
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to define a single value to represent the improvement 

percentage. Still based on our experimental setups covering 

wide range of network scenarios, there is 5.2% improvement 

in end to end throughput and 0.3% improvement in end to end 

packet delivery ratio. 

This research work can be further extended for analyzing 

TCP-RLACC with other type of wireless networks and 

comparing its performance with other TCP variants. TCP-

RLACC is a layered approach for end-to-end transport layer. 

Evaluation is performed with two of the most important end-

to-end transport layer measures: Average Throughput and 

Packet Delivery Ratio. This work can be further extended by 

incorporating cross-layer approach design to measure various 

other parameters like delay, jitter, energy consumption etc. 
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