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Abstract – The Internet of Things (IoT) represents a network of 

interconnected gadgets, enabled by technology facilitating 

seamless communication between gadgets and the cloud. The 

adoption of IoT and its unique features expose these systems and 

devices to various intrusions. Traditional security methods are 

inadequate to secure IoT and requires to reevaluate the existing 

security protocols. While IoT devices come with built-in security 

features such as encryption and authentication, they require 

more advanced techniques to ensure robust system protection. 

Machine learning has emerged as a vital tool in enhancing IoT 

security, proving effective in mitigating cybersecurity risks and 

improving the intelligence of security systems. This survey 

provides a comprehensive overview of IoT systems, with a focus 

on their security aspects, including features, architectures, 

protocols, and associated risks. It also highlights recent 

algorithmic advancements, emphasizing the pivotal role of ML 

in strengthening IoT security. Furthermore, it categorizes 

attacks on IoT systems, offering a systematic understanding of 

vulnerabilities, and identifies relevant datasets to support future 

research efforts. 

Index Terms – IoT Security, Machine Learning (ML), Deep 

Learning (DL), IoT Applications, Security, Attacks, Datasets, 

Cyber-Attacks, Challenges, IoT Layers. 

1. INTRODUCTION 

The Internet of Things (IoT) consists of inter-connected 

physical objects that communicate through software, sensors, 

and network connectivity to share and collect data. Its primary 

objective is to enable autonomous interaction between 

devices, creating a smart, interconnected environment that 

profoundly impacts people's lives. IoT is applied in various 

fields, including intelligent homes, autonomous vehicles, gene 

therapy, and medical advancements. However, its inherent 

characteristics also pose significant security and privacy 

challenges, making IoT systems vulnerable to attacks such as 

impersonation and intrusion. The enormous amount of data 

produced by IoT platforms require secure transmission and 

analysis to prevent privacy breaches. Despite its many 

benefits, IoT introduces security challenges due to its 

unsupervised operation, reliance on wireless networks, and 

inability to support complex security systems. To address 

these challenges requires comprehensive strategies that 

account for the unique requirements of IoT environments. 

Modifications to current security frameworks for information 

and wireless networks are essential to develop robust IoT 

security solutions that accommodate the global accessibility, 

resource limitations, and lossy network characteristics of IoT.  

Traditional defense mechanisms such as encryption, 

authentication, access control, network security, and 

application security face limitations and are often inadequate 

for IoT systems.  

However, these security mechanisms can be enhanced to 

satisfy the distinct needs of the IoT ecosystem. Advanced 

techniques, such as ML and DL, can be utilized for data 

analysis, enabling the identification of normal and abnormal 

behaviors based on interactions among IoT devices. By 

leveraging data from IoT components, it becomes possible to 

detect malicious behavior early by analyzing typical 

interaction patterns.  

The motivation behind this survey is to furnish academicians 

and researchers with an extensive understanding of how ML 

DL methodologies can address security challenges in IoT 

environments, particularly focusing on mitigating attacks. 

These techniques play a vital role in forecasting new attacks 

by analyzing patterns from previous ones, thereby aiding in 

the detection of unknown threats. Furthermore, recent 

literature lacks a thorough examination of the capabilities of 

ML and DL in securing IoT systems, especially in handling 

emerging threats and scaling to real-world applications. This 
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paper aims to fill that gap by systematically reviewing recent 

advancements, applications, and limitations of ML and DL in 

IoT security.  Figure 1 depicts the crucial significance of 

ML/DL on the IoT environment. 

 

Figure 1 ML/DL Role in IoT System 

This research paper aims to furnish researchers and readers 

with a thorough understanding of IoT and ML methods, 

specifically their positive impacts on detecting IoT attacks. 

Since there have been limited comprehensive studies on ML 

and DL in this area since 2018, a modern literature review 

covering all articles on IoT security using ML and DL 

methods is essential. Few studies offer an exhaustive 

examination of IoT, including its characteristics, protocols, 

architecture, and layered attacks, in addition to exploring 

relevant ML and DL techniques and datasets for IoT attacks.  

In this paper, we analyzed ML approaches and recent 

advancements in DL techniques, providing insights into 

enhancing security protocols for IoT devices. This research 

also [1], explored various potential threats to IoT systems, 

including inherent and emerging threats to IoT security. A 

detailed discussion on ML & DL techniques for IoT security 

is presented, including their advantages, drawbacks, potential 

applications, and future research directions. 

The study [2] explored security solutions and assault vectors 

for IoT networks, highlighting the weaknesses that necessitate 

ML and DL techniques. It offered a detailed discussion of 

accessible ML and DL strategies for addressing IoT security 

challenges and explored future research possibilities. Authors 

[3] conducted an in-depth analysis of IDS for IoT, covering 

IoT intrusions and ML/DL methodologies for disclosing 

assaults in IoT networks.  

The authors also discussed the security issues encountered by 

IoT infrastructures and examined advanced ML-based 

solutions for protecting these systems, emphasizing how ML 

aids IoT security measures and the difficulties in 

implementing ML-based security solutions. The authors [4] 

addressed the major security challenges and unresolved issues 

faced by IoT infrastructures. It provided a thorough analysis 

and critique of the most advanced ML-based solutions for 

protecting such systems, detailing how ML enhances security 

measures, as well as the security requirements. Authors [5] 

applied DL, ML, and federated learning (FL) algorithms to 

IoT security, covering various models and offering overviews, 

assessments, and summaries of FL- and DL-based IoT 

security strategies.  

Despite these reviews, gaps remain in comprehensively 

addressing all relevant aspects of IoT security and ML/DL 

techniques, including insufficient exploration of emerging 

threats and scalability issues in real-world IoT environments.  

In this research study, we tackle the constraints identified in 

previous research and furnish thorough insights for 

researchers. Additionally, we conducted a focused analysis by 

addressing the following questions: 

• RQ.1:  What are the possible vulnerabilities and assaults 

inherent within the interconnected network of IoT 

devices? 

• RQ.2: The frameworks, algorithms, and structures of IoT 

security impact the effectiveness of ML and DL methods 

in strengthening IoT system security? 

• RQ.3: How can current security measures, involving ML 

and DL, be enhanced to better protect IoT architecture 

against attacks? 

The contributions of this research, summarized below, are 

based on the questions above: 

• A thorough discussion on potential characteristics, IoT 

protocols, architectures, vulnerabilities, applications, and 

prevalent assaults in the IoT environment. 
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• A comprehensive study of ML and DL methods for IoT 

security, covering their advantages, disadvantages, 

solutions to security challenges, and applications.  

• An analysis of current surveys on ML/DL, categorizing 

research papers from 2018 to 2024. 

• An In-depth classification of attacks on IoT layers, 

including principles, weaknesses, and objectives of each 

layer. 

• An evaluation of diverse datasets in IoT security, 

providing insights into their benefits and drawbacks. 

• A presentation of possible research challenges in ML/DL 

for IoT security, along with discussion on future trends. 

The remainder of the survey is organized as follows: Section 

2 provides a brief overview of the IoT system. Section 3 

reviews ML and DL methods, while Section 4 analyzes 

existing surveys on ML and DL by examining studies from 

2018 to the present. Section 5 discuses and emphasizes the 

classification of attacks on IoT layers. Section 6 introduces 

datasets in the IoT system, and Section 7 discusses research 

challenges, future trends, and related discussions on ML/DL. 

Finally, Section 8 concludes the paper. 

2. OVERVIEW OF THE IOT SYSTEM 

This section furnishes an overview of the IoT systems, 

covering the characteristics, architecture, protocols, and 

vulnerabilities that raise significant security concerns. 

2.1. Characteristics of IoT 

The following attributes are vital for the efficient design, 

deployment, and management of IoT systems, as identified in 

[2], [6]: 

Actuating and Sensing: IoT gadgets contain sensors to gather 

environmental data and may include actuators to carry out 

actions based on this data, such as adjusting thermostat 

settings. 

Scalability:  The ability to handle substantial volumes of data 

effectively is crucial in IoT systems, enabling insightful 

analysis and decision-making. 

Safety:  Concerns about the security of personal data have 

emerged with the rise of IoT devices, highlighting the need 

for measures to avert unauthorized access and data breaches. 

Interoperability: Given the numerous origins of IoT gadgets 

and the use of various communication protocols, 

interoperability is essential to ensure seamless and efficient 

collaboration between different devices.  

Energy Efficiency: Many IoT gadgets depend on batteries or 

limited energy sources, emphasize the importance of energy-

efficient designs to extend device operation without frequent 

recharging. 

Real Time Operations: The capability for processing and 

responding in real-time is vital for IoT applications, whether 

for managing autonomous vehicles or monitoring vital 

infrastructure. 

Network Connectivity: As the quantity of IoT gadgets 

increases, maintaining connectivity becomes more 

challenging. Solutions such as cloud services and gateways 

help optimize network performance. 

Remote monitoring and Control: A key advantage of IoT is 

the capacity to remotely monitor and control devices. Users 

can access and manage IoT devices from any location with an 

internet access, providing comfort and flexibility. 

Cost-Effectiveness: As IoT adoption increases, the cost of IoT 

gadgets and associated technologies has decreased. Cost-

effectiveness is a vital factor in the extensive adoption of IoT 

across various industries and applications. These 

characteristics form the foundation for addressing security 

concerns and designing effective IoT systems. 

2.2. IoT Architecture and Protocols 

IoT architecture indicates to the framework that defines the 

interactions and relationships between the various 

components of an IoT system. It includes devices (things), 

communication protocols, cloud services, and applications 

that work together to gather, process, and act upon data. 

Different studies offer various classifications of IoT 

architecture, with some [7, 8] identifying three essential 

layers, while others [9], [10, 11] categorize it into three, four 

[12] or five layers. In this study, we present the three-layer 

approach: Perception layer, Network layer, and Application 

layer. 

2.2.1. Perception layer 

The perception layer handles with the physical connectivity 

and hardware components of the system [13, 14]. It includes 

devices, sensors, actuators, and technologies that enable 

connectivity to the network. The key elements of the physical 

layer in IoT are shown in Figure 2. This layer also 

incorporates protocols for performing specific tasks, as 

illustrated in Figure 3. 

2.2.2. Network layer 

In an IoT system, the network layer is crucial for facilitating 

device connectivity and enabling data exchange across 

networks [15, 16]. It aligns with the OSI (Open Systems 

Interconnection) model and is responsible for routing packets 

between devices across different networks. Various protocols 

in this layer handle transmitting IP datagrams from the source 

to the target network.  



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/40                         Volume 11, Issue 5, September – October (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       620 

     

SURVEY ARTICLE 

Key protocols include: 

• IPv4 (Internet Protocol Version 4): The most widely 

deployed internet protocol, using a 32-bit address scheme 

to identify devices in a network. 

• IPv6 (Internet Protocol Version 6): The latest version of 

the internet protocol, which uses a 128-bit address 

scheme and is the successor to IPv4. 

• 6LoWPAN (IPv6 over Low-Power Wireless Personal 

Area Networks): A protocol that allows IPv6 packets to 

be transmitted over low-power, low-rate wireless 

networks, commonly used in IoT devices. It is designed 

to tackle the challenges of connecting devices with 

limited power, processing capabilities, and memory. 

• RPL (Routing Protocol for Low-Power and Lossy 

Networks): A protocol designed for routing data in low-

power IoT networks. 

• LoRaWAN (Long Range Wide Area Network): A low-

power, long-range protocol designed for wireless battery-

operated devices. 

Selecting a network layer protocol depends on the particular 

needs and limitations of the IoT implementation, considering 

factors like interoperability, security, scalability, and power 

efficiency. 

2.2.3. Application Layer 

This layer is the top layer, accountable for delivering specific 

functionality and services to various IoT applications [17]. It 

enables communication between devices, applications, and 

services within the IoT ecosystem. Figure 4 demonstrates the 

three layers and the protocols used in each layer. Various 

application layer protocols are employed to facilitate 

interoperability, data sharing, and communication between 

IoT systems and devices: HTTP (Hypertext Transfer 

Protocol): Used for web communication. Devices can send 

and receive data over the internet using HTTP or its secure 

version, HTTPS. It is commonly used for web-based 

communication and RESTful APIs. 

• CoAP (Constrained Application Protocol): A lightweight 

protocol designed for networks and devices with 

constraints. It is often used where a simple and efficient 

communication protocol is needed. 

• WebSocket: A protocol that enables full-duplex 

communication over a single socket, enabling real-time 

message exchange between client and server. 

• MQTT (Message Queue Telemetry Transport): A 

lightweight messaging protocol designed for low-

bandwidth, high-latency, or unreliable networks. It 

operates on top of the TCP/IP protocol and is frequently 

used in IoT for its publish-subscribe model, making it 

suitable for scenarios with intermittent connectivity. 

• XMPP (Extensible Messaging and Presence Protocol) 

and AMQP (Advanced Message Queuing Protocol): 

Additional protocols used for message-oriented 

communication in IoT systems. 

These layers and protocols work together to ensure the 

efficient operation and communication of IoT systems, with 

each layer addressing specific functional and technical 

requirements. 

2.3. Internet of Things Vulnerabilities  

IoT gadgets have become more prevalent in every facet of 

everyday life, providing simplicity and automation [18]. 

However, they also introduce significant security challenges 

and vulnerabilities. Below are some common IoT 

vulnerabilities [19], [20]: 

• Inadequate Authentication and Authorization: Numerous 

IoT gadgets come with default usernames and passwords 

that are often left unchanged by users, making them 

vulnerable to unauthorized access. The absence of Two-

Factor Authentication (2FA) also makes it easier for 

hackers to obtain illegal access to IoT gadgets. 

• Poorly Implemented Encryption:  Some IoT devices 

transmit data without adequate encryption, making it 

susceptible to interception and manipulation by attackers. 

The use of weak encryption methods further increases the 

risk of compromising sensitive data. 

• Outdated Software and Firmware: When manufacturers 

fail to release regular firmware updates, devices remain 

be susceptible to known exploits. Additionally, some 

devices are unable to install updates, leaving them 

exposed to security vulnerabilities. 

• Privacy Concerns: Inadequate privacy protections may 

result to the exposure of sensitive user information, 

resulting in data leaks. Moreover, manufacturers may 

gather and retain more user data than necessary, 

increasing the risk of privacy breaches due to insufficient 

user data management. 

• Limited User Awareness: Many users are unaware of the 

hazards related to with IoT gadgets, which can lead to 

insufficient security practices, such as neglecting to 

change default settings or failing to apply security 

measures. 

• Inadequate Physical Security:  A lack of tamper 

protection can result in unauthorized physical access to 

IoT devices, compromising their security. gadgets 

without proper physical security measures are vulnerable 

to being manipulated or stolen. These vulnerabilities 
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emphasise necessity of developing robust security 

practices and educating users about potential risks in IoT 

systems. 

2.4. Internet of Things Applications 

IoT applications span across multiple industries and fields, 

offering innovative solutions to improve efficiency, 

connectivity, and automation. Below are some of the 

prominent IoT applications: 

2.4.1. Smart Home Automation 

In intelligent homes, appliances like refrigerators, televisions, 

doors, and heating systems can be automated and remotely 

controlled [1]. Users can customize door settings, maintain 

cameras, manage home security systems, and control 

appliances such as air conditioners and heaters. Energy 

consumption can also be optimized by automating tasks like 

lighting and temperature management. Examples include 

smart thermostats that adjust temperature and humidity based 

on user preferences and energy-efficient lighting systems that 

are remotely controlled. Integrated cameras, sensors, and 

alarms enable remote surveillance and form part of smart 

security systems. 

2.4.2. Smart Cities 

Urban areas leverage IoT devices like meters, lights, and 

sensors to collect and analyze data, which is used to improve 

public utilities, infrastructure, and services. Smart city 

technologies aim to simplify daily tasks, enhance efficiency, 

and address public safety, traffic management, and 

environmental sustainability issues. Examples include smart 

meters for effective energy management and connected 

vehicles [21]. Traffic management systems, such as intelligent 

traffic lights and parking systems, reduce congestion, while 

waste management solutions use sensors to optimize 

collection routes. 

2.4.3. Smart Transportation 

Smart transportation integrates IoT and other advanced 

technologies to boost the sustainability, safety, and efficacy of 

transportation networks. It relies on interconnected sensors 

and data from mobile gadgets, GPS, accelerometers, and 

weather sensors to optimize urban traffic and freight 

scheduling, improve road safety, and reduce delivery times 

[22]. 

2.4.4. Smart Vehicles 

Smart vehicles, or intelligent cars, are equipped with AI-

controlled computer systems that relieve drivers of routine 

driving tasks. This technology aims to improve highway 

safety by reducing the driver's decision-making burden. Key 

features include telematics for data collection and 

transmission, fleet management for monitoring vehicle 

operations, and the integration of IoT technologies for 

autonomous vehicles. 

2.4.5. Smart Agriculture 

Precision agriculture, or smart agriculture, utilizes IoT sensors 

to monitor crop health, irrigation, and soil conditions. 

Wearable technologies and sensors are also used for cattle 

monitoring, tracking the health and behavior of livestock. 

These technologies enhance productivity, sustainability, and 

efficiency in farming [1]. 

2.4.6. Smart Healthcare 

IoT gadgets are widely utilized in healthcare for remote 

patient monitoring and timely interventions. For instance, 

sensors can be implanted to observe glucose levels in diabetic 

patients and send alerts when levels become critical. Wearable 

devices track health indicators and communicate data to 

medical professionals. Additionally, smart pill dispensers help 

monitor drug adherence, and asset tracking systems in 

hospitals manage medical supplies and equipment. 

2.4.7. Smart Environment  

Smart environmental technologies use data-driven strategies 

to monitor and improve both built and natural environments. 

These innovations address environmental issues, promote 

sustainability, and enhance quality of life. Air quality sensors 

measure pollutants, providing real-time data for managing 

environmental health, while water sensors monitor the 

condition of natural bodies of water to detect pollution. 

2.4.8. Smart Grid 

This domain is the next generation of energy infrastructure, 

enhanced with IoT connectivity and communication 

technologies to improve resource utilization. It enables more 

efficient electricity distribution, real-time monitoring, and 

disaster prevention. Smart grids also detect energy spikes and 

device malfunctions, helping to enhance reliability and reduce 

power transmission costs. In Table 1, the applications, 

principles, and weaknesses of IoT in various domains are 

summarized. 

2.5. Internet of Things Critical Attacks 

An IoT assaults indicate to a breach of an IoT system, 

targeting gadgets, networks, data, or users. Cybercriminals 

exploit these vulnerabilities to steal data or gain control over 

automated systems, threatening their functionality. Due to the 

inherent weaknesses in the IoT environment, it remains 

constantly exposed to cyberattacks. These assaults can be 

categorized as either active or passive, and they are still under 

investigation, as researchers have not yet developed definitive 

solutions to fully protect IoT systems. This subsection 

discusses the most critical active and passive assaults in the 

IoT environment. The objectives and details of each attack are 
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outlined in Tables 2 and 3. Below are the primary types of 

IoT attacks. 

2.5.1. Passive Internet of Things Attacks 

Passive IoT attacks involve unauthorized monitoring, 

eavesdropping, or information gathering without actively 

interfering with the communication or functionality of IoT 

devices [23]. These attacks are often subtle and aim to collect 

sensitive information for malicious purposes. Defending 

against passive IoT attacks requires strong encryption, secure 

communication protocols, monitoring network traffic for 

anomalies, and using intrusion detection systems. Below are 

common types of passive IoT attacks: 

• Eavesdropping 

Eavesdropping in IoT threats refers to the unauthorized 

monitoring and interception of communication between an 

IoT device and a network. In this type of attack, the assailant 

covertly listens to the data or messages being transmitted to 

acquire sensitive information, such as credentials or personal 

data, without actively disrupting communication [24]. 

• Traffic Analysis Attack 

This attack involves the illegal monitoring and analysis of 

network traffic to gain insights into patterns, behavior, or 

private data shared between IoT devices. Unlike other attacks 

that exploit device or network vulnerabilities, traffic analysis 

focuses on passive observation of data transmission [25]. 

• Passive Device Fingerprinting 

Passive device fingerprinting in IoT refers to identifying and 

profiling IoT devices on a network without actively engaging 

with them. This involves observing and analyzing network 

traffic, characteristics, and patterns generated by devices to 

create a unique fingerprint or signature. The data can be used 

for goal such as targeted attacks, reconnaissance, or 

unauthorized access [26]. 

• Radio Frequency (RF) Snooping 

RF snooping in IoT involves the unauthorized interception 

and analysis of radio frequency signals emitted by IoT 

devices. These attacks exploit wireless communication 

channels used by IoT devices to exchange information, 

potentially leading to the extraction of sensitive data, device 

identification, or remote control of targeted devices [27]. 

 

Figure 2 Key Components of Physical Layer 
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Figure 3 Physical Layer Protocols 

   
Figure 4 Protocols Based IoT Architecture 

Table 1 IoT Application Principles and Weaknesses 

Domain Principle Weaknesses 

Smart Home Upgrading the standard of living Safety, security 

and convenience in the home. 

- Lack of physical security. 

- Vulnerabilities in devices. 

- Weak passwords. 

Inadequate authentication. 

Smart Cities Encompasses intelligent homes, intelligent traffic 

management, intelligent disaster management, 

intelligent utilities, etc. 

- Weaknesses in security protocols. 

- Lack of encryption. 

- Lack of standardization and interoperability. 

High Implementation Costs. 
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Smart 

Environment 

Encompasses diverse IoT applications like fire 

disclosure in forests, observing the amount of snow 

in high altitude areas, avoiding landslides, 

premature disclosure of earthquakes, pollution 

observation, etc. 

- FN and FP may result in disastrous results for such 

IoT applications. 

- Integrating diverse technologies, protocols, and 

devices can be complex, leading to challenges in 

maintaining and managing the system. 

Privacy breaches. 

Smart Grids A bi-directional power network that facilitates the 

transmission of both electricity and data using 

digital communications technologies.  

 

- Physical and cyber-attacks criticality of data delivery 

latency. 

- The smart grid may be more vulnerable to 

cyberattacks, equipment malfunctions, and system 

failures due to its reliance on digital technologies. 

Intelligent grids rely heavily on digital 

communication and data transfer, making them 

vulnerable to cyber-assaults and hacking. 

Smart Healthcare Enhancing the quality of care delivered. 

Enhancing patient health outcomes. 

Minimizing healthcare expenses.  

- Sensitive health data gathering, and storage provide 

serious security threats. 

- Insufficient cost-effective intelligent and precise 

medical sensors. 

- Lack of a standard architecture of IoT system. 

- High handling volume data and challenge of 

interoperability, etc. 

Require robust privacy measures to ensure that 

patients' personal health information. 

Smart 

Transportation 

Decreased traffic congestion leads to improved air 

quality, less wasted time, and decreased 

consumption of energy. 

- The software of the control system could be 

compromised by hackers. 

- creating issues with data privacy and the possibility 

of misuse or illegal access. 

- High Implementation cost. 

Energy Requirements. 

Smart Vehicles Analyzes intelligent vision for safe driving, 

intelligent monitoring of driving that is insecure, 

intelligent disclosure of automobile power and 

transmission systems, intelligent vehicle navigation 

and transportation systems, and intelligent 

technology that can be assisted by vehicles. 

Vulnerability to Hacking. 

Accomplishing a high level of safety in autonomous 

vehicles is challenging, 

High energy consumption. 

Data Privacy Risks. 

 

Smart 

Agricultural 

Managing farms with the utilize of sophisticated 

information and communication technology to raise 

product quantity and quality while reducing the 

amount of human work necessary. 

Vulnerable to cyber threats. 

- Farmers' Privacy Concerns. 

- Lack of technical skills. 

Affected by adverse weather conditions. 
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• Bluetooth Sniffing 

Bluetooth sniffing involves the unauthorized interception and 

analysis of Bluetooth communication between devices. This 

can result in the extraction of confidential information, device 

identification, or even unauthorized access or control of IoT 

devices that rely on Bluetooth for communication [28]. 

• Social Engineering 

IoT social engineering attacks trick users into revealing 

information about IoT devices without authorization by 

exploiting human weaknesses. Social engineering relies on 

psychological manipulation to convince people to perform 

certain actions or disclose sensitive information [29]. 

• Location Tracking  

Location tracking attacks involve the illegal acquisition or 

alteration of location data from IoT devices. Attackers may 

exploit vulnerabilities in networks or devices to trace the 

location of devices or individuals. Techniques such as GPS 

spoofing, malicious firmware updates, or RFID/NFC 

skimming may be used to achieve these goals [30]. 

2.5.2. Active Internet of Things Attacks 

Active IoT assaults involve direct interference with the 

normal functioning of IoT gadgets, networks, or systems. 

These attacks seek to manipulate, disrupt, or gain 

unauthorized control over the targeted IoT infrastructure. 

Below are types of active IoT attacks: 

• Denial of Service Attack (DoS) 

A DoS assaults prevents a system from being accessible by 

legitimate users, prohibiting them from using the system's 

resources. This may result to significant financial and time 

losses for service providers, as users may switch to other 

services due to security apprehensions. DoS assaults can 

exhaust network resources, bandwidth, and CPU time, 

emphasizing the necessity for a complete security strategy 

that involving technical measures and proactive monitoring 

[31]. 

• Distributed Denial of Service (DDoS) Attacks 

This assault entails overwhelming a target server or website 

with a massive amount of fake traffic from multiple sources to 

slow down or disrupt the service. It differs from a DoS attack 

in that DDoS utilizes numerous computers and internet 

connections, often through a botnet, to flood the target. DDoS 

attacks can cause significant congestion in IoT devices and 

networks, leading to service interruptions [32]. 

• Man-In-The-Middle Attack 

This assault transpires when an assailant intercepts 

communication between two parties, such as IoT devices, 

without their knowledge. The assailant can eavesdrop, alter, 

or inject false data into the communication, effectively 

gaining unauthorized access or manipulating the data being 

transmitted. It transpires when an individual or cybercriminal 

intervenes in the connection between a system and a user, or 

between two users, to steal personal information, messages, 

data, and more.  

Users may believe they are connecting normally, but during 

MiTM assault, the assailant controls all interactions between 

the two parties or between the user and the system. The 

attacker can also alter messages while remaining undetected. 

The primary objective of these assaults is to steal personal 

information, such as login credentials, card details, transaction 

data, and other sensitive information [33, 34]. 

• IoT worms and malware 

Attacks involving malware and IoT worms propagate 

malicious software created to penetrate vulnerabilities in IoT 

gadgets. These attacks often include self-replicating malware 

that disseminates through IoT networks, infecting multiple 

devices and potentially causing significant damage. IoT 

malware can take various forms, including worms, viruses, 

and trojans, and can have numerous harmful effects, such as 

stealing confidential information, impairing device 

functionality, or even posing physical threats. The risk of IoT 

malware attacks increases with the number of connected 

devices [35, 36]. 

• Jamming Attacks 

Jamming is one of the vulnerabilities used to compromise 

wireless environments. It works by denying service to 

legitimate users, as authorized traffic is congested by 

illegitimate high-frequency signals. Jamming assaults 

interfere existing wireless network connections by 

transmitting unwanted signals to IoT gadgets, causing issues 

for users by keeping the network continuously occupied. 

additionally, these attacks can reduce the functionality of IoT 

devices by consuming additional energy, bandwidth, memory, 

and other resources. Attackers employ various techniques to 

jam radio frequency (RF) signals, preventing IoT devices 

from sending or receiving data [37, 38]. 

• Sinkhole Attacks 

A sinkhole assault indicates to a malicious activity where an 

attacker diverts or redirects the traffic of IoT devices to a 

destination under their control. The term "sinkhole" indicates 

that the attacker creates a point where the diverted traffic is 

directed.  

Sinkhole attacks can serve various purposes, including 

eavesdropping on communications, collecting critical 

information, or disrupting the normal operation of IoT 

devices. These attacks can be passive or active, depending on 

how they are executed [39]. 
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• Zero-Day-Attacks 

This attack takes advantage a potentially malicious software 

vulnerability that the vendor or developer may not be aware 

of, often indicated to as Day Zero. To mitigate risks to 

software users, developers must act quickly to address 

vulnerabilities as they are discovered. The assault can 

encompass malware, adware, spyware, or unauthorized access 

to user information. In IoT, zero-day assaults exploit 

weaknesses in devices or systems that are unknown to the 

vendor or the public. These vulnerabilities are termed "zero-

day" because there is no prior protection or awareness at the 

time of the attack. Zero-day attacks can be both passive and 

active, depending on their interpretation in relation to 

cybersecurity [40]. 

Table 2 Passive Attacks 

Passive Attack Objectives 

Eavesdropping Collect sensitive information, such as 

credentials or data, without actively 

disrupting the communication 

Traffic Analysis 

 

Gain insights about how IoT devices 

typically operation, identify 

vulnerabilities, or gather vital 

information. 

Passive Device 

Fingerprinting 

 

Identify software versions, identify 

particular devices, or obtain 

information for possible exploitation. 

Radio Frequency 

(RF) Snooping 

Obtain information about 

communication patterns or extract 

data without direct access to the 

gadget. 

Bluetooth 

Sniffing 

Extract confidential information or 

observe the interactions between 

Bluetooth-enabled IoT devices. 

Social 

Engineering 

Utilize collected Information for SE 

schemes like phishing and 

impersonation. 

Location Tracking Monitor the movements of individuals 

or objects that are linked to IoT 

gadgets. 

Table 3 Active Attacks 

Active 

Attack 

Objectives 

DoS Produce a disturbance in service by rendering 

devices or systems temporarily or permanently 

unavailable. 

DDoS Increase a DoS attack's impact and make it 

more challenging to mitigate. 

MiTM Eavesdrop on sensitive information, alter data 

while it's being transmitted, or pretend to be an 

authorized communicator. 

IoT 

worms 

and 

malware 

Infect an extensive number of devices in order 

that initiate a botnet, steal information, or carry 

out coordinated attacks. 

Jamming 

Attacks 

Disable or degrade connection, leading to 

service disruption or loss of connectivity. 

 

Sinkhole Compromise the connection and control of IoT 

appliances for malicious purposes. 

Zero-

Day-

Attacks 

Exploit security flaws in IoT devices or 

software for which no security patch or update 

has been released 

Consequently, it is crucial to understand and mitigate both 

passive and active attacks to secure IoT ecosystems. Reducing 

the risks associated with these attacks requires implementing 

robust encryption, authentication methods, and frequent 

security assessments. Unfortunately, traditional security 

defence mechanisms often lack the capabilities to confront 

these potential attacks. Therefore, modern security measures 

must be adopted to prevent and detect these threats, which 

jeopardize vulnerable IoT systems. This paper discusses and 

presents security measures that can effectively combat IoT 

attacks. The categorization of IoT critical attacks is illustrated 

in Figure 5. 

2.6. Existing Surveys in IoT Security 

The IoT environment has provided numerous benefits, 

facilitating remote device usage and leveraging smart devices 

powered by artificial intelligence to meet human needs. 

However, despite these advantages, these devices are often 

inadequately equipped from a security perspective to protect 

against cyberattacks. Various studies and reviews have 

conducted thorough analyses of literature on security threats. 

In this subsection, we examine significant surveys focused on 

IoT security. For instance, study [41] addressed primary 

challenges in the IoT environment, including security 

communication, issues and unresolved challenges, along with 

potential solutions.  

Study [42] analyzed security issues, unique IoT 

characteristics, significant security challenges, and solutions 

in relation to previous surveys. Study [43] discussed IoT 

security challenges, open issues, and provided a foundation 

for future research. Study [44] offered a comprehensive 

classification of security risks within the IoT framework, 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/40                         Volume 11, Issue 5, September – October (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       627 

     

SURVEY ARTICLE 

providing insights to help IoT developers in managing 

hazards and security flaws for improved protection. It also 

presented alternative five-layer and seven-layer IoT 

architectures alongside the current three-layer design. Modern 

approaches to enhancing IoT device security include 

leveraging machine learning, edge computing, fog computing, 

and blockchain technology while also addressing unresolved 

research issues. Author [45] presented a complete 

categorization for authentication and access (AA) in IoT 

networks, evaluating various elements of AA using 

conventional and ML-driven approaches to assess their 

potential to enhance IoT ecosystem security and identify 

research areas. The topic of IoT architecture in the context of 

AA schemes was also covered, focusing on different risks and 

attacks at each IoT layer. IoT applications utilizing machine 

learning algorithms for AA were examined for their 

requirements and existing challenges. 

Study [46] analyzed recently proposed models, protocols, and 

encryption techniques for securing IoT networks, highlighting 

the latest security trends. It discussed the classification of IoT 

attacks and provided an updated analysis of protocols and 

standards proposed for IoT systems. Study [47] reviewed 

current IoT security issues related to potential future attacks, 

identifying concerns associated with IoT integration with 

cloud and blockchain technologies, changes in cryptography 

due to quantum computing, and the growth of artificial 

intelligence. Study [48] compiled information on reported 

security vulnerabilities, their classification, and remedies 

proposed to address IoT security challenges. 

Study [49] identified major security concerns and anticipated 

challenges within the IoT ecosystem, guiding authentication 

methods and addressing various threats. Study [50] provided a 

concise overview of security issues across different IoT 

protocol layers, along with preliminary simulation findings. 

Through our review of these studies, we summarize them in 

Table 4, focusing on discussions about IoT security and the 

limitations of these studies. 

3. REVIEW ON MACHINE LEARNING AND DEEP 

LEARNING 

Traditional security mechanisms have demonstrated 

inadequate in tackling the security challenges related to IoT. 

Therefore, researchers and experts must explore more 

efficient mechanisms to confront the security risks that 

threaten this technology and, consequently, human lives. For 

this reason, modern methods related to artificial intelligence 

(AI) have been investigated and shown to be capable of 

combating cyberattacks, such as hacking devices and cracking 

passwords. Due to their distinct problem-solving approaches, 

learning algorithms have found widespread adoption in 

various real-world applications. The emergence of low-

computation-cost algorithms, combined with the availability 

of vast datasets and the development of novel methods, has 

contributed to the current advancements in learning 

algorithms, commonly referred to as ML and DL.   

ML is an area of AI focused on developing systems that learn 

or enhance their performance based on the data they consume, 

while DL is a subfield of ML. AI is an umbrella term that 

indicates to systems or gadgets that simulate human 

intelligence. ML, DL, and AI are often discussed together, 

and the terms are sometimes employed interchangeably; 

however, they do not represent the same concept. It is vital to 

note that while ML and DL methods are forms of AI, not all 

AI encompasses ML or DL. 

ML enables machines to learn independently without human 

guidance to perform tasks. It deduces a model for solving 

future problems by extracting specific patterns from data [51]. 

This field emerged from scientists' aspirations to create 

autonomous systems that infer without human intervention, 

moving beyond the previous reliance on direct commands. In 

today's world, ML is pervasive in various sectors. Whether we 

link with banks, shop online, or use social media, ML 

algorithms play a crucial role in ensuring our experiences are 

efficient, seamless, and secure. 

The technologies surrounding ML are evolving rapidly. 

Conventional ML methods rely on engineered features, while 

DL methods represent advancements in learning techniques 

that utilize multiple non-linear processing layers for feature 

abstraction and transformation, aiding in pattern analysis. 

Therefore, the aim of this review of ML and DL is to provide 

readers with a comprehensive understanding of both. In this 

section, we will first examine ML techniques from an IoT 

security perspective, discussing their pros and cons, along 

with solutions for IoT security. Next, we will review DL 

algorithms, their advantages and disadvantages, and their 

applications in addressing IoT security challenges. 

3.1. Machine Learning (ML) Techniques 

In this subsection, we furnish an overview of ML methods 

that have proven effective in disclosing and mitigating cyber-

assaults in IoT-based environments. ML involves training a 

computer to achieve a performance criterion by using 

previous or sample data [52]. ML algorithms create a 

mathematical model that aids in generating predictions or 

decisions using training data and previous data samples, 

without the need for explicit programming. ML merges 

computer science and statistics to develop prediction models, 

with a fundamental aspect being the development and use of 

algorithms that derive knowledge from past data. Providing 

more data generally improves the performance of ML 

algorithms. 

ML techniques are suitable for IoT devices with resource 

constraints, as they can detect various IoT attacks early by 

observing network behavior [53]. ML methods can be broadly 

classified into two categories: Supervised Machine Learning 
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(SML) and Unsupervised Machine Learning (USML). This 

subsection addresses common ML techniques, such as PCA, 

K-means clustering, Decision Trees (DT), Support Vector 

Machines (SVM), Naive Bayes (NB), k-Nearest Neighbors 

(KNN), Random Forest (RF), Association Rule (AR), and 

Ensemble Learning (EL), along with their pros and cons in 

IoT security. 

 
Figure 5 IoT Critical Attacks 

3.1.1. Support Vector Machines (SVM) 

It is a SML methods which is commonly utilized to tackle 

classification and regression problems; Nevertheless, it is 

applied in classification problems. It is composed of three 

important concepts: 

1. Support Vectors: Data points closest to the hyperplane. 

2. Hyperplane: A decision boundary that separates diverse 

classes of data. 

3. Margin: The distance between the hyperplane and the 

nearest data points from diverse classes.      

The primary goal of SVM is to partition datasets into 

categories by obtaining a maximum margin hyperplane [54, 

55]. In IoT security, SVM algorithms have made significant 

strides in detecting, classifying, and mitigating security risks. 

The application of kernel techniques and non-linear decision 

boundaries has improved their ability to categorize complex 

threats in IoT environments. For example, a study [56] 

combined the TOPSIS and Shannon Entropy methods based 

on a bijective soft set to verify selected features for 

identifying malicious traffic in IoT networks using SVM and 

other ML techniques. This resulted in the development of a 

feature selection (FS) algorithm named Corrauc, which uses a 

wrapper technique to precisely refine and select useful 

features for the chosen ML methods based on the AUC 

metric. The findings indicated that the suggested method 

attained an accuracy exceeding 96% utilizing SVM.  

However, the paper could benefit from providing more details 

on the process of selecting optimal features to ensure precise 

detection of malicious traffic in IoT networks. In [57], the 

authors proposed an intrusion detection system (IDS) using 

ML to disclose novel assaults with SVM, achieving up to 

99.8% accuracy and 100% recall. Nonetheless, limitations in 

the proposed methods include the need for more training 

samples for selective forward attacks, as well as 

improvements required in the Matthews correlation 

coefficient (MCC) and precision. 

3.1.2. Decision Tree (DT) 

This algorithm is a form of (SML) that describes the input and 

associated output in the training data. DTs can be employed 

for both classification and regression tasks and are 

represented by a tree-like diagram that results from a series of 

feature-based splits. A DT starts with a root node and ends 

with leaf nodes. The root node is where the initial population 

split occurs, based on various features [58]. The leaf nodes 

represent the final decisions. DTs are crucial for IoT security 

because of their high accuracy in identifying intrusions, such 

as DDoS assaults. Their simplicity and reliability make them 

an efficient tool for researchers. DTs utilize pruning methods 

to mitigate overfitting by removing unnecessary branches, 

which greatly improves performance on large IoT datasets. 

Boosted decision trees, such as Gradient Boosting, enhance 

the disclosure of complex assaults. DTs have shown 

exceptional performance in detecting IoT attacks, establishing 

them as a key technique in machine learning. For example, a 

study [59] compared various ML methods, including DT, 

KNN, ANN, RF, and NB, using the Bot-IoT dataset to 

analyze HTTP DDoS attacks. The study found that DT, RF, 

and KNN scored higher compared to other ML methods. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/40                         Volume 11, Issue 5, September – October (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       629 

     

SURVEY ARTICLE 

Another study [60] presented and implemented a sequential 

detection architecture for an ML-based botnet attack detection 

system, utilizing J48 DT, ANN, and NB, which showed a 

higher performance score in creating a lightweight, high-

performing detection system. 

3.1.3. Random Forest (RF) 

RF is a (SML) method where multiple DTs are built and 

combined to form an RF, which creates a robust and accurate 

prediction model for better overall outcomes. In RF, trees are 

randomly constructed and trained to select a class by voting. 

The method's performance improves as the number of trees 

increases, leading to higher classification accuracy and 

prediction reliability. RF is widely utilized in IoT security 

operations, such as anomaly disclosure, due to its exceptional 

classification capabilities. Recent advancements in RF utilize 

ensemble methods that combine multiple DTs to enhance 

classification accuracy and robustness in detecting anomalies 

in IoT communications. Additionally, feature importance 

analysis allows RF to identify critical features in high-

dimensional IoT data, improving the model's interpretability 

[61]. For instance, a study [62] employed RF and other ML 

techniques to disclose and prevent DoS assault traffic arriving 

from smart home LAN devices. RF achieved 99% accuracy 

and precision compared to other ML algorithms in the 

proposed methods. Another study [63] suggested a method to 

classify Advanced Persistent Threat (APT) malware in IoT 

networks using SMOTE-RF, which is trained to address 

imbalanced and multi-classification issues. The suggested 

method attained an accuracy rate of 80%. 

3.1.4. Naive Bayes (NB) 

NB is a (SML) algorithm based on Bayes' theorem and is 

commonly utilized for solving classification problems. NB 

makes predictions based on the probability of an event 

occurring given the prior data [64]. In IoT security, the NB is 

employed to forecast attacks based on historical data and is 

particularly effective in detecting network layer anomalies.   It 

has benefited from methodologies such as Gaussian Naive 

Bayes, which allows it to handle continuous data more 

efficiently in IoT applications. This enhancement makes NB 

suitable for real-time intrusion detection that requires quick 

classifications [65]. A study in [66] proposed intrusion 

detection methods based on Naïve Bayes, noting that the 

Bayes classifier is particularly well-suited for intrusion 

detection systems (IDS) due to its high classification speed. 

Another study [67] presented an IDS model based on a two-

layer dimension reduction and a two-tier classification 

module, built to disclose malicious activities such as User-to-

Root (U2R) and Remote-to-Local (R2L) attacks using NB and 

KNN. The model achieved a DR of 84.82% with a high false 

alarm rate (FAR) of 5.56%, while the two-tier model attained 

a DR of 83.24% and FAR of 4.83%. 

Table 4 Existing Surveys in IoT Security 

Ref. IoT 

Characteristics 

IoT 

Protocols 

IoT 

Architectures 

IoT 

Security 

Solution 

IoT 

Challenges 

Limitations 

[41]      Deficiency to taxonomy ant bit 

discussion on attacks detection scheme 

in IoT layers. 

Deficiency to present security solution 

mechanism, IoT vulnerabilities are not 

considered 

[42]      IoT security measures are not 

adequately regarded and focuses on the 

of IoT features’ impact on security and 

privacy without emphasis regarding IoT 

security requirements. 

[43]      IoT security requirements and 

mechanisms are disregarded. 

Deficiency to discuss IoT application. 

[44]      Deficiency to discussions on important 

IoT security requirements. 

[45]      Lacks classification and minimal 

discussion on ML techniques, moreover, 

IoT Vulnerabilities are not specified. 
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[46]      Concentrate on affection protocols in 

support security solutions without 

concentrating on IoT security 

requirements. 

[47]      Deficiency to discuss the IoT 

mechanism. 

[48]      Lack to present the solutions to IoT 

Security. 

[49]      Modern Security methods are ignored 

and minimal debate on the attack 

detection schemes. 

[50]      Modern Security methods are ignored. 

Deficiency to discuss on the attack 

detection schemes. 

3.1.5. K-Nearest Neighbor (KNN) 

KNN is a simple SMLA that can be utilized to both regression 

and classification tasks, though it is more commonly utilized 

for classification. KNN measures the distance between data 

points using the Euclidean distance as a metric, calculating 

the average value of the unknown data point based on its k-

nearest neighbors. KNN is widely used in IoT security for 

detecting malware, anomalies, and intrusions. Recent 

advancements in rapid nearest-neighbor search methods have 

improved the scalability of KNN, allowing it to handle larger 

IoT datasets without compromising classification speed. 

Distance-weighted voting has further improved its predictive 

accuracy in identifying attacks [68]. In [69], a distributed 

modular solution utilizing KNN was proposed to disclose IoT 

malware network activity in large-scale networks, 

demonstrating the effectiveness of the KNN classifier. 

3.1.6. Principal Component Analysis (PCA) 

PCA is an USML algorithm used for dimensionality reduction 

in ML models. PCA reduces the complexity of datasets by 

minimizing the quantity of features while retaining essential 

information. This process improves computational efficiency, 

speeds up calculations, and helps mitigate overfitting in 

machine learning models. PCA is often integrated with other 

machine learning techniques to develop more effective 

security strategies. Recent improvements have combined PCA 

with feature selection techniques to enhance its ability to 

identify relevant features for detecting IoT security 

vulnerabilities, simplifying attack detection models while 

boosting computational speed. PCA enhances machine 

learning performance by identifying features linked to IoT 

attack detection [70]. For example, in [71], a two-level 

detection strategy was proposed to identify unusual network 

traffic in IoT networks using PCA algorithms. The 

experiment, conducted with various datasets and employing a 

95% threshold, demonstrated a high true positive rate (TPR). 

3.1.7. Association Rule (AR) 

Association Rule (AR) is employed to discover hidden 

relationships between variables in a dataset. It detects frequent 

patterns or variable combinations, which are often seen in 

assaults scenarios, and builds models to predict future 

classifications based on these patterns. Although AR 

approaches are not widely utilized in IoT contexts, further 

research is recommended to optimize or integrate them with 

other strategies to improve IoT security [72]. 

3.1.8. K-Mean Clustering  

K-Means is an (USML) algorithm that groups unlabeled 

datasets into clusters, with K representing the number of 

predefined clusters. It is a simple and effective method for 

identifying categories in unlabeled datasets without requiring 

prior training. The algorithm iteratively separates data into K 

clusters by locating the optimal K Centre points and assigning 

each data point to the nearest Centre. In [73], the author 

proposed an organized insider assaults model called CPMA, 

where attackers maliciously manipulate packets that meet 

specific conditions using K-Means clustering. The 

experimental findings indicated that the suggested scheme, 

utilizing K-Means, achieved high disclosure performance and 

effectively organized malicious nodes' assaults modes with 

high accuracy. Recent advancements in initialization methods 

have improved K-Means accuracy in anomaly detection, 

making it more effective in IoT security applications. 

3.1.9. Ensemble Learning (EL) 

Ensemble Learning (EL) improves machine learning 

outcomes by combining multiple models. This strategy 

typically yields better predictive performance than using a 

single model. EL has been applied to various complex 

problems, especially in forecasting and predictive tasks. 

Techniques like AdaBoost and Gradient Boosting improve 

detection accuracy by combining weak classifiers into a 
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resilient robust classifier, which addresses the imbalanced 

nature of IoT security datasets. Various EL methods, such as 

stacking, boosting, and voting, can be applied in IDS 

strategies, enhancing their effectiveness [74].  

In [75], the authors suggested a new smart ensemble-based 

IDS designed to be deployed at the IoT gateway. The method 

applied NB, SVC, and KNN classifiers and achieved high 

accuracy and performance when combined with EL 

techniques, exceeding 90% in accuracy compared to methods 

without EL. While ML techniques are effective in disclosing 

cyber-attacks in IoT environments, they face challenges 

related to reliability, accuracy, and efficient labeling of data. 

These methods must adapt to the diverse data generated by 

IoT applications, but they also come with limitations.  

Table 5 highlights the benefits and drawbacks of diverse ML 

techniques and their applicability to different types of 

assaults. Although many studies have proposed ML-based 

methods to mitigate IoT security concerns, there remain 

deficiencies in their findings.  

Table 6 presents previous work on using ML to detect assaults 

in IoT environments [76-87]. 

3.2. Deep Learning (DL) Techniques  

Recently, the incorporation of DL in IoT systems has gained 

significant attention as a research area. DL outperforms 

classical ML techniques, particularly when applied to large 

datasets, which is one of its primary advantages [88]. DL is 

the most advanced method for analyzing data to assess both 

benign and malicious behaviors of IoT components based on 

the interactions between devices within an IoT environment. 

By learning from past attacks, DL models can accurately 

predict future attacks. DL is a branch of ML that employs 

multiple non-linear processing layers to abstract and 

transform features in a discriminative or generative manner 

for pattern analysis. Because DL techniques can capture 

hierarchical representations in deep architectures, they are 

often referred to as hierarchical learning techniques [1]. 

Examples of discriminative DL methods include 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs). Hybrid DL methods include 

Autoencoders (AEs), Deep Belief Networks (DBNs), 

Restricted Boltzmann Machines (RBMs), Generative 

Adversarial Networks (GANs), and Ensembles of DL 

Networks (EDLNs). 

Table 5 Advantages and Disadvantages of ML Techniques 

Technique Advantages Disadvantages Application 

SVM  Employ kernel mechanisms and is 

capable of simulate decision boundaries 

that are non-linear. 

SVMs are well-known for their capacity 

to generalize and for being applicable to 

data that has a lot of feature attributes but 

few sample points. 

Perfect for data with a numerous of 

feature attributes.  

Memory and storage are used less. 

Extremely scalable and task-performing. 

Suitable to IoT Security due to has a 

higher classification accuracy. 

Unbalanced samples have an impact 

on conventional SVM performance 

efficiency. 

Memory-sensitive and could find it 

challenging to choose the best 

kernel when modeling massive data 

sets. 

 Use with: 

Anomaly Detection. 

IoT-Botnet 

detection. 

DoS/DDoS 

Detection 

NB Employ to address practical issues such 

as text classification and spam detection. 

High Scalable, Rapid, Robust. 

Appropriate for carrying out multi-stage 

classification and needs less data for 

classification. 

Handle with high-dimensional data 

points. 

Incapable of extracting valuable 

information from feature 

correlations and interactions. 

 

Suitable for 

Anomaly disclosure 

in IoT network. 
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RF Its applicability to any size data sets and 

flexibility of implementation are not 

quite complex. 

Suitable for simulating real-world 

situations. 

High veracity and less prediction time. 

 

Require a long time to train period 

than other supervised algorithms. 

Impacted when the quantity of trees 

surpasses a particular threshold, 

which causes the algorithm to 

become sluggish and less efficient 

for real-time classification tasks. 

Suitable for DoS, 

DDoS, Probe, R2L, 

U2R attacks, 

intrusion anomalies, 

and unauthorized 

IoT devices. 

K-NN Simple to use. 

Reasonable score to accuracy to detect 

U2R and R2L attacks. 

Unqualified for data with high 

dimensional and are memory 

intensive. 

Not function well with enormous 

data sets and are highly sensitive to 

outliers and missing values. 

Suitable for U2R, 

R2L, Flooding 

attacks, DoS, DDoS. 

And Intrusion 

detection and 

anomalies. 

K-mean Simple algorithm and flexible. 

Functions well with unlabeled data. 

Utilize for confidential data 

anonymization in an IoT system. 

less effectiveness than techniques in 

SL. methods, especially in detecting 

known attacks. 

Obtained poor cluster formation 

results, if the clusters are not 

globular. 

Suitable for: 

Detecting anomalies. 

Sybil attacks in IoT. 

DT Basic, simple to use, and transparent 

technique. 

Demands large storage. 

Understanding DT-based 

approaches are simple only if a few 

DTs are included. 

DDoS 

Network traffic 

PCA Reduce data dimensionality and rise the 

computational speed. 

Enhances the effectiveness of ML 

techniques by choosing features related 

to IoT assault disclosure.  

 

Not resistant to any outliers, which 

has an impact on its performance. 

Presupposes a linear connection 

between two features, making it 

challenging to assess the correlation 

between the features. 

Used in IoT system 

real-time detection 

AR Effortless usages. Time Complexity is high. Intrusion Detection 

EL Suitable for complex problem in IoT 

attacks detection 

Providing high performance 

Long time for training and testing 

phase. 

Used with anomaly 

detection and botnet 

disclosure 

Table 6 Previous Studies on IoT Attacks Detection-Based ML Algorithms 

Reference Algorithm   Attacks Shortcoming Observation 

[76] DT, NB, RF, 

SVM 

Malicious 

Bot-net 

Inappropriate feature 

selection lead to 

misclassify malicious 

traffic flow.  

DT and RF fulfilled high performance, 

However SVM, and NB were slightly weak. 

[77] KNN, DT, 

XGB, RF 

 

APT 

malware 

Less performance 

measurement.  

RF achieved high performance compare the 

rest of classifiers.  
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[78] SVM, DT, NB, 

USML 

DDoS FAR is high. 

Specificity is less. 

The classifiers performance evaluation, 

however, FAR and specificity need to be 

improved. 

[79] NB, C4.5, RF Anomaly 

and 

Intrusion 

Time taken to establish 

the model is high.  

The classifiers obtained exceptional 

performance but the time need to be 

minimized. 

[80] EL, RF, DR, 

KNN 

Botnet Imbalanced dataset. 

Binary-class 

classification model. 

The ensemble model achieved high 

performance, however the time computation 

is high. 

[81] DT, XGB, LR Botnet Binary-class 

classification. 

Overfitting model. 

Testing accuracy for 

balanced data is less. 

The model achieved high performance Metric 

with EL classifier compare to the other two 

classifiers, but the model needs to get rid of 

overfitting and increase the test accuracy in 

balanced dataset. 

[82] DT, RF, SVM Injection 

attack 

Performance classifiers 

reduces as the quantity of 

features increases. 

Classifiers fulfilled high performance metric 

except SVM achieved the vilest performance. 

However, the model requires to adjust the 

number of selected features.  

[83] Voting, stacking DDoS Execution time is high. The models achieved high performance but 

the time of execution is high specially in 

stacking. 

[84] DT, SVM, NB Routing 

Attack 

Overfitting in few 

classes. 

The models achieved high performance 

metric, but the model lack lacks clarification. 

[85] NB, LR, DT, 

KNN, RF 

DDoS Binary- class 

classification. 

Overfitting model. 

The model contains two experiments, both 

fulfilled high performance but only in binary 

classification. 

[86] RF, DT, XGB, 

GB 

MiTM, DoS Binary-class 

classification. 

The classifiers achieved high performance 

metric to detect MiTM but achieved 

reasonable performance metric to detect DoS. 

[87] ML Black hole 

attack 

The energy consumption 

is high. 

The energy consumption is increase by 

increase the quantity of nodes. 

3.2.1. Convolutional Neural Network (CNN) 

CNNs are a type of DL model frequently employed for image 

classification and recognition. They analyze input images and 

classify them into categories such as dogs, cats, lions, and 

tigers. Unlike other neural networks, CNNs process images as 

two-dimensional pixel arrays, focusing directly on the images 

rather than relying on feature extraction. CNNs consist of 

three layers: the input layer, which supplies inputs to the 

model (each neuron in this layer corresponds to features in the 

data); the hidden layers, which can consist of multiple layers; 

and the output layer, which converts the outputs of the hidden 

layers into probability scores for each class using a logistic 

function such as sigmoid or SoftMax. CNNs have been 

enhanced with sophisticated architectures such as ResNet and 

DenseNet, which improve their feature extraction capabilities 

from IoT traffic data. Moreover, CNNs can utilize multi-

channel inputs to analyze various characteristics of network 

data simultaneously, enhancing their ability to detect complex 

cyber-attacks. Their capacity to process large datasets makes 

CNNs highly effective in IoT security, leading to improved 

detection results. For example, a study in [89] presented a 

technique combining two CNN models (CNN-CNN) to 

disclose assaults on IoT networks. Using raw network traffic 

data, the first CNN model identifies key features that assist in 

disclosing IoT assaults. The second CNN utilizes these 

features to generate a strong disclosure model that reliably 

identifies IoT assaults. The suggested approach attained a 

confusion matrix score of 98%. The ability of CNNs to 

concurrently learn relevant features and perform classification 
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removes the need for manual feature extraction, producing an 

end-to-end model that, with optimization algorithms, offers 

exceptional results for IoT security-based IDS [90].  

3.2.2. Recurrent Neural Network (RNN) 

RNNs, or Artificial Neural Networks (ANNs), are primarily 

applied in speech recognition and natural language processing 

(NLP). RNNs are designed to recognize patterns in various 

data types, comprising text, genomes, handwriting, spoken 

language, and numerical time-series data. RNNs are used by 

systems such as Apple’s Siri and Google’s voice search for 

processing sequential data. RNNs are especially effective in 

IoT security because of their ability to analyze sequential 

data, making them essential for network IDS (NIDS). Long 

Short-Term Memory (LSTM) networks enhance RNNs by 

mitigating the vanishing gradient problem and enabling the 

detection of long-term dependencies, which are crucial for 

disclosing IoT security vulnerabilities in time-series data. As 

a result, DL methodologies such as RNNs have become a 

central focus in NIDS research [91]. In [92], a proposed 

model integrated DL and metaheuristic techniques by using 

RNNs within a multi-modal framework to efficiently capture 

complex correlations in diverse network traffic data. The 

model used a wavelet-based feature extraction method to 

improve the discriminative power of the generated features, 

achieving remarkable performance metrics with a 98% 

accuracy score and an AUC of 99%. 

3.2.3. Auto-Encoders (AEs) 

AEs are an area of neural network in which the 

dimensionality of the input and output layers are equal. Since 

an AE replicates data from the input to the output in an 

unsupervised manner, it is also referred to as a replicator 

neural network. The AE network consists of two main 

components: the encoder function (h = f(x)) and the decoder 

function responsible for reconstructing the input (r = g(h)) [1]. 

The encoder takes the input and converts it into an abstract 

representation named a code, while the decoder uses this code 

to rebuild the original input. During AE training, the goal is to 

minimize reconstruction error. Recent advancements in 

variational autoencoders (VAEs) have improved their ability 

to learn data distributions and extract features, increasing their 

efficacy for unsupervised anomaly detection in IoT security. 

In IoT networks, AEs can proficiently detect various types of 

IoT assaults. A study [93] developed an architecture based on 

an asymmetric parallel autoencoder (APAE), with two 

encoders working simultaneously, each with three successive 

layers of convolutional filters. This lightweight architecture 

enhances AE's ability to detect unknown attacks and improve 

detection rates.  Another study [94] proposed the 

nonsymmetric autoencoder (NAE) model, where the encoder 

extracts complex hidden representations of network traffic, 

and the decoder reconstructs the input data with high 

accuracy, achieving superior detection rates for abnormal 

attacks.             

3.2.4. Restricted Boltzmann Machine (RBM) 

RBMs are generative and stochastic neural networks that can 

model probability distributions over input groups. They are 

used for feature selection and extraction in various 

applications, including dimensionality reduction, 

classification, and regression. RBMs consist of two layers: an 

input (visible) layer and a hidden layer, which serve as the 

foundational elements of Deep Belief Networks (DBNs). 

RBMs excel at pattern recognition tasks such as interpreting 

handwritten text and identifying radar targets in low signal-to-

noise ratio conditions. Additionally, RBMs are used in 

recommendation systems, enhancing user suggestions through 

filtering algorithms [95]. Improvements in RBMs, such as 

layer-wise pre-training, allow these models to develop 

hierarchical features that improve their ability to detect 

intricate attack patterns in IoT networks. RBMs are crucial for 

identifying attacks in IoT environments [96]. A previous 

study [97] proposed an innovative approach for anomaly 

detection by projecting raw features through a constrained 

Boltzmann machine. This approach outperformed several 

modern methods when evaluated on a widely known anomaly 

detection dataset, demonstrating strong performance metrics. 

3.2.5. Deep Belief Network (DBN) 

A DBN is a type of generative neural network that uses an 

unsupervised learning model. DBNs are often referred to as 

"Boltzmann Machines" and consist of multiple layers of 

neural networks. They have enhanced their ability to predict 

complex patterns in IoT traffic for threat detection through 

unsupervised pre-training followed by supervised fine-tuning. 

DBNs have emerged as a critical technique for detecting 

malicious activities in IoT security [98]. While researchers 

have not yet thoroughly analysed every aspect of DBN-based 

intrusion detection model, further research is expected to 

present these techniques in greater detail, as DBNs are ideal 

for feature extraction and are particularly robust for 

classification tasks. 

3.2.6. Generative Adversarial Network (GAN) 

GANs are ML models that contains two neural networks 

competing against each other to improve their prediction 

accuracy. GANs typically operate in an unsupervised manner 

within a cooperative zero-sum game framework. To use 

GANs effectively, the first step is to identify the desired 

outcome and collect an initial training dataset based on these 

parameters. GANs have advanced significantly through the 

use of conditional GANs and semi-supervised learning 

methods, enhancing their ability to create realistic attack 

scenarios. This strengthens model robustness and prepares 

systems to defend against unknown attacks. In IoT security, 

GANs can proficiently protect systems from unknown 
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intrusions [99]. GANs are also capable of securing the IoT 

physical layer [100]. A previous study [101] introduced a 

technique for detecting human activity using generative 

adversarial micro-aggregation, which improved data privacy 

while generating realistic samples based on the estimated 

distribution of the original data. This method showed superior 

efficacy in securing IoT systems. Despite the benefits of using 

DL to combat IoT assaults, some challenges remain. Table 7 

illustrates the benefits and drawbacks of DL methods and 

their applicability in assault detection. Table 8 outlines 

various DL algorithms from previous studies that discuss 

researchers' efforts to address IoT security challenges referred 

to in [102-115]. Table 9 summarizes the key hardware and 

resource requirements for applying ML and DL in low-power 

IoT devices, which is crucial for optimizing model 

performance while maintaining energy efficiency and 

practical operation. 

Table 7 Advantages and Disadvantages of DL Techniques 

Technique Advantages Disadvantages Applications 

CNN Ideal for rapid and extremely efficient 

feature extraction. 

Require less preprocessing Compared to 

other methods that are ideal for rapid and 

highly effective feature extraction. 

It may employ raw network security data to 

automatically learn behavior. 

 

Needs high computational 

power. 

Highly challenge when using 

on resource-constrained IoT 

devices. 

Malware attacks 

Anomaly attacks 

RNN Can automatically learn new information and 

predict sequences based on historical data.  

Suitable to IoT Security due to IoT 

environment creates sequential data in some 

circumstances. 

high prediction capability. 

 

Addressing the problem of 

gradients that vanish or 

extend, which poses 

difficulties while learning long 

data sequences. 

Training Slow and complex 

tasks. 

Malware attacks 

AEs Used in dimensionality reduction and extract 

the features. 

 

 

Required high computational. 

Since the training dataset is 

not typical of the testing 

dataset, the outcomes could 

not be what was expected. 

Botnet attacks 

RBM RMBMs' feedback function enables the elicit 

of vital features, that are then utilize to log 

IoT traffic behavior. 

 

Require a lot of computational 

capacity. 

Features cannot be represented 

by a single RBM. 

 

R2L, DoS, U2R 

and Probe 

DBN Exceptionally accurate and reliable.  

It is suitable for significant feature extraction 

because it has been trained on unlabeled 

data. 

 

Demand a large computational 

cost. 

R2L, DoS, U2R 

GAN Suitable for Zero-day attack. Training is challenging and 

provides erratic outcomes. 

Mirai, Bashlite, 

Scanning, MiTM 
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Table 8 Previous Studies IoT Attacks Detection-Based DL Algorithms 

Reference Algorithm Attacks Shortcoming Observation 

[102] DNN DDoS Binary-class 

classification 

Imbalanced dataset. 

The model achieved high performance 

metric and high AUC Roc Curve, 

however, the model was limited to 

binary classification, and if the model 

was applied to multi-class 

classification, the performance and 

detection veracity would differ. 

[103] CNN, 

LSTM 

Phishing, DDoS FPR is high. LSTM model obtained higher 

performance evaluation compare to 

CNN, however, FPR require to be 

reduced. 

[104] AE DOS, probe, 

R2L, U2L 

Low accuracy. 

Imbalanced dataset. 

The accuracy for the statics and 

adaptive IDS based attacks is low. 

[105] FDL, DNN Zero-day botnet 

attack 

 

High training time. 

BoT-IoT dataset has 

overfitting. 

FDL model outperform high veracity 

compared to the other models. 

[106] DBN Security breach Performance metric for 

unknown attacks is less. 

The model fulfilled high performance 

evaluation, however, the unknown 

attacks achieved the vilest score. 

[107] GAN Botnet attacks, 

adversarial 

evasion attacks 

Imbalanced dataset. 

Performance evaluation 

slightly low. 

GAN obtained high veracity, however 

the other performance metric achieved 

low score. 

[108] RBM Anomaly Performance evaluation 

need to be increased. 

A novel approach has reasonable 

performance evaluation with 20, and 

38 features. However, the more 

features, the less performance. 

[109] DNN, GAN Anomaly Some attack class 

obtained less 

performance. 

GAN model obtained higher 

performance metric compared to 

DNN, however, still multi-class 

classification attacks detection is 

challenge. 

[110] CNN, 

LSTM 

Botnet The dataset has 

overfilling. 

LSTM achieved high accuracy and 

performance metric, and less FA, 

however, with overfitting, the 

classifiers may misclassify in 

prediction.  

[111] RNN, DNN DoS, Probe, 

R2L, U2R 

High error rate. 

The performance metric 

for each attack not 

mentioned. 

The proposed achieved high-

performance evaluation, however, the 

author mentioned the classifier’s 

average result not each class’s 

performance results. 

[112] FFNN, 

LSTM 

Malicious 

traffic 

Binary-class 

classification. 

FFNN achieved better performance 

metric than LSTM, however, the 
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author did not determine type of 

malicious traffic in the datasets used. 

[113] MLP DDoS High false positive. 

Binary-class 

classification. 

The proposed achieved high veracity 

and true positive, however, the dataset 

is imbalanced. 

[114] DL Normal, 

Flooding, 

Blackhole, and 

Selective 

Forwarding 

Imbalance dataset. 

Attacks classes findings 

not mentioned. 

The suggested approach acquired high 

performance evaluation. However, the 

dataset is imbalanced and that would 

affect on the prediction results. 

[115] RNN Botnet FPR and FNR are high. The proposed achieved exceptional 

results. However, the false rate is very 

high. 

Table 9 Hardware and Resource Considerations for ML and DL in Low-Power IoT Devices 

Aspect Description 

Processing Capabilities Microcontrollers (MCUs): Low-power IoT devices frequently depend on MCUs with 

constrained processing capabilities relative to conventional CPUs or GPUs. 

Consequently, ML and DL models must be optimized for efficient performance on 

these systems. Lightweight algorithms, such as decision trees or linear regression, are 

better suited for low-complexity problems, but complex models require adaptations to 

adjust to hardware constraints. 

Application-Specific Integrated Circuits (ASICs):  designed for certain functions can 

substantially enhance performance and efficiency in ML and DL applications. 

Hardware accelerators such as Google’s Edge TPU and NVIDIA's Jetson series are 

designed to execute neural network models with optimal power and speed efficiency. 

Memory Constraints RAM and Storage: IoT devices frequently possess constrained RAM and storage 

space. Models must be sufficiently compact to adhere to these limitations, requiring 

approaches such as model pruning, which eliminates less significant weights, and 

quantization, which diminishes weight precision (e.g., from 32-bit to 8-bit), hence 

decreasing memory consumption. 

Feature Selection: Employing techniques like PCA to reduce the number of features 

helps optimize memory utilization and enhance processing efficiency. This is 

especially significant in IoT environment, where data may be high-dimensional. 

Energy Efficiency Low-Power Consumption: Given that numerous IoT devices rely on batteries, 

reducing energy usage is essential. Optimized algorithms that necessitate reduced 

computations and diminished data transmission will enhance battery longevity. 

Methods like as low-power modes and dynamic voltage and frequency scaling (DVFS) 

can optimize performance and energy consumption. 

Edge Computing (EC): Performing computations near the data source EC diminishes 

the necessity for data transmission to centralized computers., hence reducing energy 

expenses linked to data transfer. This facilitates expedited decision-making and 

diminishes the total workload on the device. 

Hardware Accelerators 

and Frameworks 

Dedicated Hardware Accelerators: Devices such as FPGAs (Field-Programmable Gate 

Arrays) can be configured to execute particular machine learning algorithms 

effectively, offering a balance between adaptability and performance in IoT 

applications. 
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4. EXISTING SURVEYS ON ML AND DL 

TECHNIQUES 

This article presents and discusses previous studies on ML 

and DL, comparing them with the survey we present. Since 

2018, many studies on IoT security have been conducted, 

with a particular focus on ML and DL applications for IoT 

security. Our survey addresses the shortcomings in previous 

discussions of these two techniques, as well as inadequate 

allocation of attention to their capabilities. For instance, the 

author in [116] provided a comprehensive review and analysis 

of diverse ML methodologies, highlighting issues with 

different ML approaches for detecting invasive activities.  The 

research in [117] analyzed the possibilities and challenges of 

utilizing data in ML solutions for IoT privacy by exploring 

various data sources, analyzing them, and examining ML-

based solutions currently in development, designed to 

preserve IoT privacy. In [118], the threats to IoT security 

were reviewed, along with a systematic analysis of those 

threats from both the training and testing/inference 

perspectives. The author categorized current ML-based 

defensive techniques into four groups. 

The research in [119] focused on studies related to intrusion 

detection (ID) for computer network security and ML 

techniques for IoT. In [120], the Cisco IoT reference model 

architecture was used to classify well-known security 

concerns, allowing the study to focus on IoT security threats 

and vulnerabilities. Additionally, an analysis of previous 

studies on DL-based IDS in IoT security was included. In 

[121], the IoT design was presented after an in-depth 

literature analysis of ML techniques and the essential role of 

IoT security concerning various attack vectors. 

In [122], the IoT network security needs, assault vectors, and 

available security solutions were analyzed. The author also 

highlighted the weaknesses in existing security solutions that 

require ML and DL techniques and detailed the various ML 

and DL technologies currently available to tackle security 

concerns in IoT networks. The study in [123] evaluated 

current approaches for categorizing IoT security risks and 

challenges in IoT networks, with a focus on network intrusion 

detection systems (NIDS). A thorough analysis of NIDS using 

various IoT learning strategies was also provided. 

In [124], the notion of malware and botnets causing DDoS 

assaults in IoT was outlined and contrasted, along with the 

different DDoS defense strategies. In [125], a detailed 

investigation of IoT malware disclosure and static analysis 

methods was presented, covering key techniques, along with 

the pros and cons of current static IoT malware disclosure 

frameworks. 

In [126], assaults were classified into groups based on the 

most pertinent security threats, countermeasures, and real-

world assaults across the generalized IoT/IIoT architecture. 

The study also discussed how blockchain can be applied to 

efficiently address these issues. The study in [127] provided 

fundamental information on security threats and safeguards in 

IoT networks, covering topics such as the IoT market, 

security architecture, and procedures for security managers 

and IoT developers. The author in [128] discussed primary 

security and forensic issues in the IoT domain and presented 

papers addressing these topics. 

In [129], DNN topologies and the potential benefits of deep 

learning were discussed, along with a detailed analysis of IoT 

use cases powered by DL. In [130], a comprehensive 

overview of current IoT security solutions and developments 

was presented, focusing on IoT security threats. The survey in 

[131] provided a recent overview of various ML techniques 

for IoT applications, covering supervised and unsupervised 

models that support IoT frameworks and the importance of 

ML models in relation to IoT. 

In [132], a classification system for IoT attacks was provided, 

along with an examination of IoT security weaknesses at 

different levels. The study also presented an analysis of recent 

security systems by evaluating the effectiveness of new 

solutions. The study in [133] reviewed IoT security protection 

and concluded that AI methods such as ML and DL can offer 

novel abilities to meet IoT security requirements. In [134], a 

brief description of ML and DL-based IDS was provided, 

discussing different types of assaults and anomalies and how 

these systems disclose them. 

In [135], a detailed account of cutting-edge approaches to IoT 

data challenges was provided, while in [136], a systematic 

literature review (SLR) examined the utilize of DL 

approaches for anomaly-based IDS in IoT environments. The 

study extracted data from sources like IEEE Xplore, Scopus, 

WoS, Elsevier, and MDPI. In [137], a summary of DL 

techniques in cybersecurity applications was provided, 

including explanations of GANs, RNNs, restricted Boltzmann 

machines, and deep autoencoders (AEs), followed by how 

these DL methods apply to various types of assaults such as 

network intrusions, malware, spam, insider threats, and more. 

In [138], a review of the pros and cons of ML algorithms in 

IoT security was presented, with a concentrate on the 

application of DL and Federated Learning (FL) in IoT 

security. FL models enable systems to share information 

while protecting data privacy. In [139], the specifics of ML 

security attacks in cyber-physical systems were outlined, 

along with defense strategies, threat models, and a 

comparative analysis of ML model performance under diverse 

assault scenarios. The study in [140] reviewed privacy and 

security concerns related to DL algorithms, categorized 

various assault types, and examined protection strategies, 

including privacy-preserving techniques like Homomorphic 

Encryption (HE) and hash functions. 
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The study in [141] discussed the major security problems and 

challenges that IoT infrastructures face, providing a thorough 

examination of ML-based solutions for IoT security. 

Additionally, the limitations of common ML-based security 

techniques for IoT were discussed. In [142], a tutorial-style 

analysis of advanced DL architectures for cybersecurity 

applications was provided, along with an evaluation of recent 

contributions and challenges. 

In [143], the latest findings on ML/DL-based scheduling 

strategies were examined, covering the trade-offs between 

accuracy and execution time, as well as the security and 

privacy of learning-based algorithms in real-time IoT systems. 

The study in [144] aimed to enhance IoT device security by 

reviewing ML systems and the latest advances in DL 

techniques, identifying future IoT device threats and 

protection concerns. The study also evaluated DL/ML 

strategies for IoT security, discussing their potential and 

limitations. 

Lastly, in [145], a comprehensive overview of IoT security 

intelligence based on DL/ML technologies was presented, 

highlighting research topics and future directions. Prior 

studies have substantially enhanced our comprehension of IoT 

security, although it is impossible to cover every aspect in one 

study. We analyzed these studies along with additional studies 

[146-150], classified their contributions from 2018 to the 

present in a sequential and descending order based on the 

years of publishing, and compared them with our survey, as 

summarized in Table 10. 

4.1. Research Papers Methodology 

In this survey, a collection of research articles was compiled 

from various sources, including Elsevier, IEEE, Springer, 

MDPI, ACM, Hindawi, and others, published between 2018 

and 2024. These articles focus on ML and DL survey papers 

and models. Each study was analyzed based on the problem 

statement it attempted to tackle, the domain in which it was 

executed, the types of attacks it aimed to detect, the methods 

used to address the problem, and the outcomes obtained. A 

total of 200 papers were gathered for the literature review on 

ML and DL methods. 

Figure 6 illustrates the number of papers published in the 

journals mentioned in this survey, showing an increase in 

publications from Elsevier and IEEE compared to other 

sources. Additionally, Figure 7 highlights the number of 

papers published between 2018 and 2024. 

Table 10 Analyzing and Classifying the Previous Studies Between 2018-2024 

Reference Year ML DL Dataset Domain Attacks/Threats Countermeasures Challenges/Issues 

[116] 

 

2018        

[118] 

 

2018        

[128] 

 

2018        

[119] 

 

2019        

[122] 

 

2019        

[123] 

 

2019        

[124] 

 

2019        

[126] 

 

2019        
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[1] 

 

2020        

[117] 

 

2020        

[120] 2020        

[121] 2020        

[125] 2020  

 

      

[127] 2020     

 

   

[129] 

 

2020        

[133] 

 

2020        

[134] 

 

2021        

[135] 

 

2021        

[136] 

 

2021        

[137] 

 

2021        

[140] 

 

2022        

[143] 

 

2022        

[144] 

 

2022        

[150] 2022 

 

       

[138] 

 

2023        

[142] 

 

2023        
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[145] 

 

2023        

[146] 

 

2023        

[147] 

 

2024        

[148] 

 

2024        

[149] 2024 

 

       

Our 

Survey 

2024        

 

  

            Figure 6 Number of Papers Published in the Journals               Figure 7 Papers Published Between 2018-2024 

5. CLASSIFICATIONS OF IOT LAYERS ATTACKS 

As mentioned in Section 2, the IoT architecture contain of 

three key tiers: the perception layer, network layer, [151], and 

application layer, as demonstrated in Figure 4. The perception 

layer is made up of sensors and controllers that collect data. 

The network layer's primary role is to establish connections 

between networks, using protocols and various connections. 

Finally, the application layer responds to the user and 

software programs, allowing users to access and retrieve data. 

The goal of this section is to understand the risks of attacks at 

each layer and provide an overview of the solutions offered 

by researchers, along with the benefits of each study. This 

section discusses the types of assaults at each layer and the 

solutions presented by researchers. 

5.1. Perception Layer Attacks 

This layer in IoT is accountable for gathering information via 

actuators, Zigbee, and RFID. It faces a variety of attacks 

aimed at damaging or destroying its devices. Attackers may 

penetrate and modify devices through social engineering, 

launching large-scale attacks such as device destruction, 

eavesdropping, or other assaults. Physical assaults, such as 

manipulating energy sources or disrupting communication 

mechanisms, may require the attacker to be in close proximity 

to the target. For example, physical attacks like jamming, 

eavesdropping, interference, and traffic analysis can disrupt 
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the physical layer. Robust approaches, including ML/DL 

technologies, are required to detect and secure this layer. 

Several researchers have addressed physical layer attacks, 

particularly jamming attacks using radio frequency (RF). One 

technique compared SVM and K-NN methods in multi-track 

and single-route scenarios. The RF technique, combined with 

AdaBoost, achieved superior findings compared to other 

methods. Additionally, RF showed better accuracy and lower 

false alarms compared to other techniques. In [152], the 

author proposed P4NIS, a network invulnerable schema with 

three layers of protection to identify and prevent 

eavesdropping attempts. The findings showed that, compared 

to contemporary techniques, P4NIS reduced encryption costs 

by 69.85%–81.24% and minimized false alarms. In [153], a 

ML model using SVM was presented to classify spoofing 

assaults on signals received by unmanned aerial vehicles 

(UAVs). K-fold examinations were conducted to improve the 

learning pattern, which was termed K-learning. The model, 

using GPS features, achieved high levels of accuracy, 

precision, recall, and F-score (99%, 98%, 99%, and 98%) 

when compared to earlier research. Additionally, Table 11 

summarizes a few studies, [154], [155], [156], [157] detailing 

the contribution of each study, the type of assault tackled, and 

the outcomes obtained. 

Table 11 Attack Detection in Physical Layer 

Reference Contribution Attacks Algorithm Results 

[154] The study provided a wireless fingerprinting-based 

PHY-layer continuous authentication and spoofing 

disclosure method for a real WSN in which diverse 

nodes connect to a central sink node. 

Spoofing DT ACC: 95.43 

[155] The author used DL with LSTM to provide 

confidentiality and privacy in physical layer. 

DDoS LSTM ACC: 0.99 

AUC: 0.99 

R: 0.98 

P: 0.95 

[156] Proposed a CDAE model that decreases feature 

dimensions, removes noise, and extracts key vectors. 

Malicious AE ACC: 0.98 

AUC: 0.99 

[157] Provided the advanced hybridized optimization 

technique AHGFFA to avoid attacks issues using 

USML in the MANET-IoT sensors system. 

Malicious UML DR: 0.98 

EC: 5 

5.2. Network Layer Attacks 

This layer is accountable for transmitting data from the 

perception layer to the application layer for processing [158]. 

This layer faces several threats, including eavesdropping, 

man-in-the-middle (MITM) assault, Sybil assault, routing 

information threats, and DDoS. When compromised, IoT 

devices may become botnets, enabling hackers to hinder 

communication paths between source and destination. 

Hackers can also launch Sybil attacks by exploiting 

compromised or fake nodes, tampering with security keys and 

routing tables, which can affect higher levels of the IoT 

system. Because the network layer sits between the physical 

and application layers, it plays a vital role in IoT security. 

Numerous efforts have been made to secure this layer, with 

many studies achieving exceptional results in disclosing IoT 

assaults at the network layer. Table 12 analyzes studies [159-

164] related to IoT assaults at the network layer. 

5.3. Application Layer Attacks 

This layer handles several data transactions and is responsible 

for establishing a user interface between end users and 

endpoints. Securing the application layer poses significant 

challenges. Many of the vulnerabilities found here are based 

on sophisticated user inputs that are difficult to disclose with 

IDS. Additionally, this layer is vulnerable to software-based 

assaults such as malware, viruses, worms, etc., and is publicly 

accessible and visible to everyone. One notable example of an 

application layer attack is SQL injection, which was 

responsible for significant data breaches in 2014. SQL 

injection ranks third in frequency of attacks after DDoS and 

malware. Other common vulnerabilities in this layer include 

security misconfiguration, which allows hackers to alter 

program details and access confidential information without 

being detected by network security measures. In Table 13, we 

present recent studies [165-170] that address IoT attack 

detection at the application layer. Additionally, Figure 8 

illustrates the taxonomy of IoT attack layers. 

In Section 2, we discussed the prominent assaults in the IoT 

environment, which are considered the most critical threats 

impacting general IoT security. In this section, we have 

outlined the attacks that occur in each tier, focusing on the 

primary challenges in each layer. This helps researchers 
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identify issues specific to each layer and gain comprehensive 

knowledge of the challenges within each IoT layer. Table 14 

provides detailed information, and Table 15 outlines the key 

principles of attacks on IoT layers [171-185]. 

Table 12 Attack Detection in Network Layer 

Reference Contribution Attacks Algorithm Results 

 

[159] 

Presented a DL model named DeepAK-IoT to 

disclose cyber-assaults in IoT networks. 

 

Botnet DeepAK 

base DL 

ACC: 90.57 

F1: 88.87 

P: 89.59  

 

 

[160] 

Used DL to present a new anomaly-based IDs 

method for IoT networks. In particular, a DNN 

model with filter-based FS that eliminates highly 

linked features has been introduced.  Additionally, 

the model is fine-tuned utilizing a range of 

parameters and hyperparameters. 

DoS DNN, 

GAN-

DNN 

ACC: 

DNN: 84.4 

GAN-DNN: 90.9 

 

 

[161] 

The author provided a new technique using the RF 

classifier to get over the attacks. This method 

utilizes EL to combine many DRs in order to 

generate precise and efficient forecasts for the quick 

identification of hazards in IoT networks. 

DDoS RF ACC: 99.53 

P: 0.99 

F1: 0.98 

AUC: 0.99 

[162] The author designs a model using ensemble 

approaches on the KDD Cup 99 dataset after doing a 

survey of the literature on the most recent studies 

utilizing deep learning techniques. 

 

Anomaly AE, GAN AE = ACC: 97.96 

P: 90.68 

GAN = 

ACC: 90.26 

P: 91.27 

[163] 

 

Provided an IDS defensive system that applies 

anomaly disclosure and ML to enhance the security 

of IoT networks against DoS assault. They also used 

two several features selection algorithms, the GA 

and the Correlation-based Feature Selection (CFS) 

algorithm, and evaluated how well they performed.  

DoS DT, RF, 

SVM, 

KNN 

ACC, P, R, F1 are 

0.99 for all 

classifiers 

 

[164] 

This paper provided a novel ID method IoT devices 

based on DL. To identify malicious traffic that could 

start an assault on linked IoT gadgets, this intelligent 

system employs a four-layer deep Fully linked (FC) 

network architecture. Based on the experimental 

performance analysis, the suggested system 

demonstrated reliable performance for both 

simulated and real invasions. 

Blackhole 

Sinkhole 

Workhole 

DDoS 

DNN ACC: 93.74 

P: 93.73 

R: 93.82 

F1: 93.47 

DT: 93.21 

Table 13 Attack Detection in Application Layer 

Reference Contribution Attacks Algorithm Results 

[165] This research, which focused on communication and 

environmental dynamics in industrial settings, 

proposed a novel method for detecting jamming in 

IoT. It focused on gathering QoS, and connection 

parameters during normal communication and 

Jamming Stack 

LSTM 

ACC: 99.5 

P: 99.4 

R: 99.26 
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jamming assaults in production lines equipped with 

wireless IoT gadgets with server-client architecture in 

order to better examine the communication conditions 

and jamming in the industrial production 

environment. 

S: 99.66 

F1:99.34 

[166] The study presented FMDADM, a framework for 

SDN-enabled IoT networks that applied ML for 

DDoS disclosure and mitigation. Three disclosure 

modules and a mitigation module make up the 

suggested framework.  

DDoS RF, SVM, 

KNN, 

GNB, DT 

ACC: 99.79 

P: 99.43 

F1: 99.77 

R: 99.79 

S: 99.59 

FPR:0.91 

FNR:0.23 

[167] This paper offered a ML model to detect DDoS 

against CoAP 

DDoS DT, RF, 

LSVC, NB 

ACC= 

RF, DT: 0.98 

P, R, F1= 

RF, DT: 0.92 

[168] Introduced an IoT micro-security extension that is 

integrated into the device. This extension utilizes a 

CNN model to identify and prevent URL-based 

assaults targeted at a client's IoT gadgets. An LSTM 

model is deployed on the backend servers to identify 

botnet assaults on IoT gadgets. 

Phishing, 

DDoS 

CNN, 

LSTM 

CNN= 

ACC: 0.94 

AUC: 0.92 

LSTM= 

ACC: 0.97 

AUC: 0.99 

[169] Proposed an AD method utilizing the DNN for the 

IoT network layers to taxonomy traffic as normal and 

abnormal. 

Theft, 

DoS, 

DDoS, 

DNN ACC: 0.99 

 

[170] This work presented a novel IDS using ML in the 

application and transport layers, the author used BoT-

IoT dataset  

DDoS, 

DoS 

DL, ML ACC; 0.99 

CM: 0.99 

Table 14 IoT Architecture 

Layer Attack Major Purpose Challenges 

Perception Layer Reverse Engineering. 

Jamming. 

Social Engineering. 

Tampering. 

Spoofing. 

DoS. 

RF Interference. 

Signal Manipulation. 

Collected 

Information 

IoT is unreliable and susceptible to 

hackers. 

Destroying perception gadgets and 

falsifying data collected. 

The devices are resource 

constrained. 

Data confidentiality. 

Power consumption. 

Reliability.   
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Network Layer MiTM. 

DDoS. 

DoS. 

Spoofing. 

Routing attacks 

Sinkhole attacks 

RFID clone. 

Sybil attack. 

Eavesdropping. 

Traffic analysis. 

Ransomware.  

Deliver the 

collected data 

TCP and IP protocol. 

Energy effectiveness.  

Network congestion due to high 

volume of data on network. 

Dynamic Network Structure. 

Heterogeneity. 

Confidentiality.  

Application Layer Malicious and Code. 

Injection attacks. 

XSS. 

DNS spoofing and phishing. 

SQL injection. 

Manipulation of data. 

Software Tampering.  

API abuse. 

User-requested 

assistance 

User Interaction and Experience. 

Performance and Scalability. 

High volume data lead to massive 

issue in IoT security. 

Leak of data due to attacks against 

software. 

Resilience and Reliability. 

 

Figure 8 IoT Attacks Layer Classification 
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Table 15 The Principle of Attacks in IoT Layers 

Attacks Description 

Tampering Attack 

[171] 

A form of physical assault when the attacker aims to breach security, alters memory, 

and gains further information by reacting with a malfunctioning device 

Spoofing Attack [172] Hackers pose as authorized users or devices in order to distribute malware, steal data, 

and get around access control measures. 

Reverse Engineering 

[173] 

A person-to-person assault where the criminal makes direct connect with the target in 

an attempt to get them to furnish crucial information. 

Physical damage [174] Carrey out in a situation where the hacker is approaching the device. A malicious user 

has the capability to take control a computer or communication system, harm property, 

and jeopardize lives. 

RFID Cloning [175] Signifies the process of duplicating the data from an RFID electronic tag or intelligent 

card to a cloned tag that will resemble the original tag and possibly replace it. 

RF interface [176] Target devices that employ radio, Wi-Fi, Bluetooth, and Bluetooth Low Energy (BLE) 

as communication means 

Code and malicious 

[177] 

Malicious software, sometimes known as malware, that has the ability to rapidly or 

gradually damage client PCs, databases, networks, and even server clusters. 

Injection attacks [178] A malicious code injected into the network which retrieves all the data from the 

database to the hacker. 

DNS Spoofing and 

Phishing. [179] 

Attackers may spoof DNS responses or launch phishing attacks aiming IoT applications 

to disclosing private data including login passwords or bank account information 

SQL injection [180] SQL injection assault exploit weaknesses in IoT apps that store and retrieve data from 

databases. Attackers can extract sensitive data, alter database contents, or run 

unauthorized instructions on the underlying database server by adding malicious SQL 

queries in the input fields or API parameters. 

XSS [181] Cross-site Scripting attacks penetrate websites visited by other users with malicious 

scripts, aimed targeting web-based Internet of Things applications. Attackers can alter 

web interfaces, take illicit actions on behalf of authorized users, and steal session 

cookies by taking advantage of XSS vulnerabilities. 

Software Tampering 

[182] 

On IoT devices, hackers may tamper with the firmware or software to add backdoors, 

vulnerabilities, or malicious features. Firmware-altering assaults pose a vital risk to the 

security, reliability, and integrity of IoT gadgets by allowing data to be exfiltrated, 

causing malfunctions or unauthorized access. 

Sybil attacks [183] A group of nodes that broadcast fake data from a random network by pretending to be 

several peer identities in order to compromise an IoT ecosystem. 

API abused Assailants misuse Application Programming Interfaces (APIs) made available by IoT 

applications to carry out illicit operations, obtain private information, or alter device 

settings. Attacks using API abuse can take advantage of poorly constructed APIs, weak 

access restrictions, or insufficient input validation systems. 

Manipulation of data In order to trick consumers, set off false alarms, or bring about disruptive events, 

attackers alter or corrupt data that is transferred between IoT gadgets and applications. 

Attacks that modify data might jeopardize the integrity and reliability of IoT systems, 

resulting in incorrect judgments or actions taken in responding to misrepresented data. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/40                         Volume 11, Issue 5, September – October (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       647 

     

SURVEY ARTICLE 

Routing attacks [184] Routing attacks aim to modify or interfere with device-to-device communication by 

targeting the routing protocols and techniques utilized in IoT networks. Attackers 

might, for instance, create routing loops, reroute traffic to hostile nodes, or insert 

erroneous routing information, all of which could cause network congestion or 

fragmentation. 

Ransomware [185] Attacks using ransomware encrypt or prevent users from accessing files, systems, or 

devices and demand a ransom to be paid by the target in order to unlock the device. 

Ransomware can harm an organization's brand in addition to causing large financial 

losses and operational problems. 

6. INTERNET OF THINGS SECURITY DATASETS 

In this paper, we discuss the datasets commonly used to 

construct IoT security models. We focus on the typical and 

popular datasets that help researchers gain insights into the 

types of datasets they will use to develop models for 

identifying IoT attacks. Additionally, we discuss the pros and 

cons of each dataset, along with research papers that have 

utilized these datasets. 

6.1. BoT-IoT Dataset 

This dataset is an extensive dataset for IoT botnet research, 

containing both malicious and benign traffic gathered from 

various IoT gadgets. It simulates real-world IoT network 

conditions by incorporating traffic data from multiple IoT 

devices. The dataset contains five distinct attack scenarios, 

each with several assault variations, and was created at 

UNSW Canberra's Cyber Range Lab. The source files are 

available in multiple formats, including CSV files, Argus 

files, and original pcap files. The dataset includes attacks such 

as DDoS, DoS, OS and service scanning, keylogging, and 

data exfiltration, with DDoS and DoS assaults further 

classified based on the protocol used [186]. The dataset serves 

as a reference for assessing the performance of ML and IDS 

IDS in identifying IoT botnet activity. 

6.2. UNSW-NB15 Dataset 

The dataset an extensively used network traffic dataset for 

assessing IDS. The UNSW-NB 15 dataset was generated in 

the UNSW Canberra Cyber Range Lab using the IXIA 

PerfectStorm tool to build a blend of real-world modern-day 

activities and artificial modern-day assault behaviors. It 

comprises of about two million records totaling 49 features 

that were obtained with the aid of Argustools, Bro-IDS, and a 

few specially developed algorithms. The labeled dataset 

UNSW-NB15 includes network traffic information gathered 

under controlled environment [187]. 

6.3. ToN-IoT Dataset 

This dataset is one of the recent IoT and IIoT datasets, 

designed to assess the accuracy and effectiveness of various 

AI-based cybersecurity technologies. It includes data from 

IoT and IIoT sensor telemetry datasets, Windows 7 and 10 

operating system datasets, and TLS and network traffic 

statistics from Ubuntu 14 and 18. The dataset was gathered 

from a large-scale, realistic network at the Australian Defense 

Force Academy (ADFA), School of Engineering and 

Information Technology (SEIT), UNSW Canberra, and the 

IoT Lab of UNSW Canberra Cyber [188]. 

6.4. IoT-23 Dataset  

The dataset comprises network traffic data from 23 distinct 

IoT gadgets across different categories, addressing various 

IoT applications such as industrial control systems, wearable 

technologies, intelligent home devices, and healthcare 

equipment. The dataset includes traffic from devices like 

fitness trackers, IP cameras, smart doorbells, smart 

thermostats, and industrial sensors. The IoT-23 dataset aims 

to support IoT security research and development, particularly 

in traffic analysis, anomaly detection, and IDS. Researchers 

can employ this dataset to evaluate the effectiveness of 

security algorithms and processes in protecting IoT networks 

and devices [189]. 

6.5. MQTT-IoT-IDS2020 Dataset 

In machine-to-machine (IoT) communication, one of the most 

utilized protocols is the Message Queuing Telemetry 

Transport (MQTT) protocol. It is the initial dataset that 

mimics a network based on MQTT. 12 sensors, a broker, a 

phony camera, and an assailant make up the network. A 

dataset concentrates on IoT security, specifically to 

identifying security risks in IoT networks utilizing the MQTT 

protocol. IDS for IoT networks can be trained and assessed 

using the labeled data in the dataset, which includes both 

normal and assault traffic [190]. 

6.6. CICIDS 2017 dataset 

This dataset is a labeled network traffic dataset collected in a 

controlled environment. It was generated as a result of 

research conducted by the Canadian Institute for 

Cybersecurity (CIC). The dataset's primary objective is to 

promote cybersecurity research and development, especially 

in IDS.  

It provides a standard benchmark for assessing the 

effectiveness of IDS methods and algorithms. The dataset 

captures network protocol traffic, such as TCP, UDP, and 

ICMP, along with traffic from various services and 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/40                         Volume 11, Issue 5, September – October (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       648 

     

SURVEY ARTICLE 

applications, offering a broad range of network behaviors for 

analysis [191]. 

6.7. CTU-13 Dataset 

The CTU-13 dataset, generated by the Czech Technical 

University (CTU) in Prague, is a popular benchmark dataset 

in cybersecurity, particularly for NIDS. It contains of labeled 

network traffic data generated in a lab setting that simulates 

various types of cyberattacks [192]. 

6.8. NetFlow BoT-IoT Dataset 

The BoT-IoT dataset was employed to build the NF-BoT-IoT 

v1 dataset, an IoT NetFlow-based dataset. The features were 

extracted from publicly available pcap data, and the flows 

were labeled with the appropriate attack types. There are 

600,100 data flows in total, of which 13,859 (2.31%) are 

benign, and 586,241 (97.69%) are assault samples.  

The dataset includes four distinct assault categories. The 

distribution of all flows in this dataset is demonstrated in the 

table below [193]. The dataset has two versions: version one 

(discussed here) and version two, which also uses features 

extracted from pcap data and labeled flows.  

In version two, out of 37,763,497 total data flows, 37,628,460 

(99.64%) are assault samples, and 135,037 (0.36%) are 

benign. The dataset contains four distinct assault categories. 

 

6.9. NetFlow ToN-IoT dataset 

The NF-ToN-IoT v1 dataset was created utilizing the publicly 

accessible pcap files from the ToN-IoT dataset to generate its 

NetFlow records. This resulted in the NF-ToN-IoT NetFlow-

based IoT network dataset. Of the total 1,379,274 data flows, 

270,279 (19.6%) are benign samples, and 1,108,995 (80.4%) 

are attack samples. The NF-ToN-IoT v2 dataset was similarly 

produced utilizing publicly available pcap files, resulting in 

16,940,496 total data flows, of which 10,841,027 (63.99%) 

are assault samples, and 6,099,469 (36.01%) are benign. Both 

NetFlow datasets, NF-BoT-IoT v1 and v2, as well as NF-

ToN-IoT v1 and v2, were created by Mohanad Sarhan [193]. 

6.10. N-BaIoT Dataset 

The dataset tackled the scarcity of botnet databases, 

particularly in the IoT domain. It contains authentic traffic 

data collected from nine commercial IoT gadgets confirmed 

to be infected with the BASHLITE and Mirai botnets [194].  

Furthermore, there are several other IoT datasets that are less 

prevalent. For more details and further knowledge, refer to 

[195]. 

In this section, we provided an overview of key IoT security 

datasets, along with references to assist researchers in easily 

locating them. Each dataset has its advantages and 

disadvantages, which we will outline in Table 16. 

Additionally, Table 17 presents some studies [196-205] that 

have utilized these IoT security datasets. 

Table 16 IoT Datasets 

Dataset Attack type Advantages Disadvantages 

BoT-IoT DDoS, DoS, OS and 

Service Scan, 

Keylogging and Data 

exfiltration attacks. 

• Real-Word Network Traffic. 

• Include a wide variety of IoT 

gadgets and assault scenarios. 

• Labeled Data. 

• New generated Features. 

• Accessibility Dataset. 

• Imbalanced Dataset. 

• Accurately labeling network 

traffic data can be 

challenging. 

• Has overfitting. 

• Privacy Issues. 

UNSW-NB15 Fuzzers, Analysis, 

Backdoors, DoS, 

Exploits, Generic, 

Reconnaissance, 

Shellcode and 

Worms. 

• Realistic Dataset. 

• Offers CSV files and network 

traffic (PCAP). 

• Labeled Dataset. 

• Diversity Dataset. 

• A collection of a wide array of 

features derived from network 

traffic. 

• Developed with a synthetic 

environment for producing 

assault activities. 

• Imbalanced Dataset. 

• Deficiency of update. 
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ToN-IoT 

 

DoS, DDoS and 

Ransomware. 

Include heterogeneous data 

sources. 

Realistic traffic. 

Cove various attacks. 

Launched exclusively on IIoT 

Network computer systems, 

IoT gateways, and web 

applications. 

Restricted acceptance and 

validation in the field of 

cybersecurity research 

IoT-23  Malware  An extensive dataset. 

Labeled dataset. 

Contain various of protocol which 

assist researchers to evaluate 

various IoT device and protocol 

interactions and vulnerabilities. 

Benefield for security research. 

Imbalanced dataset. 

Limited to attacks type. 

Contain Biases which leads to 

influence the outcomes. 

Contain sensitive information 

due to its real-word dataset. 

MQTT-IoT-

IDS2020 

SSH-Brute Force, 

MQTT brute-force 

attack, aggressive 

scan, UDP Scan 

Real word traffic data. 

Includes an extensive amount of 

network traffic data 

Contain divers type of attacks. 

Dependence on particular 

protocol. 

Captures of static network 

traffic. 

CICIDS 2017 Brute Force FTP, 

Brute Force SSH, 

DoS, Heartbleed, 

Web Attack, 

Infiltration, Botnet 

and DDoS. 

Real-word traffic network. 

Labeled dataset. 

Accessibility dataset. 

Imbalanced dataset. 

Contain limited attacks. 

Need preprocessing for 

optimization which cause 

computational cost. 

CTU-13 

 

Botnet, Malware Real-word dataset. 

Scalability dataset. 

Labeled dataset. 

Limited attack type. 

 

NF- BoT-IoT v1, 

v2 

Benign, DoS, DDoS, 

theft, Reconnaissance   

Real-word data traffic. 

Applied to disclose Botnet attacks. 

Used in IoT security researches. 

Data quality issues. 

Analytical complexity. 

Imbalanced dataset. 

Contain noise. 

NF-ToN-IoT v1, 

v2 

Benign, Backdoor, 

MiTM, Password, 

XSS, Scanning, DoS, 

DDoS, Injection, 

Ransomware. 

Real-word dataset. 

Contain data different IoT 

devices. 

Used in Anomaly detection. 

Contain Biases. 

Contain Noise. 

Focus only on traffic data. 

Imbalanced Dataset. 

N-BaIoT Mirai, Bashlite Real Data collected for 9 IoT 

devices. 

Used in Anomaly detection. 

Imbalanced and Biases 

dataset. 

Limited volume of network 

traffic. 
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Table 17 Studies Related to IoT Datasets Using ML and DL Techniques 

Refences Dataset Attack Method used Findings 

[196] 

 

UNSW-NB15 Intrusion ANN ACC: 0.84 

[197] BoT-IoT DoS ML (SVM, RF), DL 

(CNN) 

ACC:0.90 

[198] MQTT dataset 

 

Brute force, DoS, 

Flood, Legitimate, 

Malformed 

NN, RF, NB, DT, GB 

MPL 

 

ACC:  0.98 

Time: 30s. 

[199] CSE-CIC-IDS2018, 

ToN-IoT, UNSW-

NB15 

 

DDOS, DOS, 

Backdoor, Injection, 

MITM, Ransomware, 

Scanning, Password, 

XSS 

ML (LR, DT, NB), DL 

(DFF, RNN, CNN) 

 

DT: 0.99 

[200] NF-BoT-IoT 

NF-ToN-IoT 

NF-CSE-CIC-

IDS2018-v2 

NF-UNSW-NB15-v2 

Botnet XGB ACC: 0.97 

AUC: 0.99 

Recall: 0.98    

Precision: 0.99 

[201] CTU-13 Botnet EL, DT, KNN, RF ACC: 99.07 

CM: 0.1 

Time: 12.99s 

RTime: 0.0004s 

[202] IoT-23 DDoS, botnets like 

Mirai, Okiruk 

KNN, RF ACC: 0.89 

Precision: 0.1 

Recall: 0.81 

[203] N-BaIoT Mirai and BASHLITE Supervised and 

Unsupervised ML 

ACC: 99.92 

[204] CIC-IDS2017 DDoS, Probe, Web 

attacks, DoS 

Hybrid DL ACC: 99.32 

[205] UNSW-NB15 Norma, Generic, 

Exploits, Fizzers, DoS, 

Reconnaissance, 

Analysis, Backdoor, 

Shell code, and Worms 

ANN, CNN, LSTM, 

RNN 

ACC: 95.97 

Training Timing: 

6043.32s 

7. CHALLENGES, FUTURE TREND, AND 

DISCUSSION 

ML and DL are essential components in ensuring the security 

of IoT systems; however, they face diverse challenges in IoT 

security. This section presents the challenges linked to ML 

and DL in relation to IoT security. Furthermore, it provides a 

discussion on the roles, future trend, and the limitations of 

ML and DL methods. 
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7.1. Machine Learning challenges  

This section concentrates on the challenges of ML in the IoT 

environment, summarizing essential obstacles to help 

researchers build a comprehensive understanding of ML 

algorithms. 

7.1.1. Quantity and Quality of Data 

Data is considerable for training ML models. The data 

generated by several IoT gadgets may be noisy, incomplete, 

or inconsistent, making it difficult to ensure data quality. 

Additionally, having enough labeled data for training robust 

models is a significant challenge. 

7.1.2. Scalability and Heterogeneity 

IoT gadgets vary widely in design, protocols, and 

communication standards. Developing ML models that can 

handle this heterogeneity accurately and scale to support large 

IoT deployments is challenging. 

7.1.3. Insufficient Training Data 

Training data is crucial for achieving accurate results in ML. 

Insufficient data can lead to biased or erroneous predictions. 

Research indicates that when algorithms are trained with 

limited data, the accuracy can fluctuate as the data increases, 

highlighting the need for appropriate training data. 

7.1.4. Selection the proper ML techniques 

Choosing the correct ML classifier is vital for producing 

accurate results. Using an inappropriate algorithm can lead to 

inaccurate outputs, inefficiencies, and reduced effectiveness. 

7.1.5. Privacy Concern 

IoT systems often collect sensitive information about 

individuals or organizations. ML models trained on this data 

can pose privacy concerns if not adequately secured. 

Enhancing privacy-preserving ML algorithms that can 

function on encrypted or anonymized data without sacrificing 

performance is a complex task. 

7.1.6. Resource Constraints 

IoT appliances often have constrained memory, computational 

power, and energy resources. Designing lightweight ML 

algorithms that maintain security and perform well on such 

devices is challenging. 

7.1.7. Dark Web Risks 

The dark web is composed of anonymous networks and 

websites with hidden IP addresses. ML models used in IoT 

security may be vulnerable to dark web assaults, where 

malicious actors leverage input data to deceive the model. 

Designing ML models resilient to such assaults remains a 

challenge. 

7.1.8. Interpretability of the Model 

Understanding and analysing ML model decisions is crucial 

for establishing trust in IoT security systems. However, many 

sophisticated ML models lack interpretability, making it 

complex to comprehend their decision-making processes. 

7.1.9. False Positive Rate in ML 

Many IoT security studies have aimed to reduce the false 

positive rate (FPR), but only a few have successfully lowered 

the false alarm rate (FAR) to an Optimal level. This problem 

persists, and researches are continually working to mitigate it.  

Addressing these challenges requires multidisciplinary efforts 

that combine domain-specific knowledge, ML, cybersecurity, 

and IoT expertise. Ongoing research and collaboration are 

vital to developing innovative solutions that boost the security 

of IoT ecosystems.  

7.2. Deep Learning Challenges 

While DL presents promising solutions for IoT security, it 

also faces several challenges. 

7.2.1. Adversarial Attacks Risks 

This assault involves altering input data to manipulate the 

model’s predictions or decisions. These attacks could be used 

in IoT security to bypass security measures or trigger false 

alarms. 

7.2.2. Interpretability and Explainability 

DL models are often seen as "black boxes" that make 

decisions through complex internal computations. This lack of 

transparency can hinder understanding the rationale behind a 

decision, which is problematic in security applications where 

understanding the justification is important. 

7.2.3. Effectiveness 

The constraint resources available on IoT gadgets (memory, 

bandwidth, and time) can hinder the deployment of DL 

models. Although DL models can be trained offline, 

implementing them on devices with limited resources remains 

challenging. Additionally, applying DL to large datasets is 

powerful, but DL models rely on raw data processed through 

multiple layers of neurons, posing ongoing challenges in 

minimizing storage and computational demands for resource-

constrained devices. 

7.2.4. Robustness  

IoT environments are dynamic, with varying network 

conditions, device settings, and environmental factors. DL 

models trained on static datasets may perform poorly in these 

dynamic conditions, making them more insecure to security 

breaches. 
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7.2.5. Privacy of Data 

DL models require large amounts of data, which often include 

sensitive information from IoT devices. Ensuring data privacy 

while collecting enough data to train effective models is a key 

challenge. 

Addressing DL challenges requires innovative algorithms 

development, optimization strategies, and system-level design 

tailored to IoT security applications. Collaboration between 

deep learning and IoT security researchers is necessary to 

create solutions that balance security, performance, and 

resource constraints. 

7.3. Discussion 

DL, and ML mitigate some of these limitations by 

automatically extracting complex features from large, 

unsupervised IoT datasets, making it particularly effective at 

identifying advanced security threats. In IoT security, DL has 

been used to detect attacks and network anomalies by 

analyzing real-time data from smart home systems and other 

interconnected appliances.  

However, despite the potential of ML and DL, challenges 

remain, including scalability, energy efficiency, and accuracy. 

Over classification and misclassification can lead to 

significant errors in attack detection, resulting in false 

positives and negatives. Future trends aim to enhance model 

robustness through techniques like adversarial learning and 

self-learning systems that adapt to emerging threats in real 

time.  

The development of energy-efficient algorithms and federated 

learning will improve privacy and reliability for resource-

constrained IoT gadgets. Further research is required to tackle 

these constrains fully and improve the accuracy of assaults 

disclosure in IoT security systems. 

8. CONCLUSION 

IoT is increasingly integrated into our everyday lives because 

of the growth of the internet and the vast number of gadgets 

linked to it. Because IoT networks are dynamic, securing 

them can be challenging and presents a number of issues for 

standard security solutions. Securing IoT is complex and 

traditional security solutions face a several of challenges due 

to the nature and the characteristics of IoT networks. ML and 

DL have facilitated the enhancement of a several of 

sophisticated analytical approaches that may be utilized to 

enhance IoT security. Moreover, ML techniques can address 

IoT security issues and challenges caused by the risk of 

attacks and affected by leaving holed. In this survey, the 

characteristics, IoT architecture, protocols, and IoT 

vulnerabilities of IoT systems are highlighted. we discuss IoT 

applications and present a table that summarizes the pros and 

cons of each application. Then, we discuss the potential IoT 

attacks in term of passive attack and active attacks and 

enhance that with the primary objective for each attack. An 

existing survey related to IoT security has been presented. 

ML/DL methods have been discussed with the strength and 

weakness of each. Furthermore, we discuss the previous 

studies with respect of them. analyzing and classifying of the 

existing researches between 2018 up to this date have been 

discussed. After that, we present the taxonomy of IoT layer 

attacks and discussed each attack type in detail, providing 

recent studies that propose solutions using ML/DL methods to 

address these attacks. Additionally, we summarized the 

datasets related to IoT security, highlighting their advantages 

and disadvantages, as well as current research that has applied 

these datasets. We also discussed the challenges, and the 

future trends related to ML/DL in the context of IoT security. 

The purpose of this survey is to provide a helpful guide for 

academic researchers, offering comprehensive knowledge of 

IoT, IoT security, DL/ML techniques, and common IoT 

attacks at various network layers. By outlining the challenges 

faced by ML and DL in this domain, we aim to equip 

researchers with a clear understanding, enabling them to 

select the most appropriate techniques for disclosing and 

mitigating IoT attacks. 
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