
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 803

RESEARCH ARTICLE

A Novel LPRPO-LSTDCNN Based Side Channel

Attack Detection and Secure Data Transmission

Framework Using DH-ATM-RFICC

Prasath Vijayan
Department of Computer Science and Engineering, Perunthalaivar Kamarajar Institute of Engineering and

Technology, Karaikal, India.

✉ prasathvijayan@outlook.com

Sudalaimuthu T
School of Engineering and Technology, Hindustan Institute of Technology and Science (Deemed to be University),

Chennai, India.

tsmuthu@hindustanuniv.ac.in

Received: 04 August 2024 / Revised: 28 October 2024 / Accepted: 08 November 2024 / Published: 30 December 2024

Abstract – Side Channel Attack (SCA) is the exploitation of data

security due to information leakage from a device. However, the

existing studies didn’t focus on the detection of SCA based on its

types and the prevailing works had security leakage and time

complexities. Therefore, the paper presents the SCA detection

with multi-class classification for secured data transmission.

First, the device is installed and the public and private keys are

generated. Next, Universally Unique Identifier (UUID) is

generated and based on the public key and UUID, a hash code is

generated using Interpolation Harmonic Entropy based

SWIFFT(IHE-SWIFFT) hashing algorithm. At the same time, a

secret key is generated using a public key and UUID. Then, with

the help of a secret key and public key, data is encrypted using

Diffie-Hellman Asymmetric Tent map-based Robust Frobenius

Isogenies Curve Cryptography (DH-ATM-RFICC). For the

purpose of user authorization, hash code matching is carried out.

If the hash code is not matched, then the transaction will be

declined to prevent from unauthorized transactions. If the hash

code at the time of transaction initialization is matched with the

hash code generated during the transaction, then the data is

gathered by extracting the features using Gini Point Bi-serial

Correlation-based Empirical Wavelet Transform (GPBC-

EWT).The extracted features are then reduced using Bag of

Deep Features (BoDF) and through hybrid classifier to detect the

SCAs using Lagrange Polynomial Red Panda Optimization with

Logistic Softmax Tree Hierarchical Deep Convolutional Neural

Network (LPRPO-LSTDCNN). Finally, the data under no attack

are decrypted in the server for successful transaction. Hence, the

proposed model detected the attack with 98.87% Accuracy,

98.86% Precision, 98.88% Recall, and decrypted the data

securely in 978ms, thus showing better performance than

existing models.

Index Terms – Side Channel Attack, Deep Learning,

Cryptography, Deep Convolutional Neural Network, Red Panda

Optimization, Hashing algorithm.

1. INTRODUCTION

In recent years, the technologies under automation with top-
notch Artificial Intelligence (AI) and sensor models have been

increasing [1]. These AI applications are designed to provide

the personal information of the users to make successful

transactions [2]. For instance, private data, such as Personal

Identification Number (PIN), passwords, card details, email

data, etc., of the users are entered through the device [3] [4].

This private information is secured using cryptographic

applications to prevent the leakage of personal details; but, the

attack can occur on a physical platform through side channels

[5]. Thus, exposing this private information in any form might

be vulnerable to SCA, which was done by hackers [6]. The

leakage of users' private data and the loss of users' critical
information by the attacker is known as SCA [7]. Normally,

SCAs are the significant components of present cybersecurity

systems, especially for devices and networks.

The SCA is classified into Timing, Electromagnetic (EM),

Simple Power Analysis (SPA), Differential Power Analysis

(DPA), and Template Attacks [8]. In these types of attacks,

the loss of information is in the form of time, electromagnetic

radiation, power consumption, temperature, sound, and

operational time [9]. Different types of SCAs are done by

revealing the secret key of the user's device, and the hacker

uses the secret key to collect private data [10]. Also, the
Public Key is made available to every user, which can cause

information leakage [11]. Therefore, it is important to detect

the SCAs for successful transactions. SCA detection and

secure data transmission protect sensitive information,

especially as systems heavily rely on connected devices like

the Internet of Things (IoT), embedded systems, and mobile

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 804

RESEARCH ARTICLE

applications. In most of the existing works, advanced

encryption protocols, cryptographic techniques, and key

management strategies were used; they provided data

confidentiality, security, integrity, and availability across

different devices and networks [12].

Also, SCA in the target device was detected using various

Machine Learning (ML) and Deep Learning (DL) techniques

[13]. Likewise, some existing research works employed ML

techniques, such as Random Forest Algorithm (RFA) and

Support Vector Machine (SVM) for SCA detection. Also,

certain prevailing works used DL techniques like

Convolutional Neural Network (CNN) for SCA detection

[14]. However, all the types of attacks related to SCA were

not detected in the existing deep learning networks. Also, not

all the works secured the public and private keys of the target

device, which led to unauthorized access and signal trace
attacks [15]. Hence, to address these limitations and to

improve attack detection, a novel framework for SCA

detection using DF-ATM-RFICC and LPRPO-LSTDCNN is

proposed in this paper.

1.1. Problem Statement

The drawbacks of the existing works are given below,

 The detection of types of SCA, such as Timing, EM, SPA,

DPA, and Template attacks was not concentrated on the

prevailing works.

 [16] analyzed the micro-architectural pattern through HPC

features, which reduced the SCA detection performance.

 In [17], the training time was high due to the consideration

of all the extracted features from the traces.

 [18] revealed the details of the public key to everyone in

the network, which led the hacker to attack the data easily.

 The Design Space Exploration (DSE) used Electronic

System-level Synthesis (ESLS) for leakage detection.

However, ESLS was time-consuming; hence, the detection

became slower.

The objectives of the proposed work are enlisted as follows,

 In the proposed work, different types of Side-Channel

Attacks are detected by using LPRPO-LSTDCNN

classifier.

 The features are extracted using the GPBC-EWT method

to improve attack detection.

 To decrease the time required for training the LPRPO-

LSTDCNN classifier, the inaccurate features are

eliminated by using BoDF technique.

 To prevent the data from being attacked due to the

exposure of the public key, the data is secured using the

private key and secret key generated based on the public

key and UUID.

 To reduce the attack detection time and add more security,

hashcode matching, feature reduction, and weight

optimization using LPRPO are carried out.

The rest of this paper is organized as follows: Section 2

explains the related work, Section 3 describes the details of

SCA detection methods, Section 4 presents the experiment

results and analysis, and Section 5 conveys the discussion

about the proposed model. Finally, Section 6 concludes the

paper with future scope.

2. LITERATURE SURVEY

[16] established a Side Channel Attack detection model in

cryptographic application devices. The features of the data

were extracted using the Neural Network Support Vector

Machine (NEROSVM). Then, the grid search technique was
used for the selection of the parameters needed for

classification. At last, the selected features were classified for

SCA detection using the Restricted Boltzmann Machine

(RBM) method. Thus, the model detected the attack

accurately and retrieved the Secret Key for decryption of the

data. However, the pre-processing of the data was not done,

which affected the classification performance.

[17] introduced a deep learning-based SCA detection based

on the process of cryptographic algorithm. The signal traces

were collected from the cryptographic devices. Then, the

important features were extracted and classified using the

CNN classifier. The classification was based on profiled SCA
and non-profiled SCA. Depending on the leakage detection

model, the secret key was generated in the server to decrypt

the data. Hence, a successful data transaction was achieved by

the introduced research. Yet, only the presence of an attack

was detected. But, this model did not detect the type of attack.

[18] presented Leakage Resilient Certificate Based

Authenticated Key Exchange (LR-CB-AKE) protocol for

leakage detection during data transfer. Here, the data was

secured using the entropy technique. The user certification

was done by creating a session key. The LR-CB-AKE method

generated a secret key, and this was used for decrypting the
data. Hence, the secured data transfer was done by the LR-

CB-AKE model. But the private keys generated could not be

hidden from adversaries, which led to SCA.

[19] developed a deep learning-based side-channel

preprocessing with autoencoders for cryptanalysis. The power

consumption in the target device was first calculated. Then, a

guessing key related to the power hypothesis was generated,

and the correlation between the key and the power

consumption was made. The correlated data was then

classified using Differential Deep Learning Analysis

(DDLA). Thus, the developed model accurately identified the

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 805

RESEARCH ARTICLE

Simple Power Analysis (SPA) attack and provided improved

performance. On the contrary, other types of SCA were not

detected by this framework.

[20] accomplished side-channel Gray-box attack for Deep

Neural Network (DNN). The Gray-box attack was the SCA
that occurred in the DNN, and this leaked the structural

information of the DNN. The data acquisition from an

Artificial Intelligence (AI) device was done. Then, the power

features were extracted, and the Fast Gradient Sign Method

(FGSM) was used for detecting the SCA. The adversarial

attacks in DNN were accurately detected by the research.

However, no preprocessing techniques were used in this

model, leading to the misclassification of the data.

[21] demonstrated a distribution algorithm for side-channel

analysis in IoT devices. The Points of Interest (POI) selection

of the data was done using the Estimation of Distribution
Algorithm (EDA). The Template Attacks were identified

using the optimization technique. Thus, the research

excellently identified the leakage of information in IoT

devices. Yet, the EDA detected the Template Attack in the

important features, which led to delayed attack detection.

[22] implemented an efficient countermeasure technique for

SCA detection in IoT devices. First, based on the defense

approach criteria, the Timing Side-Channel Attack

Countermeasure Technique (TSCA-CT) was used for

decision-making. Then, a decision matrix was built. Then, by

using the Fermatean Fuzzy Decision Opinion Score Method

(F-FDOSM), the SCA present in the input data was accurately
detected. But the criterion that followed the electromagnetic

functional attacks could not be classified in this model.

[23] evaluated an encryption security model against the SCA

using a lightweight approach. Here, a Hash-based

Authenticated Nonce-Misuse Resistant Encryption

(HANMRE) was used for encrypting the data. This

HANMRE method was an Authenticated Encryption with

Associated Data (AEAD) scheme, which was further used for

identifying lightweight leakage. Hence, the SPA was

precisely identified using the HANMRE technique. Yet, the

secret keys were not generated, which resulted in difficulty

during data decryption.

[24] integrated Autoencoder-based side-channel analysis in

IoT networks. First, from the target device, an identical clone

device was made. Then, the side-channel information of the

cloned device was categorized in the profiling phase. Using

Autoencoder, the features were extracted. Finally, for the

extracted feature, the SCA classification was performed using

the CNN technique. Thus, the presence of SCA was classified

effectively by CNN; also, the model provided high-level

security. However, the selection of optimal features was not

done, which led to improper SCA detection.

[25] explored integrated side-channel processing in DNN. The

input data was mapped and then down-sampled regarding the

time domain. Meanwhile, spectral transformation for the

mapped data was done regarding the frequency domain.

Finally, the transformed data and the down-sampled data were
given to the Multi-scale Convolutional Neural Networks

(MCNN). Thus, the MCNN classified the SCA attack present

in the input data and was proved as a promising model for

SCA detection. Yet, the capturing of temporal data during

down-sampling was difficult, which delayed the classification

of SCA.

Thus, the existing methodologies obtained poor performance

in SCA detection owing to the improper pre-processing of

data, private key leakage, difficulties in data decryption,

improper selection of features, and so on. Also, the prevailing

studies didn’t identify the types of SCA. Likewise, the
existing works provided poor and limited performance for a

large number of data sizes or transactions. To conquer these

shortcomings, an effective LPRPO-LSTDCNN and DH-

ATM-RFICC-based SCA attack detection and secure data

transmission framework is proposed in this article.

3. PROPOSED SIDE CHANNEL ATTACK DETECTION

MODEL

In the proposed model, the SCA is detected by using LPRPO-

LSTDCNN, and the data is secured by utilizing DH-ATM-

RFICC methods. This work involves major processes, such as

hashcode generation, data encryption, pre-processing, feature

extraction, feature reduction, and SCA classification. The

framework of the proposed model is depicted in Figure 1.

3.1. Device Setup and Key Generation

First, the devices, such as the Oscilloscope and Processing

Unit, which generates signal traces, are setup. These signal

traces  T are the input data and are represented in the

equation (1),

 ee TTTTTT ,,..,,, 1321  (1)

Where,  e is the number of signal traces. Next, the keys,

such as Public Key   and Private Key   are generated

from the key generation center using DH-ATM-RFICC,

which is mentioned in section 3.5. Next, UUID is generated

as explained below,

3.2. UUID Generation

To authorize the user during the transaction, a timestamp-

based UUID  f is generated, which is represented in

equation (2). This UUID is a 128-bit identifier, and the time

stamp ensures the unique generation of  f .

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 806

RESEARCH ARTICLE

 afffff ,...,,, 321 (2) Where,  a is the number of UUID generated. Next, by using

 f , the hashcode is generated as shown in section 3.3.

Figure 1 Architecture of Proposed Work

3.3. Hashcode Generation

Here, by using the Public Key   and UUID  f , a hashcode

is generated using the IHE-SWIFFT algorithm. The SWIFFT
hashing algorithm generates a hashcode regarding Fourier

coefficients. Due to the generation of hashcode, SWIFFT

enhances mathematical security. However, the SWIFFT

hashing algorithm is not collision-resistant i.e., it provides the

same output for two different inputs. To avoid this issue,

Interpolation Harmonic Entropy (IHE), which differs from the

hashing output to form a unique hashcode, is used along with

SWIFFT. IHE offers collision resistance in SWIFFT, which

can include superior distribution of entropy, enhanced non-

linearity, greater resistance to attacks, and increased

complexity in both the input-output relationship. This makes

the IHE harder for adversaries to create collisions, thus

improving the overall security of the hash function.The IHE-

SWIFFT method is described as: First, the Public Key  
and UUID  f are combined and represented by  M , which

is equated in the below equation (3),

fM   (3)

The combined input  M is then converted into a matrix

  dcM  with dimension  dc and is represented in

equation (4),

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 807

RESEARCH ARTICLE

  dcMM  (4)

To avoid the collision of output, IHE  g given in equation

(5) summarizes the data regarding   dcM 
, is calculated as,

      
    

    2

2

2

1

cd

dc
dc

MM

MM
MMMg




 (5)

Finally, the hashcode is generated in equations (6) and (7)

based on   dcM 
, the Fourier coefficient   , and IHE  g

and is given as,

   








 
c

gMc  log (6)

   MM
c

cM












5.0

2

exp4cos
1



 (7)

Where,   is the generated hashcode and  14.3 . Now,

the secret key is generated for data security, which is

mentioned in section 3.4.

3.4. Secret Key Generation

The Diffie-Hellman (DH) method that securely exchanges the

keys over a public channel is used for generating a Secret Key

(SK). The SK is generated to securely encrypt and decrypt the

transaction details and prevent them from attacks. The DH

algorithm is explained below,

A prime number  i and its primitive root  i  are assumed

such that  ii  . The SK   is generated using Public Key

  and UUID  f as given in equation (8),

   if
mod  (8)

Where,  mod is a modulo operator. The SK   is then used

for encrypting the data, which is discussed in section 3.5.

3.5. Data Encryption

After the generation of SK   , the data  T is encrypted to

secure the transaction. Here, Elliptic Curve Cryptography

(ECC), which encrypts and decrypts the data faster, is used

for encryption. But, in ECC, the Private Key is generated

randomly to encrypt the data into variable length, which

might lead to a side channel attack.

Hence, to mitigate this issue, Robust Frobenius Isogenies

Curve Cryptography (RFICC) that fixes each element into the

curve is used instead of ECC. Also, an Asymmetric Tent Map
(ATM) that generates the key uniquely is used for generating

the private key. Actually, ATM provides improved non-

linearity for unpredictability; also, ATM produces high-

entropy outputs owing to its chaotic dynamics, which

prevents key leakage by diminishing the possibility of

duplicate keys and strengthening the resistance against

attacks.

The process of DH-ATM-RFICC is detailed below,

 Curve Formation

The Robust Frobenius Isogenies  F that forms an algebraic

closure pattern and fixes the data  T into the curve is

expressed in the below equation (9),

 bb

vuF  , (9)

Here, the curve has parameters  vu, , characteristics   , and

integers  b . The elliptic curve with  F and constant  r is

expressed as,

      ruruv
bbb

  32
 (10)

The aforementioned equation (10) specifies the elliptical

curve.

 Key Generation

The curve shown in equation (9) and the Public Key   are

used for Private Key   generation. In equation (11), the

Public Key   is generated using the point  o and constants

 21, of the curve and is given as,

 21   o (11)

The ATM is a piecewise linear equation, and this

automatically generates the   as equated in the below

equation (12),

 1,min  hh (12)

Where,  h is the point from the curve.

 Encryption

The data  T is finally encrypted using the Secret Key   and

the Private Key   as,

     hTT (13)

In equation (13),  T represents the encrypted data. The

pseudocode for DH-ATM-RFICC is given in algorithm 1.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 808

RESEARCH ARTICLE

Input: Signal Traces  T

Output: Encrypted Data  T

Begin

Initialize curve parameters  vu,

Generated Secret Key

   if
mod 

Calculate Robust Frobenius Isogenies  bb

vuF  ,

Form the curve

      ruruv
bbb

  32

While  b

vh 

Evaluate Private Key  1,min  hh

For  

Encrypt data

     hTT

End for

End while

Obtain Encrypted data  T

End

Algorithm 1 DH-ATM-RFICC

Next, the hashcode is matched to transmit the encrypted data

 T , which is explained in section 3.6.

3.6. Hash Code Matching

To avoid unauthorized users, the hashcode   generated

from the device during transaction initialization is matched

with the hashcode generated during the transaction by the

server. The condition to match hashcodes  H is represented

in the equation (14) as,

 
 














ˆ

ˆ
H (14)

Where,   is the hashcode matched condition, and   is the

hashcode mismatched condition. When the hashcode is not

matched   , the encrypted data  T is blocked for further

processing, and when the hashcode gets matched   ,  T is

given for SCA detection.

3.7. SCA Detection

For detecting SCA in real time, first, the SCA detection model

using the LPRPO-LSTD CNN-based deep learning classifier

is trained with respect to the publically available SCA dataset.
The training of the SCA detection model is detailed as

follows,

3.7.1. Data Collection

First, the signal traces  T are collected from the AES_HD

dataset and are represented in the equation (15),

 wTTTTT  ...,,, 321 (15)

Where,  w is the number of data used for training. Now,  T

is preprocessed as detailed below,

3.7.2. Pre-Processing

Here, the data  T is preprocessed using the Z-Score

standardization technique, which scales the input accurately

into a standard range of  1,0 . The preprocessing, which is

represented in equation (16), is done because it helps in

extracting relevant features from the data with less time. The

Z-Score equation is described as,

 





T

T
T




 (16)

w

T
e






 (17)

Where,  T  is the preprocessed data,  w is the number of

 T , and   signifies the mean of  T , which is given in

equation (17), and  T is the standard deviation of  T .

Then, the features required for the classification of different

types of SCAs are extracted from  T  as described in section

3.8.

3.7.3. Feature Extraction

In this phase, for effective SCA detection, the features are

extracted from  T  . To extract the features, Empirical

Wavelet Transform (EWT), which extracts the data by

creating a wavelet filter bank, is used. Also, EWT excellently
captures the important components of the signal by adapting

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 809

RESEARCH ARTICLE

to the specific frequency bands of the signal, thus leading to

better feature extraction for signals. But, the Short-Time

Fourier Transform (STFT) and Continuous Wavelet

Transform (CWT) employ fixed basis functions; thus, they

are not optimal for all types of signals. However, shift
invariance occurs in EWT i.e., the input and output

relationship changes with time and affects the feature

extraction. Hence, Gini Point Biserial Correlation (GPBC), is

used in EWT, which makes comparisons over the continuous

variables of the input data. Also, when dealing with non-

stationary and complex signals, GPBC-EWT effectively

performs feature extraction compared to techniques, such as

STFT and CWT. The GPBC-EWT technique is explained

below,

Step 1: Local Maxima and Minima

First, let the number of decompositions be represented by  D

for the input  T  with the  w number of data. Now, the

boundary limits  el are set as given in below equation (18),












e

D

e

e

l

l
l

00
 (18)

Where,  el0 is the local minimum with zero value and  e

Dl is

the local maxima with  7/22 .

Step 2: Correlation Factor

The correlation factor   is calculated using GPBC, which

uses the maxima and minima limits of the data to extract the

feature correctly. The   is equated in the upcoming

equation (19),

 
e

ee

D

T

e

l

ll

D

T
0

2













 (19)

Where,  T 
 is the standard deviation of  T  .

Step 3: Scaling function and Empirical Wavelet

In equations (20) and (21), the scaling function  B and the

Empirical Wavelet  V of  T  are calculated using   .

 

  

    




















 





otherwise

lll

ll

TB ee

D

e

ee

D

0

11
2

cos

11

00

0






 (20)

 

    
 

    

 
    























 








 





otherwise

lll

lll

lll

TV
ee

D

e

ee

D

e

ee

D

e

0

11
2

1
sin

22
2

1
cos

221

00

00

00









(21)

As given in equation (22), the values  B and  V are used for

decomposing the data.

Step 4: Transforms

Finally, the features  S , such as normalized signal,

decomposition number, wavelet decomposition, Fast Fourier

Transform (FFT), Fourier decomposition analysis, apply

filters, enforce sample flow type, convert integer float, check

mono, and calculated wavelet FFT are extracted as,

   TVTBS  (22)

 mSSSSS ,....,,, 321 (23)

Where, mS is the number of extracted features, which is

given in equation (23). Next, the features are reduced as given

in the following section,

3.7.4. Feature Reduction

Here, from  S , important features are selected by the process

of Bag of Deep Features (BoDF). BoDF superiorly captures

complex, nonlinear patterns in the data; also, BoDF preserves

more important semantic features than other techniques.

Likewise, BoDF proficiently learns significant patterns,

leading to more reliable feature reduction, even in noisy

environments. Owing to the aforementioned advantages, the

BoDF is chosen for feature reduction. This method clusters

the features  S ; then, the features are reduced based on

histogram formation, which is explained further,

 K-Means Clustering

First, the clusters  k are chosen from  S to group the

features. Then, the centroid to cluster the features is selected

randomly and is represented by  C . The distance between

the centroid  C and the features  S is calculated using

Euclidean distance  as given in the below equation (24),

  
m

SC
2

 (24)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 810

RESEARCH ARTICLE

Where,  m is the number of features. In equations (25) and

(26), the features with the shortest distance are clustered as,

 Sk   (25)

   
jkkkkk ,...,,, 321 (26)

Where,  j is the number of clusters formed after calculating

  . Now, the histogram of each feature in  j is calculated

to reduce the features from the grouped features.

 Histogram of Features

Here, the unique features from the grouped data   k are

selected using the Histogram equation as represented in

equations (27) and (28),

 
 

 k
m

m
vN




1
 (27)

 sNNNNN ,...,,, 321 (28)

Where,  v is the histogram of   k with points

  mv 1,...,2,1 ,  m is the maximum histogram point,

 N is the reduced feature, and  s is the number of reduced

features. Next, the different types of SCA are classified from

the reduced features  N , which are further described in

3.7.5.

3.7.5. Classification

Here, the Tree Hierarchical Deep Convolutional Neural
Network (THDCNN) that learns the features automatically

and combines the features hierarchically to detect the attack is

used for classification. But this classifier has the problem of a

slow convergence rate and detects the attack with high

latency.

Figure 2 Framework of LPRPO-LSTDCNN Classifier

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 811

RESEARCH ARTICLE

Therefore, the Logistic Softmax (LS) activation function that

provides probability values and makes the process faster,

especially for complex attack types in THDCNN. Also, the

LS activation function gives a clear indication of the

likelihood of each class than other activation functions.
Likewise, by emphasizing the most applicable class-specific

patterns, LS enables the THDCNN to learn more

discriminative features from the side-channel data.

Furthermore, the LS activation function improves the

convergence speed and accuracy and reduces the time

complexities; so, it is chosen over other activation functions.

Also, to enhance the SCA detection, the weight is initialized

by the Red Panda Optimization (RPO) algorithm, which

selects the weights according to the behavior of the Red

Panda. RPO is chosen due to its ability to find global optima

in complex and high-dimensional search spaces.

However, RPO has premature convergence issues due to

random selection in the climbing process, thus leading to

suboptimal solutions. To avoid this problem, the Lagrange

Polynomial function is included in Red Panda Optimization

(LPRPO), which effectively solves the premature

convergence problem and enhances the global search

capabilities.

The architecture of the Lagrange Polynomial-based Red

Panda Optimization-based Logistic Softmax-Tree

Hierarchical Deep Convolutional Neural Network (LPRPO-

LSTDCNN) is depicted in Figure 2.

First, for the input  N , the weight value of the LSTDCNN

classifier is initialized as follows,

 Weight Initialization Using LPRPO

To improve the performance of the classifier in

detecting SCA, the weight values are initialized using the

LPRPO optimization algorithm. The Red Panda Optimizer

(RPO) is capable of selecting the required weights using the

foraging strategy and tree-climbing behavior.

However, the random selection of the tree is made during the

climbing phase, which affects the position updation of red

pandas, thus leading to premature convergence and

affecting the optimal weight values for classification.

Thus, to mitigate this issue, the Lagrange Polynomial (LP)
technique that interpolates the Red Panda (RP) position is

used instead of the random position. The LPRPO algorithm is

explained in detail as follows,

 Population Initialization

The population of RP, which is the weight value of

LSTDCNN, is randomly initialized as,

GJGJpJJ

Gqpqq

Gp

J

q

yyy

yyy

yyy

Y

Y

Y

Y



















































,,1,

,,1,

,1,11,11















 (29)

Where,  Y is the population matrix of RP (weight values),

which is specified in equation (29),  
qY is the  thq RP,

 
pqy , is the position of RP with  thp dimension,  J is the

number of Red Panda, and  G is the number of problem

variables. Now, the initial position of RP is initialized in

equation (30),

 ppppq lbubnlby , (30)

Where,  
pp ublb , are the lower bound and upper bound

values of the  thp dimension of the Red Panda, and  n is

the random variable. The current position  
pqy , gets updated

regarding the fitness function.

 Fitness

Regarding maximum classification accuracy  K , the fitness

value   , which is used to update the position of the RP, is

calculated as given in equation (31),

 Kmax (31)

Thus, by using   , the weight values are selected from the

population matrix  Y .

 Position Update

In search of food, the Red Panda uses two strategies for
position updation. The two strategies are foraging behavior

and climbing behavior. The position update is as follows:

 Foraging

The RP has the ability to search the food by the use of

hearing, smell, and vision. Thus, for the selected food source

 I of the RP and constant value  z , the position of RP gets

updated as,

  zyIyy pqpqpq 

,,, (32)

Where,  

pqy , is the new position of the RP, which is

indicated in equation (32).

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 812

RESEARCH ARTICLE

 Climbing

After obtaining the food, the RP climbs the tree and rests on

it. At this stage, the RP chooses the tree randomly, which

affects the position update. Hence, LP, which compares and

interpolates the tree value and avoids random selection, is

used. The LP   is calculated in the below equation (33),







J OO

OO
 (33)

Where,  OOO ,, are the tree values that are near to the RP.

The position of RP by the climbing behavior is updated as,

 







 
 

x

lbublb
yy

ppp

pqpq


,,

 (34)

Where,  
pqy ,
 is the newly updated position of RP after

climbing, which is represented in the equation (34), and  x is

the iteration value with maximum iteration  X .

Finally, by updating the positions of RP, the weight value  ŷ

is selected. The pseudocode for the LPRPO algorithm is given

in algorithm 2.

Input: Random weights  y

Output: Selected weight value  ŷ

Begin

Initialize population, iteration  Xx,

Evaluate random position of Red Panda

 ppppq lbubnlby ,

Calculate fitness  Kmax

While  Xx 

//Foraging updation

For  

pqy ,

Search food and move   zyIyy pqpqpq 

,,,

If    pqpq yy ,,  

Update new position  ŷ

Else

Original position  
pqy ,

End if

End for

// Climbing behavior

For  
pqy ,


Calculate 





J OO

OO


Climb and rest
 








 
 

x

lbublb
yy

ppp

pqpq


,,

If    pqpq yy ,,  

Best solution  ŷ

Else

Same position  
pqy ,

End if

End for

End while

Return Selected weight value  ŷ

End

Algorithm 2 LPRPO Algorithm

These optimal weight values  ŷ are further used in the

classification for SCA detection. Further, along with the

optimal weight values  ŷ , the reduced features  N are given

as input to the classification model for types of SCA. The

classifier has multiple nodes connected in a tree shape. The

nodes are Root Node  R , Branch Nodes  R  , and Leaf

Nodes  R̂ . The SCA classification is described as follows,

 Root Node

The input  N is passed into the classifier for super-class

classification, and this phase is known as Root Node  R . The

layers present in  R are given below,

 Convolutional Layer

The Convolutional Layer  A initializes the weights  ŷ

obtained from the LPRPO algorithm and multiplies them with

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 813

RESEARCH ARTICLE

the input data. The value of  N is convolved and activated

using the Rectified Linear Unit (ReLU) activation function.

The output of  A is expressed in the equation (35).

    tyNA ˆ (35)

 N,0max (36)

Where,  t is the bias value of the convolutional layer and

  defines the ReLU activation function, which is given in

equation (36). Now,  A is passed to the pooling layer.

 Pooling Layer

The Pooling Layer  L reduces the feature count and helps in

increasing the training speed. The important features needed

for SCA detection are chosen by this layer  L and are

equated in the equation (37),

 AL max (37)

The pooled output  L  is given to the fully connected layer.

 Fully-Connected Layer

In the Fully-Connected Layer  W , each neuron present in

 L  is connected to form a single neuron. This layer helps in

detecting certain features and is used for predicting the

respective class from the input feature. In equation (38), the

output of a fully connected layer  W is derived as,

   tyLW   ˆ (38)

Where,  ŷ is the optimized weight value of the fully-

connected layer. Finally,  W is activated using the LS

activation function   .

 Activation

Here, the LS activation function   that separates the data

linearly to provide accurate classification is used. The   ,

regarding the largest element   in  W , is calculated in the

below equation (39),





W

W

exp1

exp
 (39)

In equations (40) and (41), the output  Q of the Root Node

 R is obtained as given below,

WQ (40)

 21,QQQ (41)

Where,  1Q and  2Q are the superclass-classified outputs,

and these outputs along with the input  N are given for

further classification into the Branch Node  R  .

 Branch Node

Here, in the Branch Node  R  , the deep convolution takes

place as seen in the Root Node. The input data  1Q is sent to

the Convolutional Layer  A , Pooling Layer  L , and Fully-

Connected Layer  W and are finally activated to give the

output  Q .

Similarly, for input  2Q , the output  Q  is obtained by

passing it into the Convolutional Layer  A  , Pooling Layer

 L  , and Fully-Connected Layer  W  and is finally

activated by Activation   .

 Leaf Node

The Leaf Node  R̂ has the final classified output  Q̂ , which

is obtained from the outputs  Q and  Q  . The final

classified output  Q̂ is represented in the equation (42),

 654321
ˆ,ˆ,ˆ,ˆ,ˆ,ˆˆ QQQQQQQ  (42)

Where,  1Q̂ is the data without SCA, and  2Q̂ ,  3Q̂ ,  4Q̂ ,

 5Q̂ ,  6Q̂ are the data with Timing, EM, SPA, DPA, and

Template, respectively. In real-time, the authorized

(hashcode-matched) user’s encrypted data  T is given to

the SCA detection model.

The data is classified as per the classes, such as under attack

and no-attack. The decryption of the data is explained in

section 3.8.

3.8. Data Decryption

Regarding the Secret Key   and Private Key   , the data

 T is decrypted using DH-ATM-RFICC method, which is

explained in section 3.5. The decrypted data is calculated as,

    T (43)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 814

RESEARCH ARTICLE

Where,   is the decrypted data, which is represented in the

equation (43). The decryption of the data takes place in the

server, leading to a successful transaction. Thus, the proposed

model effectively detected the types of SCA. The

performance assessment of the proposed model is explained

below in Section 4.

4. RESULTS

In this section, the performance of the proposed SCA

detection is compared with the existing models. All

experiments are done in the working platform of PYTHON

with the AES_HD Dataset.

4.1. Dataset Description

The signal trace data is collected from the AES_HD Dataset,

and the performance of the proposed method is compared

with the existing models to show the effectiveness of the

proposed work. The AES_HD dataset is a publicly available

one that is used for SCA detection. From the dataset, for each
class 15000 traces is taken such as Timing Attack, EM

Attack, SPA, DPA and Template Attack. Among that, 80% of

the data is used for training and 20% of the data is used for

testing the SCA detection model.

4.2. Performance Analysis

Here, the performance of the proposed techniques, such as

LPRPO-LSTDCNN, DH-ATM-RFICC, and IHE-SWIFFT are

compared with the existing methods to prove the effectiveness

of the proposed model in SCA detection.

Figure 3 SCA Detection Results

The comparative analysis of the proposed LPRPO-LSTDCNN

classifier and the existing THDCNN, Bidirectional Long

Short-Term Memory (BiLSTM), Long Short-Term Memory

(LSTM), and Recurrent Neural Network (RNN) in SCA

detection is depicted in Figure 3. The performance metrics,

such as Precision, Recall, F-measure, Accuracy, Sensitivity,

and Specificity are used for comparison. The proposed

classifier used the LS activation function to avoid slow

convergence during SCA detection. Thus, the LPRPO-

LSTDCNN method detected the SCA with 98.8659%
Precision, 98.8873% Recall, 98.8766% F-Measure, 98.8748%

Accuracy, 98.8873% Sensitivity, and 98.8625% Specificity.

But the existing models obtained lower metrics value with an

average of 93.5922% Precision, 93.9971% Recall, 93.7941%

F-Measure, 93.5782% Accuracy, 93.9961% Sensitivity, and

93.1279% Specificity. Thus, the proposed model performed

better than the existing classifiers in SCA detection.

Table 1 Comparative Analysis of LPRPO-LSTDCNN

Techniques
Training Time

(ms)
TPR (%) TNR (%) PPV (%) NPV (%)

Proposed LPRPO-

LSTDCNN
37485 98.8873 98.8605 98.8666 98.8835

THDCNN 42698 96.7142 96.3274 96.3699 96.6863

BiLSTM 47125 95.1565 94.7192 94.8061 95.0608

LSTM 53624 93.2228 91.9161 92.6163 92.5726

RNN 58476 90.8997 89.5197 90.5723 89.8615

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 815

RESEARCH ARTICLE

Figure 4 Comparative Assessment Regarding Attack

Detection Time for a Number of Data

Figure 4 displays the comparative assessment of the proposed

LPRPO-LSTDCNN and prevailing techniques in terms of

attack detection time for a number of data sizes. Here, the
proposed model utilizes LPRPO and LS activation functions

for effective SCA detection. The proposed LPRPO-

LSTDCNN took a low attack detection time of 37405ms for

1000 numbers of data and 57481ms for 5000 numbers of data.

But, the prevailing techniques like THDCNN, BiLSTM,

LSTM, and RNN obtained a high average attack detection

time of 51615.5ms for 1000 numbers of data and 71498.75ms

for 5000 numbers of data. Thus, the proposed LPRPO-

LSTHDCNN provided high scalability for the increased

number of transactions or data sizes. This made the proposed

model suitable for large-scale deployments, which showed

excellent real-world applicability. Thus, the reliability and

scalability of the proposed model were proven.

Figure 5 Performance Evaluation in Terms of FNR and FPR

Table 1 and Figure 5 show the comparative analysis of the

proposed and existing THDCNN, BiLSTM, LSTM, and RNN

classifiers regarding metrics, such as Training Time, True
Positive Rate (TPR), True Negative Rate (TNR), Positive

Predictive Value (PPV), Negative Predictive Value (NPV),

False Negative Rate (FNR), and False Positive Rate (FPR).

The proposed method classified the reduced feature in

37485ms with 98.8873% TPR, 98.8605% TNR, 98.8666%

PPV, 98.8835% NPV, 1.1126% FNR, and 1.1372% FPR. The

proposed model detected the SCA with lower Training Time,

FNR, and FPR and with higher TPR, TNR, PPV, and NPV

than the existing classifiers. This is because of the usage of

the LS activation function and Optimized weight initialization

in the proposed classifier. Hence, the proposed model

outperformed the existing techniques in identifying the SCA.

Table 2 Performance Validation Across Different SCAs

Different

SCAs
Performance metrics

Proposed

LPRPO-

LSTDCNN

THDCNN BiLSTM LSTM RNN

Timing

Accuracy (%) 98.65 96.63 94.85 92.65 89.65

Precision (%) 98.47 96.85 93.69 91.23 88.45

Recall (%) 98.23 95.63 93.84 90.56 87.54

F-Measure (%) 98.63 96.84 94.58 91.65 89.65

EM

Accuracy (%) 97.89 96.88 94.25 92.32 90.78

Precision (%) 98.65 95.36 93.62 91.54 89.65

Recall (%) 98.12 96.12 93.25 90.65 88.45

F-Measure (%) 97.25 96.85 93.26 91.56 89.25

SPA Accuracy (%) 98.63 96.75 94.15 92.84 89.84

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 816

RESEARCH ARTICLE

Precision (%) 97.84 96.23 94.25 91.85 88.47

Recall (%) 98.56 95.12 93.62 91.23 89.62

F-Measure (%) 97.96 96.89 93.45 92.21 88.95

DPA

Accuracy (%) 98.74 96.99 94.85 92.32 90.65

Precision (%) 97.98 96.88 93.65 91.56 90.24

Recall (%) 98.56 96.84 93.25 92.26 89.62

F-Measure (%) 98.47 95.65 93.32 91.87 88.48

Template

Accuracy (%) 98.89 96.32 94.84 92.48 89.78

Precision (%) 98.47 95.84 93.22 92.32 89.12

Recall (%) 97.58 96.20 94.20 91.21 87.21

F-Measure (%) 98.58 95.65 93.05 91.89 88.95

Table 2 shows the performance validation of the proposed

model and conventional techniques across different SCAs.

Here, the proposed model provided accurate and effective

outcomes for SCA detection. The proposed LPRPO-

LSTDCNN achieved a high accuracy of 98.65%, 97.89%,
98.63%, 98.74%, and 98.89% for timing attacks, EM attacks,

SPA, DPA, and template attacks, respectively. Also, the

proposed LPRPO-LSTDCNN obtained high precision, recall,

and F-measure across different SCAs. But the existing LSTM

attained a precision of 91.23%, 91.54%, 91.85%, 91.56%, and

92.32% for timing attacks, EM attacks, SPA, DPA, and

template attacks, which were lesser than the proposed

technique.

Figure 6 Comparative Analysis of IHE-SWIFFT

Likewise, the prevailing RNN attained a low accuracy,

precision, recall, and F-measure of 90.65%, 90.24%, 89.62%,

and 88.48% for DPA attacks, respectively. Similarly, all the

existing techniques like THDCNN and BiLSTM obtained

poor performance metrics for different SCAs. Here, the

LPRPO and LS activation functions were modified with

THDCNN for improving the SCA detection accuracy. Thus,

the results proved the trustworthiness of the proposed

technique.

The performance of the proposed IHE-SWIFFT hashing

algorithm is compared with the existing SWIFFT, RACE

Integrity Primitives Evaluation Message Digest (RIPEMD),

Secure Hash Algorithm 512 (SHA512), and Message Digest 5

(MD5) hashing methods. As described in Figure 6, the

hashcode to verify the authenticated user was generated by the

proposed IHE-SWIFFT model in 638ms, whereas the existing

SWIFFT, RIPEMD, SHA512, and MD5 generated hashcode

in 1254ms, 1687ms, 1968ms, and 2358ms, which are higher

than the proposed model. In the proposed IHE-SWIFFT

model, the hashcode was generated using the IHE collision-

resistance technique. Thus, the proposed model generated the
hashcode more quickly than the existing methods and showed

better performance in hashcode generation.

Figure 7 Comparison of Encryption Time and Decryption

Time

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 817

RESEARCH ARTICLE

Metrics, such as Encryption Time and Decryption Time for

the proposed DH-ATM-RFICC method and the existing ECC,

Rivest Shamir Adleman (RSA), ElGamal, and Advanced

Encryption Standard (AES) are compared as depicted in

Figure 7. To secure the data, the Secret Key generated using
the DH method and the Private Key generated using the ATM

techniques were used in the proposed model. Hence, the

proposed DH-ATM-RFICC technique encrypted and

decrypted the data in 987ms and 978ms, respectively.

However, the ECC, RSA, ElGamal, and AES models

encrypted the data in 1268ms, 1742ms, 2145ms, and 2536ms,

respectively, and decrypted the data on the receiver side in

1235ms, 1684ms, 2034ms, and 2487ms, respectively, which

are higher than the proposed Encryption and Decryption

Time. Thus, the proposed technique secured the data more

effectively than the existing methods.

Table 3 Comparative Analysis of DH-ATM-RFICC

Methods
Memory Usage on

Encryption (kb)

Memory Usage on

Decryption (kb)

Proposed DH-

ATM-RFICC
1287465324 2546105062

ECC 2365725478 3126503254

RSA 3216463254 4128921473

ElGamal 4781220412 5872505208

AES 5421602503 6489208401

Figure 8 Graphical Representation Regarding Security Level

In the proposed model, the Public Key and Private Key along

with the Secret Key were used for the encryption and

decryption of signal traces. This was done for the purpose of

data security. Hence, the proposed model achieved a Security

Level of 98.65% and used memory of 1287465324kb on

encryption and 2546105062kb on decryption. The proposed

DH-ATM-RFICC was then compared with the existing ECC,

RSA, ElGamal, and AES models as shown in Table 3 and

Figure 8. These existing ECC, RSA, ElGamal, and AES
models obtained a Security Level of 96.21%, 94.28%,

92.14%, and 90.22%, respectively, and higher memory usage

during data encryption and decryption. Hence, it is proved

that the proposed model outperformed the existing models in

data security.

Figure 9 Security Level Analysis Across Different SCAs

Security level analysis across different SCAs of the proposed

DH-ARM-RFICC and prevailing techniques is shown in

Figure 9. Here, the proposed DH-ARM-RFICC achieved

high-security levels of 98.63%, 98.52%, 98.62%, 98.87%, and

98.63% for timing attacks, EM attacks, SPA, DPS, and

template attacks, respectively. The Asymmetric Tent Map and

Robust Frobenius Isogenies-based curves are employed in

DH-ARM-RFICC for providing enhanced security level. The

existing ECC, RSA, ElGamal, and AES attained low-security

levels of 96.57%, 94.65%, 92.41%, and 90.14%, respectively
for template attacks. Likewise, the conventional techniques

obtained poor security levels for different types of SCAs.

Thus, the results proved the robustness of the proposed DH-

ARM-RFICC in preventing key leakage.

Graphical representation of the proposed GPBC-EWT and

conventional techniques like EWT, STFT, CWT, and Discrete

Wavelet Transform (DWT) are displayed in Figure 10. Here,

the proposed GPBC-EWT achieved a low Mean Squared

Error (MSE) of 0.0289 and a high Signal to Noise Ratio

(SNR) of 54.3694. Likewise, the conventional EWT, STFT,

CWT, and DWT obtained a high average MSE of 6.8354 and

a low average SNR of 40.2415. Thus, the results proved that
the proposed GPBC-EWT provided better performance for

feature extraction than other existing techniques with the help

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 818

RESEARCH ARTICLE

of Gini Point Biserial Correlation, thereby demonstrating the

reliability of the proposed model.

Figure 10 Graphical Representation Regarding MSE and SNR

Figure 11 Complexity Analysis of the Training Time

Figure 11 displays the training time complexity of the
proposed LPRPO-LSTDCNN and prevailing techniques using

Big O notation. Generally, Big O notation is employed to

define the upper bound on the running time of an algorithm

that gives a theoretical estimate of the algorithm's

performance with input size. Here, the proposed LPRPO-

LSTDCNN had O(1) training time complexity, where the

running time remains constant due to the inclusion of

LPROP-based weight initialization and LS activation

function. But, the existing LSTM had a training time

complexity of O(n log n), which means that the LSTM’s

running time increased linearly with the input size. Also, the
prevailing RNN had a training time complexity of O(n^2),

which means that the RNN’s running time increased

quadratically with the input size. Likewise, conventional

techniques like THDCNN and BiLSTM had high time

complexities. Thus, the proposed LPRPO-LSTDCNN had low

time complexity, and it effectively detected the SCAs than the

prevailing techniques.

Table 4 Comparative Study Regarding Related Works

Study Method
Accuracy

(%)

Training
Time

(ms)

FPR

(%)

Proposed

Work

LPRPO-

LSTDCNN
98.8748 37485 1.1372

[26]
WHISPER

tool
94.68 - 4.36

[27] CNN 67.91 321000 2.15

[28] RF 92 82810 -

[29] CNN 91 - 1.93

[30] BNN 93 - -

The proposed work is compared with the existing models in

SCA detection as shown in Table 4. The existing works used

multiple machine learning tools, namely WHISPER, Random

Forest (RF), CNN, and Binarized Neural Network (BNN) for

classification. The proposed model preprocessed the

encrypted signal traces. Then, the features were extracted and

reduced for further processing. Finally, the LPRPO-

LSTDCNN classifier was used for classifying the SCA. Thus,
the proposed model detected the attack in 37485ms with

98.8748% accuracy and 1.1372% FPR. However, [26] could

not detect the attack in large data, thus producing a higher

FPR of 4.36%. Similarly, [27] and [28] reduced the attack

detection with an accuracy of 67.91% and 92%, respectively,

since the Public Key was accessed by all the users. In [29], all

the extracted features were used for classification, which

delayed the attack detection with a FPR of 1.93%. Also, [30]

did not secure the data, which reduced the SCA detection with

93% Accuracy. Hence, the proposed model achieved better

performance in SCA detection.

5. DISCUSSION

In the proposed framework, the LPRPO-LSTDCNN classifier

is modelled to perform SCA detection. With the help of

LPRPO-based weight initialization and LS activation

function, the proposed LPRPO-LSTDCNN achieved a high

accuracy, precision, and recall of 98.87%, 98.86%, and

98.88% which demonstrated the efficiency and reliability of

the proposed model. Likewise, DH-ATM-RFICC is employed

for secure transactions. Due to the inclusion of RFI-based

curves and ATB-based private key generation, the proposed

DH-ATM-RFICC obtained a high-security level of 98.65%

and low encryption time of 987ms, which proved the
enhanced security of the proposed model. Similarly, the IHE-

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 819

RESEARCH ARTICLE

SWIFFT was used for generating the hashcode; here, the IHE

was modified with SWIFFT for offering collision resistance,

thus making the adversaries harder to recover the key from

the acquired side channel traces. The proposed IHE-SWIFFT

achieved a low hash generation time of 638ms, which proved
the low time complexity. The GPBC-EWT achieved a low

MSE of 0.0289 and a high SNR of 54.3694, which proved the

reliability of the proposed model. Likewise, the BoDF-based

feature reduction and DH-based secret key generation

provided better performance. But the existing techniques

provided low performance in SCA detection and had security

leakage. Thus, the results proved that the proposed framework

was better compared to conventional techniques.

6. CONCLUSION

This research has proposed an effective framework for side

channel attack detection having better computational load
which involved evaluating factors like data processing,

memory, power consumption, and storage resources. First, the

device was installed and the UUID was generated. Then, with

the help of the Secret Key, the signal traces were encrypted by

using DH-ATM-RFICC within 987ms and with a 98.65%

Security Level. The hash code was then generated using IHE-

SWIFFT algorithm within 638ms. Finally, the data under

attacked was blocked, and the data with no attack was

decrypted from the server in 978ms. Further, in our proposed

system, the data was preprocessed and features were extracted

using GPBC-EWT. The features were then reduced using

BoDF and using the hybrid classifier LPRPO-LSTDCNN to
detect the side channel attack. The classifier was trained in

37485ms. Thus, the SCA was detected with 98.86%

Precision, 98.88% Recall, and 98.87% Accuracy. It is also

observed that that the model effectively detected the SCA and

adopted the secure data transfer which make harder to recover

the secret key. Thus, it was suitable for large-scale

deployments due to its scalability for the increased number of

data sizes, which showed the excellent real-world

applicability and it provided the continuous protection for a

large number of devices and adapted to emerging threats.

6.1. Future Scope

Even though the proposed model detected the SCA

efficiently, the prevention of Side-Channel Attacks was not

considered in this model. Therefore, in the future, SCA

mitigation measures will be concentrated to improve the

performance of the proposed architecture.

REFERENCES

[1] Griswold-Steiner, Z. LeFevre, and A. Serwadda, “Smartphone speech

privacy concerns from side-channel attacks on facial biomechanics,”

Comput. Secur., vol. 100, pp. 1–19, 2021, doi:

10.1016/j.cose.2020.102110.

[2] D. Das, J. Danial, A. Golder, S. Ghosh, A. R. Wdhury, and S. Sen,

“Deep Learning Side-Channel Attack Resilient AES-256 using Current

Domain Signature Attenuation in 65nm CMOS,” Proc. Cust. Integr.

Circuits Conf., vol. 2020-March, pp. 2–5, 2020, doi:

10.1109/CICC48029.2020.9075889.

[3] R. M. Tsoupidi, E. Troubitsyna, and P. Papadimitratos, “Thwarting

code-reuse and side-channel attacks in embedded systems,” Comput.

Secur., vol. 133, pp. 1–14, 2023, doi: 10.1016/j.cose.2023.103405.

[4] A. Johnson and R. Ward, “Introducing the ‘Unified Side Channel

Attack - Model’ (USCA-M),” 8th Int. Symp. Digit. Forensics Secur.

ISDFS 2020, pp. 1–9, 2020, doi: 10.1109/ISDFS49300.2020.9116291.

[5] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep

learning for side-channel analysis and introduction to ASCAD

database,” J. Cryptogr. Eng., vol. 10, no. 2, pp. 163–188, 2020, doi:

10.1007/s13389-019-00220-8.

[6] Z. Tong, Z. Zhu, Z. Wang, L. Wang, Y. Zhang, and Y. Liu, “Cache

side-channel attacks detection based on machine learning,” Proc. -

2020 IEEE 19th Int. Conf. Trust. Secur. Priv. Comput. Commun.

Trust. 2020, pp. 919–926, 2020, doi:

10.1109/TrustCom50675.2020.00123.

[7] M. Salehi, G. De Borger, D. Hughes, and B. Crispo, “NemesisGuard:

Mitigating interrupt latency side channel attacks with static binary

rewriting,” Comput. Networks, vol. 205, pp. 1–11, 2022, doi:

10.1016/j.comnet.2021.108744.

[8] A. Garg and N. Karimian, “Leveraging deep cnn and transfer learning

for side-channel attack,” Proc. - Int. Symp. Qual. Electron. Des.

ISQED, vol. 2021-April, pp. 91–96, 2021, doi:

10.1109/ISQED51717.2021.9424305.

[9] A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Exploring Cortex-

M Microarchitectural Side Channel Information Leakage,” IEEE

Access, vol. 9, pp. 156507–156527, 2021, doi:

10.1109/ACCESS.2021.3124761.

[10] A. Akram, M. Mushtaq, M. K. Bhatti, V. Lapotre, and G. Gogniat,

“Meet the Sherlock Holmes’ of Side Channel Leakage: A Survey of

Cache SCA Detection Techniques,” IEEE Access, vol. 8, pp. 70836–

70860, 2020, doi: 10.1109/ACCESS.2020.2980522.

[11] C. Jin and Y. Zhou, “Enhancing non-profiled side-channel attacks by

time-frequency analysis,” Cybersecurity, vol. 6, no. 1, pp. 1–26, 2023,

doi: 10.1186/s42400-023-00149-w.

[12] J. Galbally, “A new Foe in biometrics: A narrative review of side-

channel attacks,” Comput. Secur., vol. 96, pp. 1–17, 2020, doi:

10.1016/j.cose.2020.101902.

[13] T. Miki, N. Miura, H. Sonoda, K. Mizuta, and M. Nagata, “A Random

Interrupt Dithering SAR Technique for Secure ADC against

Reference-Charge Side-Channel Attack,” IEEE Trans. Circuits Syst. II

Express Briefs, vol. 67, no. 1, pp. 14–18, 2020, doi:

10.1109/TCSII.2019.2901534.

[14] S. Liu and W. Yi, “Task parameters analysis in schedule-based timing

side-channel attack,” IEEE Access, vol. 8, pp. 157103–157115, 2020,

doi: 10.1109/ACCESS.2020.3019323.

[15] A. R. Javed, M. O. Beg, M. Asim, T. Baker, and A. H. Al-Bayatti,

“AlphaLogger: detecting motion-based side-channel attack using

smartphone keystrokes,” J. Ambient Intell. Humaniz. Comput., vol. 14,

no. 5, pp. 4869–4882, 2023, doi: 10.1007/s12652-020-01770-0.

[16] L. Zhang, X. Xing, J. Fan, Z. Wang, and S. Wang, “Multilabel Deep

Learning-Based Side-Channel Attack,” IEEE Trans. Comput. Des.

Integr. Circuits Syst., vol. 40, no. 6, pp. 1207–1216, 2021, doi:

10.1109/TCAD.2020.3033495.

[17] S. Ghandali, S. Ghandali, and S. Tehranipoor, “Deep K-TSVM: A

Novel Profiled Power Side-Channel Attack on AES-128,” IEEE

Access, vol. 9, pp. 136448–136458, 2021, doi:

10.1109/ACCESS.2021.3117761.

[18] T. T. Tsai, S. S. Huang, Y. M. Tseng, Y. H. Chuang, and Y. H. Hung,

“Leakage-Resilient Certificate-Based Authenticated Key Exchange

Protocol,” IEEE Open J. Comput. Soc., vol. 3, pp. 137–148, 2022, doi:

10.1109/OJCS.2022.3198073.

[19] D. Kwon, H. Kim, and S. Hong, “Non-Profiled Deep Learning-Based

Side-Channel Preprocessing with Autoencoders,” IEEE Access, vol. 9,

pp. 57692–57703, 2021, doi: 10.1109/ACCESS.2021.3072653.

[20] Y. Xiang, Y. Xu, Y. Li, W. Ma, Q. Xuan, and Y. Liu, “Side-Channel

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/48 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 820

RESEARCH ARTICLE

Gray-Box Attack for DNNs,” IEEE Trans. Circuits Syst. II Express

Briefs, vol. 68, no. 1, pp. 501–505, 2021, doi:

10.1109/TCSII.2020.3012005.

[21] U. Rioja, L. Batina, J. L. Flores, and I. Armendariz, “Auto-tune POIs:

Estimation of distribution algorithms for efficient side-channel

analysis,” Comput. Networks, vol. 198, pp. 1–19, 2021, doi:

10.1016/j.comnet.2021.108405.

[22] A. A. J. Al-Hchaimi, N. Bin Sulaiman, M. A. Bin Mustafa, M. N. Bin

Mohtar, S. L. B. Mohd Hassan, and Y. R. Muhsen, “A comprehensive

evaluation approach for efficient countermeasure techniques against

timing side-channel attack on MPSoC-based IoT using multi-criteria

decision-making methods,” Egypt. Informatics J., vol. 24, no. 2, pp.

351–364, 2023, doi: 10.1016/j.eij.2023.05.005.

[23] S. D. P. Tran, B. Seok, and C. Lee, “HANMRE - An authenticated

encryption secure against side-channel attacks for nonce-misuse and

lightweight approaches,” Appl. Soft Comput. J., vol. 97, pp. 1–13,

2020, doi: 10.1016/j.asoc.2020.106663.

[24] S. Paguada, L. Batina, and I. Armendariz, “Toward practical

autoencoder-based side-channel analysis evaluations,” Comput.

Networks, vol. 196, pp. 1–17, 2021, doi:

10.1016/j.comnet.2021.108230.

[25] Y.-S. Won, X. Hou, Dirmanto Jap, J. Breier, and S. Bhasin, “Back to

the Basics : Seamless Integration of Side-Channel Pre-Processing in

Deep Neural Networks,” IEEE Trans. Inf. FORENSICS Secur., vol.

16, pp. 3215–3227, 2021.

[26] M. Mushtaq et al., “WHISPER: A tool for run-time detection of side-

channel attacks,” IEEE Access, vol. 8, pp. 83871–83900, 2020, doi:

10.1109/ACCESS.2020.2988370.

[27] N. Mukhtar, A. P. Fournaris, T. M. Khan, C. Dimopoulos, and Y.

Kong, “Improved hybrid approach for side-channel analysis using

efficient convolutional neural network and dimensionality reduction,”

IEEE Access, vol. 8, pp. 184298–184311, 2020, doi:

10.1109/ACCESS.2020.3029206.

[28] D. Chen et al., “MAGLeak: A Learning-Based Side-Channel Attack

for Password Recognition with Multiple Sensors in IIoT

Environment,” IEEE Trans. Ind. Informatics, vol. 18, no. 1, pp. 467–

476, 2022, doi: 10.1109/TII.2020.3045161.

How to cite this article:

[29] H. Wang and E. Dubrova, “Tandem Deep Learning Side-Channel

Attack on FPGA Implementation of AES,” SN Comput. Sci., vol. 2,

no. 5, pp. 1–12, 2021, doi: 10.1007/s42979-021-00755-w.

[30] Y. S. Won, D. G. Han, D. Jap, S. Bhasin, and J. Y. Park, “Non-Profiled

Side-Channel Attack Based on Deep Learning Using Picture Trace,”

IEEE Access, vol. 9, pp. 22480–22492, 2021, doi:

10.1109/ACCESS.2021.3055833.

Authors

Prasath Vijayan received his B.Tech in Computer

Science and Engineering from B.C.E.T, Karaikal,

Puducherry and M.Tech in Information Security from

Pondicherry Engineering College, Puducherry. He is

currently working as Assistant Professor at

Perunthalaivar Kamarajar Institute of Engineering and

Technology, Puducherry, Karaikal, India. He has 14

years of academic excellence in well-known institutes.

He has various publications at recognized international

journals and conferences. His research interests include Web service security,

Deep learning, Side channel analysis and Application of Machine Learning.

Dr Sudalaimuthu T is a Professor in the Department

of Computer Science and Engineering, School of

Engineering and Technology at Hindustan Institute of

Technology and Science, Chennai, India. From the

Hindustan Institute of Technology and Science in

Chennai, India, he received his PhD degree. He is a

certified Ethical Hacker. He has published more than

50 reputable international journals. He has won

numerous honours throughout his career, including the

Top Innovator Award and the Pearson Award for Best Teacher. His research

interests include machine learning, grid and cloud computing, and cyber

network security. He has lifetime memberships in IEEE, ACM, and CSI. He

was awarded 10 patents for his inventions.

Prasath Vijayan, Sudalaimuthu T, “A Novel LPRPO-LSTDCNN Based Side Channel Attack Detection and Secure Data

Transmission Framework Using DH-ATM-RFICC”, International Journal of Computer Networks and Applications (IJCNA),

11(6), PP: 803-820, 2024, DOI: 10.22247/ijcna/2024/48.

