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Abstract – Side Channel Attack (SCA) is the exploitation of data 

security due to information leakage from a device. However, the 

existing studies didn’t focus on the detection of SCA based on its 

types and the prevailing works had security leakage and time 

complexities. Therefore, the paper presents the SCA detection 

with multi-class classification for secured data transmission. 

First, the device is installed and the public and private keys are 

generated. Next, Universally Unique Identifier (UUID) is 

generated and based on the public key and UUID, a hash code is 

generated using Interpolation Harmonic Entropy based 

SWIFFT(IHE-SWIFFT) hashing algorithm. At the same time, a 

secret key is generated using a public key and UUID. Then, with 

the help of a secret key and public key, data is encrypted using 

Diffie-Hellman Asymmetric Tent map-based Robust Frobenius 

Isogenies Curve Cryptography (DH-ATM-RFICC). For the 

purpose of user authorization, hash code matching is carried out. 

If the hash code is not matched, then the transaction will be 

declined to prevent from unauthorized transactions. If the hash 

code at the time of transaction initialization is matched with the 

hash code generated during the transaction, then the data is 

gathered by extracting the features using Gini Point Bi-serial 

Correlation-based Empirical Wavelet Transform (GPBC-

EWT).The extracted features are then reduced using Bag of 

Deep Features (BoDF) and through hybrid classifier to detect the 

SCAs using Lagrange Polynomial Red Panda Optimization with 

Logistic Softmax Tree Hierarchical Deep Convolutional Neural 

Network (LPRPO-LSTDCNN). Finally, the data under no attack 

are decrypted in the server for successful transaction. Hence, the 

proposed model detected the attack with 98.87% Accuracy, 

98.86% Precision, 98.88% Recall, and decrypted the data 

securely in 978ms, thus showing better performance than 

existing models. 

Index Terms – Side Channel Attack, Deep Learning, 

Cryptography, Deep Convolutional Neural Network, Red Panda 

Optimization, Hashing algorithm. 

1. INTRODUCTION 

In recent years, the technologies under automation with top-
notch Artificial Intelligence (AI) and sensor models have been 

increasing [1]. These AI applications are designed to provide 

the personal information of the users to make successful 

transactions [2]. For instance, private data, such as Personal 

Identification Number (PIN), passwords, card details, email 

data, etc., of the users are entered through the device [3] [4]. 

This private information is secured using cryptographic 

applications to prevent the leakage of personal details; but, the 

attack can occur on a physical platform through side channels 

[5]. Thus, exposing this private information in any form might 

be vulnerable to SCA, which was done by hackers [6]. The 

leakage of users' private data and the loss of users' critical 
information by the attacker is known as SCA [7]. Normally, 

SCAs are the significant components of present cybersecurity 

systems, especially for devices and networks.  

The SCA is classified into Timing, Electromagnetic (EM), 

Simple Power Analysis (SPA), Differential Power Analysis 

(DPA), and Template Attacks [8]. In these types of attacks, 

the loss of information is in the form of time, electromagnetic 

radiation, power consumption, temperature, sound, and 

operational time [9]. Different types of SCAs are done by 

revealing the secret key of the user's device, and the hacker 

uses the secret key to collect private data [10]. Also, the 
Public Key is made available to every user, which can cause 

information leakage [11]. Therefore, it is important to detect 

the SCAs for successful transactions. SCA detection and 

secure data transmission protect sensitive information, 

especially as systems heavily rely on connected devices like 

the Internet of Things (IoT), embedded systems, and mobile 
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applications. In most of the existing works, advanced 

encryption protocols, cryptographic techniques, and key 

management strategies were used; they provided data 

confidentiality, security, integrity, and availability across 

different devices and networks [12].  

Also, SCA in the target device was detected using various 

Machine Learning (ML) and Deep Learning (DL) techniques 

[13]. Likewise, some existing research works employed ML 

techniques, such as Random Forest Algorithm (RFA) and 

Support Vector Machine (SVM) for SCA detection. Also, 

certain prevailing works used DL techniques like 

Convolutional Neural Network (CNN) for SCA detection 

[14]. However, all the types of attacks related to SCA were 

not detected in the existing deep learning networks. Also, not 

all the works secured the public and private keys of the target 

device, which led to unauthorized access and signal trace 
attacks [15]. Hence, to address these limitations and to 

improve attack detection, a novel framework for SCA 

detection using DF-ATM-RFICC and LPRPO-LSTDCNN is 

proposed in this paper. 

1.1. Problem Statement 

The drawbacks of the existing works are given below, 

 The detection of types of SCA, such as Timing, EM, SPA, 

DPA, and Template attacks was not concentrated on the 

prevailing works.  

 [16] analyzed the micro-architectural pattern through HPC 

features, which reduced the SCA detection performance. 

 In [17], the training time was high due to the consideration 

of all the extracted features from the traces. 

 [18] revealed the details of the public key to everyone in 

the network, which led the hacker to attack the data easily. 

 The Design Space Exploration (DSE) used Electronic 

System-level Synthesis (ESLS) for leakage detection. 

However, ESLS was time-consuming; hence, the detection 

became slower. 

The objectives of the proposed work are enlisted as follows, 

 In the proposed work, different types of Side-Channel 

Attacks are detected by using LPRPO-LSTDCNN 

classifier. 

 The features are extracted using the GPBC-EWT method 

to improve attack detection. 

 To decrease the time required for training the LPRPO-

LSTDCNN classifier, the inaccurate features are 

eliminated by using BoDF technique. 

 To prevent the data from being attacked due to the 

exposure of the public key, the data is secured using the 

private key and secret key generated based on the public 

key and UUID. 

 To reduce the attack detection time and add more security, 

hashcode matching, feature reduction, and weight 

optimization using LPRPO are carried out. 

The rest of this paper is organized as follows: Section 2 

explains the related work, Section 3 describes the details of 

SCA detection methods, Section 4 presents the experiment 

results and analysis, and Section 5 conveys the discussion 

about the proposed model. Finally, Section 6 concludes the 

paper with future scope. 

2. LITERATURE SURVEY 

[16] established a Side Channel Attack detection model in 

cryptographic application devices. The features of the data 

were extracted using the Neural Network Support Vector 

Machine (NEROSVM). Then, the grid search technique was 
used for the selection of the parameters needed for 

classification. At last, the selected features were classified for 

SCA detection using the Restricted Boltzmann Machine 

(RBM) method. Thus, the model detected the attack 

accurately and retrieved the Secret Key for decryption of the 

data. However, the pre-processing of the data was not done, 

which affected the classification performance.  

[17] introduced a deep learning-based SCA detection based 

on the process of cryptographic algorithm. The signal traces 

were collected from the cryptographic devices. Then, the 

important features were extracted and classified using the 

CNN classifier. The classification was based on profiled SCA 
and non-profiled SCA. Depending on the leakage detection 

model, the secret key was generated in the server to decrypt 

the data. Hence, a successful data transaction was achieved by 

the introduced research. Yet, only the presence of an attack 

was detected. But, this model did not detect the type of attack.  

[18] presented Leakage Resilient Certificate Based 

Authenticated Key Exchange (LR-CB-AKE) protocol for 

leakage detection during data transfer. Here, the data was 

secured using the entropy technique. The user certification 

was done by creating a session key. The LR-CB-AKE method 

generated a secret key, and this was used for decrypting the 
data. Hence, the secured data transfer was done by the LR-

CB-AKE model. But the private keys generated could not be 

hidden from adversaries, which led to SCA. 

[19] developed a deep learning-based side-channel 

preprocessing with autoencoders for cryptanalysis. The power 

consumption in the target device was first calculated. Then, a 

guessing key related to the power hypothesis was generated, 

and the correlation between the key and the power 

consumption was made. The correlated data was then 

classified using Differential Deep Learning Analysis 

(DDLA). Thus, the developed model accurately identified the 
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Simple Power Analysis (SPA) attack and provided improved 

performance. On the contrary, other types of SCA were not 

detected by this framework. 

[20] accomplished side-channel Gray-box attack for Deep 

Neural Network (DNN). The Gray-box attack was the SCA 
that occurred in the DNN, and this leaked the structural 

information of the DNN. The data acquisition from an 

Artificial Intelligence (AI) device was done. Then, the power 

features were extracted, and the Fast Gradient Sign Method 

(FGSM) was used for detecting the SCA. The adversarial 

attacks in DNN were accurately detected by the research. 

However, no preprocessing techniques were used in this 

model, leading to the misclassification of the data.  

[21] demonstrated a distribution algorithm for side-channel 

analysis in IoT devices. The Points of Interest (POI) selection 

of the data was done using the Estimation of Distribution 
Algorithm (EDA). The Template Attacks were identified 

using the optimization technique. Thus, the research 

excellently identified the leakage of information in IoT 

devices. Yet, the EDA detected the Template Attack in the 

important features, which led to delayed attack detection. 

[22] implemented an efficient countermeasure technique for 

SCA detection in IoT devices. First, based on the defense 

approach criteria, the Timing Side-Channel Attack 

Countermeasure Technique (TSCA-CT) was used for 

decision-making. Then, a decision matrix was built. Then, by 

using the Fermatean Fuzzy Decision Opinion Score Method 

(F-FDOSM), the SCA present in the input data was accurately 
detected. But the criterion that followed the electromagnetic 

functional attacks could not be classified in this model.  

[23] evaluated an encryption security model against the SCA 

using a lightweight approach. Here, a Hash-based 

Authenticated Nonce-Misuse Resistant Encryption 

(HANMRE) was used for encrypting the data.  This 

HANMRE method was an Authenticated Encryption with 

Associated Data (AEAD) scheme, which was further used for 

identifying lightweight leakage. Hence, the SPA was 

precisely identified using the HANMRE technique. Yet, the 

secret keys were not generated, which resulted in difficulty 

during data decryption. 

[24] integrated Autoencoder-based side-channel analysis in 

IoT networks. First, from the target device, an identical clone 

device was made. Then, the side-channel information of the 

cloned device was categorized in the profiling phase. Using 

Autoencoder, the features were extracted. Finally, for the 

extracted feature, the SCA classification was performed using 

the CNN technique. Thus, the presence of SCA was classified 

effectively by CNN; also, the model provided high-level 

security. However, the selection of optimal features was not 

done, which led to improper SCA detection.  

[25] explored integrated side-channel processing in DNN. The 

input data was mapped and then down-sampled regarding the 

time domain. Meanwhile, spectral transformation for the 

mapped data was done regarding the frequency domain. 

Finally, the transformed data and the down-sampled data were 
given to the Multi-scale Convolutional Neural Networks 

(MCNN). Thus, the MCNN classified the SCA attack present 

in the input data and was proved as a promising model for 

SCA detection. Yet, the capturing of temporal data during 

down-sampling was difficult, which delayed the classification 

of SCA. 

Thus, the existing methodologies obtained poor performance 

in SCA detection owing to the improper pre-processing of 

data, private key leakage, difficulties in data decryption, 

improper selection of features, and so on. Also, the prevailing 

studies didn’t identify the types of SCA. Likewise, the 
existing works provided poor and limited performance for a 

large number of data sizes or transactions. To conquer these 

shortcomings, an effective LPRPO-LSTDCNN and DH-

ATM-RFICC-based SCA attack detection and secure data 

transmission framework is proposed in this article. 

3. PROPOSED SIDE CHANNEL ATTACK DETECTION 

MODEL 

In the proposed model, the SCA is detected by using LPRPO-

LSTDCNN, and the data is secured by utilizing DH-ATM-

RFICC methods. This work involves major processes, such as 

hashcode generation, data encryption, pre-processing, feature 

extraction, feature reduction, and SCA classification. The 

framework of the proposed model is depicted in Figure 1. 

3.1. Device Setup and Key Generation 

First, the devices, such as the Oscilloscope and Processing 

Unit, which generates signal traces, are setup. These signal 

traces  T  are the input data and are represented in the 

equation (1), 

 ee TTTTTT ,,..,,, 1321     (1) 

Where,  e is the number of signal traces. Next, the keys, 

such as Public Key    and Private Key    are generated 

from the key generation center using DH-ATM-RFICC, 

which is mentioned in section 3.5. Next, UUID is generated 

as explained below, 

3.2. UUID Generation 

To authorize the user during the transaction, a timestamp-

based UUID  f is generated, which is represented in 

equation (2). This UUID is a 128-bit identifier, and the time 

stamp ensures the unique generation of  f .  
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 afffff ,...,,, 321    (2) Where,  a is the number of UUID generated. Next, by using

 f , the hashcode is generated as shown in section 3.3. 

 

Figure 1 Architecture of Proposed Work 

3.3. Hashcode Generation 

Here, by using the Public Key   and UUID  f , a hashcode 

is generated using the IHE-SWIFFT algorithm. The SWIFFT 
hashing algorithm generates a hashcode regarding Fourier 

coefficients. Due to the generation of hashcode, SWIFFT 

enhances mathematical security. However, the SWIFFT 

hashing algorithm is not collision-resistant i.e., it provides the 

same output for two different inputs. To avoid this issue, 

Interpolation Harmonic Entropy (IHE), which differs from the 

hashing output to form a unique hashcode, is used along with 

SWIFFT. IHE offers collision resistance in SWIFFT, which 

can include superior distribution of entropy, enhanced non-

linearity, greater resistance to attacks, and increased 

complexity in both the input-output relationship. This makes 

the IHE harder for adversaries to create collisions, thus 

improving the overall security of the hash function.The IHE-

SWIFFT method is described as: First, the Public Key  
and UUID  f  are combined and represented by  M , which 

is equated in the below equation (3), 

fM        (3) 

The combined input  M is then converted into a matrix 

  dcM   with dimension  dc and is represented in 

equation (4), 
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  dcMM       (4) 

To avoid the collision of output, IHE  g  given in equation 

(5) summarizes the data regarding   dcM 
, is calculated as, 

      
    

    2

2

2

1

cd

dc
dc

MM

MM
MMMg




 (5) 

Finally, the hashcode is generated in equations (6) and (7) 

based on   dcM 
, the Fourier coefficient   , and IHE  g  

and is given as, 

   








 
c

gMc  log    (6) 

   MM
c

cM












5.0

2

exp4cos
1



   (7) 

Where,   is the generated hashcode and  14.3 . Now, 

the secret key is generated for data security, which is 

mentioned in section 3.4. 

3.4. Secret Key Generation 

The Diffie-Hellman (DH) method that securely exchanges the 

keys over a public channel is used for generating a Secret Key 

(SK). The SK is generated to securely encrypt and decrypt the 

transaction details and prevent them from attacks. The DH 

algorithm is explained below, 

A prime number  i and its primitive root  i   are assumed 

such that  ii  . The SK    is generated using Public Key

  and UUID  f  as given in equation (8), 

   if
mod      (8) 

Where,  mod is a modulo operator. The SK   is then used 

for encrypting the data, which is discussed in section 3.5.  

3.5. Data Encryption 

After the generation of SK   , the data  T is encrypted to 

secure the transaction. Here, Elliptic Curve Cryptography 

(ECC), which encrypts and decrypts the data faster, is used 

for encryption. But, in ECC, the Private Key is generated 

randomly to encrypt the data into variable length, which 

might lead to a side channel attack.  

Hence, to mitigate this issue, Robust Frobenius Isogenies 

Curve Cryptography (RFICC) that fixes each element into the 

curve is used instead of ECC. Also, an Asymmetric Tent Map 
(ATM) that generates the key uniquely is used for generating 

the private key. Actually, ATM provides improved non-

linearity for unpredictability; also, ATM produces high-

entropy outputs owing to its chaotic dynamics, which 

prevents key leakage by diminishing the possibility of 

duplicate keys and strengthening the resistance against 

attacks.  

The process of DH-ATM-RFICC is detailed below, 

 Curve Formation 

The Robust Frobenius Isogenies  F  that forms an algebraic 

closure pattern and fixes the data  T into the curve is 

expressed in the below equation (9), 

 bb

vuF  ,      (9) 

Here, the curve has parameters  vu, , characteristics   , and 

integers  b . The elliptic curve with  F  and constant  r  is 

expressed as, 

      ruruv
bbb

  32
   (10) 

The aforementioned equation (10) specifies the elliptical 

curve. 

 Key Generation 

The curve shown in equation (9) and the Public Key    are 

used for Private Key    generation. In equation (11), the 

Public Key    is generated using the point  o  and constants

 21,  of the curve and is given as, 

 21   o     (11) 

The ATM is a piecewise linear equation, and this 

automatically generates the    as equated in the below 

equation (12), 

 1,min  hh     (12) 

Where,  h is the point from the curve.  

 Encryption 

The data  T is finally encrypted using the Secret Key    and 

the Private Key    as, 

     hTT     (13) 

In equation (13),  T  represents the encrypted data. The 

pseudocode for DH-ATM-RFICC is given in algorithm 1. 
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Input: Signal Traces  T  

Output: Encrypted Data  T  

Begin 

Initialize curve parameters  vu,  

Generated Secret Key 

   if
mod   

Calculate Robust Frobenius Isogenies  bb

vuF  ,  

Form the curve 

      ruruv
bbb

  32
 

While  b

vh   

Evaluate Private Key  1,min  hh  

For    

Encrypt data 

     hTT  

End for 

End while 

Obtain Encrypted data  T  

End 

Algorithm 1 DH-ATM-RFICC 

Next, the hashcode is matched to transmit the encrypted data

 T , which is explained in section 3.6. 

3.6. Hash Code Matching 

To avoid unauthorized users, the hashcode    generated 

from the device during transaction initialization is matched 

with the hashcode generated during the transaction by the 

server. The condition to match hashcodes  H  is represented 

in the equation (14) as, 

 
 














ˆ

ˆ
H    (14) 

Where,   is the hashcode matched condition, and   is the 

hashcode mismatched condition. When the hashcode is not 

matched   , the encrypted data  T  is blocked for further 

processing, and when the hashcode gets matched   ,  T is 

given for SCA detection. 

3.7. SCA Detection 

For detecting SCA in real time, first, the SCA detection model 

using the LPRPO-LSTD CNN-based deep learning classifier 

is trained with respect to the publically available SCA dataset. 
The training of the SCA detection model is detailed as 

follows, 

3.7.1. Data Collection 

First, the signal traces  T  are collected from the AES_HD 

dataset and are represented in the equation (15), 

 wTTTTT  ...,,, 321     (15) 

Where,  w is the number of data used for training. Now,  T

is preprocessed as detailed below, 

3.7.2. Pre-Processing 

Here, the data  T  is preprocessed using the Z-Score 

standardization technique, which scales the input accurately 

into a standard range of  1,0 . The preprocessing, which is 

represented in equation (16), is done because it helps in 

extracting relevant features from the data with less time. The 

Z-Score equation is described as, 

 





T

T
T




    (16) 

w

T
e






      (17) 

Where,  T  is the preprocessed data,  w is the number of

 T , and    signifies the mean of  T , which is given in 

equation (17), and  T  is the standard deviation of  T . 

Then, the features required for the classification of different 

types of SCAs are extracted from  T  as described in section 

3.8. 

3.7.3. Feature Extraction 

In this phase, for effective SCA detection, the features are 

extracted from  T  . To extract the features, Empirical 

Wavelet Transform (EWT), which extracts the data by 

creating a wavelet filter bank, is used. Also, EWT excellently 
captures the important components of the signal by adapting 
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to the specific frequency bands of the signal, thus leading to 

better feature extraction for signals. But, the Short-Time 

Fourier Transform (STFT) and Continuous Wavelet 

Transform (CWT) employ fixed basis functions; thus, they 

are not optimal for all types of signals. However, shift 
invariance occurs in EWT i.e., the input and output 

relationship changes with time and affects the feature 

extraction. Hence, Gini Point Biserial Correlation (GPBC), is 

used in EWT, which makes comparisons over the continuous 

variables of the input data. Also, when dealing with non-

stationary and complex signals, GPBC-EWT effectively 

performs feature extraction compared to techniques, such as 

STFT and CWT. The GPBC-EWT technique is explained 

below, 

Step 1: Local Maxima and Minima 

First, let the number of decompositions be represented by  D  

for the input  T  with the  w number of data. Now, the 

boundary limits  el  are set as given in below equation (18), 


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e
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l
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00
     (18) 

Where,  el0  is the local minimum with zero value and  e

Dl is 

the local maxima with  7/22 . 

Step 2: Correlation Factor 

The correlation factor   is calculated using GPBC, which 

uses the maxima and minima limits of the data to extract the 

feature correctly. The   is equated in the upcoming 

equation (19), 
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Where,  T 
 is the standard deviation of  T  . 

Step 3: Scaling function and Empirical Wavelet 

In equations (20) and (21), the scaling function  B and the 

Empirical Wavelet  V  of  T  are calculated using   . 
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As given in equation (22), the values  B and  V are used for 

decomposing the data.  

Step 4: Transforms 

Finally, the features  S , such as normalized signal, 

decomposition number, wavelet decomposition, Fast Fourier 

Transform (FFT), Fourier decomposition analysis, apply 

filters, enforce sample flow type, convert integer float, check 

mono, and calculated wavelet FFT are extracted as, 

   TVTBS      (22) 

 mSSSSS ,....,,, 321    (23) 

Where, mS  is the number of extracted features, which is 

given in equation (23). Next, the features are reduced as given 

in the following section, 

3.7.4. Feature Reduction 

Here, from  S , important features are selected by the process 

of Bag of Deep Features (BoDF). BoDF superiorly captures 

complex, nonlinear patterns in the data; also, BoDF preserves 

more important semantic features than other techniques. 

Likewise, BoDF proficiently learns significant patterns, 

leading to more reliable feature reduction, even in noisy 

environments. Owing to the aforementioned advantages, the 

BoDF is chosen for feature reduction. This method clusters 

the features  S ; then, the features are reduced based on 

histogram formation, which is explained further, 

 K-Means Clustering 

First, the clusters  k  are chosen from  S  to group the 

features. Then, the centroid to cluster the features is selected 

randomly and is represented by  C . The distance between 

the centroid  C and the features  S is calculated using 

Euclidean distance   as given in the below equation (24), 

  
m

SC
2

     (24) 
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Where,  m is the number of features. In equations (25) and 

(26), the features with the shortest distance are clustered as, 

 Sk        (25) 

   
jkkkkk ,...,,, 321    (26) 

Where,  j is the number of clusters formed after calculating

  . Now, the histogram of each feature in  j is calculated 

to reduce the features from the grouped features. 

 Histogram of Features 

Here, the unique features from the grouped data   k  are 

selected using the Histogram equation as represented in 

equations (27) and (28), 

 
 

 k
m

m
vN




1
    (27) 

 sNNNNN ,...,,, 321    (28) 

Where,  v is the histogram of   k with points

  mv 1,...,2,1 ,  m is the maximum histogram point, 

 N is the reduced feature, and  s is the number of reduced 

features. Next, the different types of SCA are classified from 

the reduced features  N , which are further described in 

3.7.5. 

3.7.5. Classification 

Here, the Tree Hierarchical Deep Convolutional Neural 
Network (THDCNN) that learns the features automatically 

and combines the features hierarchically to detect the attack is 

used for classification. But this classifier has the problem of a 

slow convergence rate and detects the attack with high 

latency. 

 

Figure 2 Framework of LPRPO-LSTDCNN Classifier 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/48                         Volume 11, Issue 6, November – December (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       811 

     

RESEARCH ARTICLE 

Therefore, the Logistic Softmax (LS) activation function that 

provides probability values and makes the process faster, 

especially for complex attack types in THDCNN. Also, the 

LS activation function gives a clear indication of the 

likelihood of each class than other activation functions. 
Likewise, by emphasizing the most applicable class-specific 

patterns, LS enables the THDCNN to learn more 

discriminative features from the side-channel data.  

Furthermore, the LS activation function improves the 

convergence speed and accuracy and reduces the time 

complexities; so, it is chosen over other activation functions. 

Also, to enhance the SCA detection, the weight is initialized 

by the Red Panda Optimization (RPO) algorithm, which 

selects the weights according to the behavior of the Red 

Panda. RPO is chosen due to its ability to find global optima 

in complex and high-dimensional search spaces.  

However, RPO has premature convergence issues due to 

random selection in the climbing process, thus leading to 

suboptimal solutions. To avoid this problem, the Lagrange 

Polynomial function is included in Red Panda Optimization 

(LPRPO), which effectively solves the premature 

convergence problem and enhances the global search 

capabilities.  

The architecture of the Lagrange Polynomial-based Red 

Panda Optimization-based Logistic Softmax-Tree 

Hierarchical Deep Convolutional Neural Network (LPRPO-

LSTDCNN) is depicted in Figure 2. 

First, for the input  N , the weight value of the LSTDCNN 

classifier is initialized as follows, 

 Weight Initialization Using LPRPO 

To improve the performance of the classifier in 

detecting SCA, the weight values are initialized using the 

LPRPO optimization algorithm. The Red Panda Optimizer 

(RPO) is capable of selecting the required weights using the 

foraging strategy and tree-climbing behavior.  

However, the random selection of the tree is made during the 

climbing phase, which affects the position updation of red 

pandas, thus leading to premature convergence and 

affecting the optimal weight values for classification.  

Thus, to mitigate this issue, the Lagrange Polynomial (LP) 
technique that interpolates the Red Panda (RP) position is 

used instead of the random position. The LPRPO algorithm is 

explained in detail as follows, 

 Population Initialization 

The population of RP, which is the weight value of 

LSTDCNN, is randomly initialized as,  
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 (29) 

Where,  Y is the population matrix of RP (weight values), 

which is specified in equation (29),  
qY  is the  thq  RP, 

 
pqy , is the position of RP with  thp dimension,  J is the 

number of Red Panda, and  G is the number of problem 

variables. Now, the initial position of RP is initialized in 

equation (30), 

 ppppq lbubnlby ,    (30) 

Where,  
pp ublb , are the lower bound and upper bound 

values of the  thp dimension of the Red Panda, and  n  is 

the random variable. The current position  
pqy , gets updated 

regarding the fitness function. 

 Fitness 

Regarding maximum classification accuracy  K , the fitness 

value   , which is used to update the position of the RP, is 

calculated as given in equation (31), 

 Kmax      (31) 

Thus, by using   , the weight values are selected from the 

population matrix  Y . 

 Position Update 

In search of food, the Red Panda uses two strategies for 
position updation. The two strategies are foraging behavior 

and climbing behavior. The position update is as follows: 

 Foraging 

The RP has the ability to search the food by the use of 

hearing, smell, and vision. Thus, for the selected food source

 I of the RP and constant value  z , the position of RP gets 

updated as, 

  zyIyy pqpqpq 

,,,    (32) 

Where,  

pqy , is the new position of the RP, which is 

indicated in equation (32).  
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 Climbing 

After obtaining the food, the RP climbs the tree and rests on 

it. At this stage, the RP chooses the tree randomly, which 

affects the position update. Hence, LP, which compares and 

interpolates the tree value and avoids random selection, is 

used. The LP   is calculated in the below equation (33), 







J OO

OO
     (33) 

Where,  OOO ,, are the tree values that are near to the RP. 

The position of RP by the climbing behavior is updated as,  
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  (34) 

Where,  
pqy ,
 is the newly updated position of RP after 

climbing, which is represented in the equation (34), and  x is 

the iteration value with maximum iteration  X . 

Finally, by updating the positions of RP, the weight value  ŷ  

is selected. The pseudocode for the LPRPO algorithm is given 

in algorithm 2. 

Input: Random weights  y  

Output: Selected weight value  ŷ  

Begin 

Initialize population, iteration  Xx,  

Evaluate random position of Red Panda 

 ppppq lbubnlby ,  

Calculate fitness  Kmax  

While  Xx   

//Foraging updation 

For  

pqy ,  

Search food and move   zyIyy pqpqpq 

,,,  

If    pqpq yy ,,  
 

Update new position  ŷ  

Else 

Original position  
pqy ,  

End if 

End for 

// Climbing behavior 

For  
pqy ,
  

Calculate 





J OO

OO
  

Climb and rest 
 








 
 

x

lbublb
yy

ppp

pqpq


,,

 

If    pqpq yy ,,    

Best solution  ŷ  

Else 

Same position  
pqy ,  

End if 

End for 

End while 

Return Selected weight value  ŷ  

End 

Algorithm 2 LPRPO Algorithm 

These optimal weight values  ŷ  are further used in the 

classification for SCA detection. Further, along with the 

optimal weight values  ŷ , the reduced features  N are given 

as input to the classification model for types of SCA. The 

classifier has multiple nodes connected in a tree shape. The 

nodes are Root Node  R , Branch Nodes  R  , and Leaf 

Nodes  R̂ . The SCA classification is described as follows, 

 Root Node 

The input  N is passed into the classifier for super-class 

classification, and this phase is known as Root Node  R . The 

layers present in  R are given below, 

 Convolutional Layer 

The Convolutional Layer  A initializes the weights  ŷ

obtained from the LPRPO algorithm and multiplies them with 
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the input data. The value of  N is convolved and activated 

using the Rectified Linear Unit (ReLU) activation function. 

The output of  A is expressed in the equation (35). 

    tyNA ˆ     (35) 

 N,0max      (36) 

Where,  t is the bias value of the convolutional layer and 

   defines the ReLU activation function, which is given in 

equation (36). Now,  A is passed to the pooling layer. 

 Pooling Layer 

The Pooling Layer  L reduces the feature count and helps in 

increasing the training speed. The important features needed 

for SCA detection are chosen by this layer  L  and are 

equated in the equation (37), 

 AL max      (37) 

The pooled output  L   is given to the fully connected layer. 

 Fully-Connected Layer 

In the Fully-Connected Layer  W , each neuron present in

 L  is connected to form a single neuron. This layer helps in 

detecting certain features and is used for predicting the 

respective class from the input feature. In equation (38), the 

output of a fully connected layer  W  is derived as, 

   tyLW   ˆ     (38) 

Where,  ŷ is the optimized weight value of the fully-

connected layer. Finally,  W is activated using the LS 

activation function   . 

 Activation 

Here, the LS activation function    that separates the data 

linearly to provide accurate classification is used. The   , 

regarding the largest element   in  W , is calculated in the 

below equation (39), 





W

W

exp1

exp
     (39) 

In equations (40) and (41), the output  Q  of the Root Node

 R is obtained as given below,  

WQ      (40) 

 21,QQQ      (41) 

Where,  1Q and  2Q are the superclass-classified outputs, 

and these outputs along with the input  N are given for 

further classification into the Branch Node  R  . 

 Branch Node 

Here, in the Branch Node  R  , the deep convolution takes 

place as seen in the Root Node. The input data  1Q is sent to 

the Convolutional Layer  A , Pooling Layer  L , and Fully-

Connected Layer  W and are finally activated to give the 

output  Q .  

Similarly, for input  2Q , the output  Q  is obtained by 

passing it into the Convolutional Layer  A  , Pooling Layer

 L  , and Fully-Connected Layer  W   and is finally 

activated by Activation   . 

 Leaf Node 

The Leaf Node  R̂ has the final classified output  Q̂ , which 

is obtained from the outputs  Q and  Q  . The final 

classified output  Q̂  is represented in the equation (42), 

 654321
ˆ,ˆ,ˆ,ˆ,ˆ,ˆˆ QQQQQQQ      (42) 

Where,  1Q̂ is the data without SCA, and  2Q̂ ,  3Q̂ ,  4Q̂ ,

 5Q̂ ,  6Q̂  are the data with Timing, EM, SPA, DPA, and 

Template, respectively. In real-time, the authorized 

(hashcode-matched) user’s encrypted data  T  is given to 

the SCA detection model.  

The data is classified as per the classes, such as under attack 

and no-attack. The decryption of the data is explained in 

section 3.8. 

3.8. Data Decryption 

Regarding the Secret Key   and Private Key   , the data

 T is decrypted using DH-ATM-RFICC method, which is 

explained in section 3.5. The decrypted data is calculated as, 

    T     (43) 
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Where,   is the decrypted data, which is represented in the 

equation (43). The decryption of the data takes place in the 

server, leading to a successful transaction. Thus, the proposed 

model effectively detected the types of SCA. The 

performance assessment of the proposed model is explained 

below in Section 4. 

4. RESULTS 

In this section, the performance of the proposed SCA 

detection is compared with the existing models. All 

experiments are done in the working platform of PYTHON 

with the AES_HD Dataset. 

4.1. Dataset Description 

The signal trace data is collected from the AES_HD Dataset, 

and the performance of the proposed method is compared 

with the existing models to show the effectiveness of the 

proposed work. The AES_HD dataset is a publicly available 

one that is used for SCA detection. From the dataset, for each 
class 15000 traces is taken such as Timing Attack, EM 

Attack, SPA, DPA and Template Attack. Among that, 80% of 

the data is used for training and 20% of the data is used for 

testing the SCA detection model. 

4.2. Performance Analysis 

Here, the performance of the proposed techniques, such as 

LPRPO-LSTDCNN, DH-ATM-RFICC, and IHE-SWIFFT are 

compared with the existing methods to prove the effectiveness 

of the proposed model in SCA detection. 

 

Figure 3 SCA Detection Results 

The comparative analysis of the proposed LPRPO-LSTDCNN 

classifier and the existing THDCNN, Bidirectional Long 

Short-Term Memory (BiLSTM), Long Short-Term Memory 

(LSTM), and Recurrent Neural Network (RNN) in SCA 

detection is depicted in Figure 3. The performance metrics, 

such as Precision, Recall, F-measure, Accuracy, Sensitivity, 

and Specificity are used for comparison. The proposed 

classifier used the LS activation function to avoid slow 

convergence during SCA detection. Thus, the LPRPO-

LSTDCNN method detected the SCA with 98.8659% 
Precision, 98.8873% Recall, 98.8766% F-Measure, 98.8748% 

Accuracy, 98.8873% Sensitivity, and 98.8625% Specificity. 

But the existing models obtained lower metrics value with an 

average of 93.5922% Precision, 93.9971% Recall, 93.7941% 

F-Measure, 93.5782% Accuracy, 93.9961% Sensitivity, and 

93.1279% Specificity. Thus, the proposed model performed 

better than the existing classifiers in SCA detection. 

Table 1 Comparative Analysis of LPRPO-LSTDCNN 

Techniques 
Training Time 

(ms) 
TPR (%) TNR (%) PPV (%) NPV (%) 

Proposed LPRPO-

LSTDCNN 
37485 98.8873 98.8605 98.8666 98.8835 

THDCNN 42698 96.7142 96.3274 96.3699 96.6863 

BiLSTM 47125 95.1565 94.7192 94.8061 95.0608 

LSTM 53624 93.2228 91.9161 92.6163 92.5726 

RNN 58476 90.8997 89.5197 90.5723 89.8615 
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Figure 4 Comparative Assessment Regarding Attack 

Detection Time for a Number of Data 

Figure 4 displays the comparative assessment of the proposed 

LPRPO-LSTDCNN and prevailing techniques in terms of 

attack detection time for a number of data sizes. Here, the 
proposed model utilizes LPRPO and LS activation functions 

for effective SCA detection. The proposed LPRPO-

LSTDCNN took a low attack detection time of 37405ms for 

1000 numbers of data and 57481ms for 5000 numbers of data. 

But, the prevailing techniques like THDCNN, BiLSTM, 

LSTM, and RNN obtained a high average attack detection 

time of 51615.5ms for 1000 numbers of data and 71498.75ms 

for 5000 numbers of data. Thus, the proposed LPRPO-

LSTHDCNN provided high scalability for the increased 

number of transactions or data sizes. This made the proposed 

model suitable for large-scale deployments, which showed 

excellent real-world applicability. Thus, the reliability and 

scalability of the proposed model were proven. 

 

Figure 5 Performance Evaluation in Terms of FNR and FPR 

Table 1 and Figure 5 show the comparative analysis of the 

proposed and existing THDCNN, BiLSTM, LSTM, and RNN 

classifiers regarding metrics, such as Training Time, True 
Positive Rate (TPR), True Negative Rate (TNR), Positive 

Predictive Value (PPV), Negative Predictive Value (NPV), 

False Negative Rate (FNR), and False Positive Rate (FPR). 

The proposed method classified the reduced feature in 

37485ms with 98.8873% TPR, 98.8605% TNR, 98.8666% 

PPV, 98.8835% NPV, 1.1126% FNR, and 1.1372% FPR. The 

proposed model detected the SCA with lower Training Time, 

FNR, and FPR and with higher TPR, TNR, PPV, and NPV 

than the existing classifiers. This is because of the usage of 

the LS activation function and Optimized weight initialization 

in the proposed classifier. Hence, the proposed model 

outperformed the existing techniques in identifying the SCA. 

Table 2 Performance Validation Across Different SCAs 

Different 

SCAs 
Performance metrics 

Proposed 

LPRPO-

LSTDCNN 

THDCNN BiLSTM LSTM RNN 

Timing  

Accuracy (%) 98.65 96.63 94.85 92.65 89.65 

Precision (%) 98.47 96.85 93.69 91.23 88.45 

Recall (%) 98.23 95.63 93.84 90.56 87.54 

F-Measure (%) 98.63 96.84 94.58 91.65 89.65 

EM  

Accuracy (%) 97.89 96.88 94.25 92.32 90.78 

Precision (%) 98.65 95.36 93.62 91.54 89.65 

Recall (%) 98.12 96.12 93.25 90.65 88.45 

F-Measure (%) 97.25 96.85 93.26 91.56 89.25 

SPA Accuracy (%) 98.63 96.75 94.15 92.84 89.84 
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Precision (%) 97.84 96.23 94.25 91.85 88.47 

Recall (%) 98.56 95.12 93.62 91.23 89.62 

F-Measure (%) 97.96 96.89 93.45 92.21 88.95 

DPA 

Accuracy (%) 98.74 96.99 94.85 92.32 90.65 

Precision (%) 97.98 96.88 93.65 91.56 90.24 

Recall (%) 98.56 96.84 93.25 92.26 89.62 

F-Measure (%) 98.47 95.65 93.32 91.87 88.48 

Template  

Accuracy (%) 98.89 96.32 94.84 92.48 89.78 

Precision (%) 98.47 95.84 93.22 92.32 89.12 

Recall (%) 97.58 96.20 94.20 91.21 87.21 

F-Measure (%) 98.58 95.65 93.05 91.89 88.95 

Table 2 shows the performance validation of the proposed 

model and conventional techniques across different SCAs. 

Here, the proposed model provided accurate and effective 

outcomes for SCA detection. The proposed LPRPO-

LSTDCNN achieved a high accuracy of 98.65%, 97.89%, 
98.63%, 98.74%, and 98.89% for timing attacks, EM attacks, 

SPA, DPA, and template attacks, respectively. Also, the 

proposed LPRPO-LSTDCNN obtained high precision, recall, 

and F-measure across different SCAs. But the existing LSTM 

attained a precision of 91.23%, 91.54%, 91.85%, 91.56%, and 

92.32% for timing attacks, EM attacks, SPA, DPA, and 

template attacks, which were lesser than the proposed 

technique.  

 

Figure 6 Comparative Analysis of IHE-SWIFFT 

Likewise, the prevailing RNN attained a low accuracy, 

precision, recall, and F-measure of 90.65%, 90.24%, 89.62%, 

and 88.48% for DPA attacks, respectively. Similarly, all the 

existing techniques like THDCNN and BiLSTM obtained 

poor performance metrics for different SCAs. Here, the 

LPRPO and LS activation functions were modified with 

THDCNN for improving the SCA detection accuracy. Thus, 

the results proved the trustworthiness of the proposed 

technique. 

The performance of the proposed IHE-SWIFFT hashing 

algorithm is compared with the existing SWIFFT, RACE 

Integrity Primitives Evaluation Message Digest (RIPEMD), 

Secure Hash Algorithm 512 (SHA512), and Message Digest 5 

(MD5) hashing methods. As described in Figure 6, the 

hashcode to verify the authenticated user was generated by the 

proposed IHE-SWIFFT model in 638ms, whereas the existing 

SWIFFT, RIPEMD, SHA512, and MD5 generated hashcode 

in 1254ms, 1687ms, 1968ms, and 2358ms, which are higher 

than the proposed model. In the proposed IHE-SWIFFT 

model, the hashcode was generated using the IHE collision-

resistance technique. Thus, the proposed model generated the 
hashcode more quickly than the existing methods and showed 

better performance in hashcode generation. 

 
Figure 7 Comparison of Encryption Time and Decryption 

Time 
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Metrics, such as Encryption Time and Decryption Time for 

the proposed DH-ATM-RFICC method and the existing ECC, 

Rivest Shamir Adleman (RSA), ElGamal, and Advanced 

Encryption Standard (AES) are compared as depicted in 

Figure 7. To secure the data, the Secret Key generated using 
the DH method and the Private Key generated using the ATM 

techniques were used in the proposed model. Hence, the 

proposed DH-ATM-RFICC technique encrypted and 

decrypted the data in 987ms and 978ms, respectively. 

However, the ECC, RSA, ElGamal, and AES models 

encrypted the data in 1268ms, 1742ms, 2145ms, and 2536ms, 

respectively, and decrypted the data on the receiver side in 

1235ms, 1684ms, 2034ms, and 2487ms, respectively, which 

are higher than the proposed Encryption and Decryption 

Time. Thus, the proposed technique secured the data more 

effectively than the existing methods. 

Table 3 Comparative Analysis of DH-ATM-RFICC 

Methods 
Memory Usage on 

Encryption (kb) 

Memory Usage on 

Decryption (kb) 

Proposed DH-

ATM-RFICC 
1287465324 2546105062 

ECC 2365725478 3126503254 

RSA 3216463254 4128921473 

ElGamal 4781220412 5872505208 

AES 5421602503 6489208401 

 

 

Figure 8 Graphical Representation Regarding Security Level 

In the proposed model, the Public Key and Private Key along 

with the Secret Key were used for the encryption and 

decryption of signal traces. This was done for the purpose of 

data security. Hence, the proposed model achieved a Security 

Level of 98.65% and used memory of 1287465324kb on 

encryption and 2546105062kb on decryption. The proposed 

DH-ATM-RFICC was then compared with the existing ECC, 

RSA, ElGamal, and AES models as shown in Table 3 and 

Figure 8. These existing ECC, RSA, ElGamal, and AES 
models obtained a Security Level of 96.21%, 94.28%, 

92.14%, and 90.22%, respectively, and higher memory usage 

during data encryption and decryption. Hence, it is proved 

that the proposed model outperformed the existing models in 

data security. 

 

Figure 9 Security Level Analysis Across Different SCAs 

Security level analysis across different SCAs of the proposed 

DH-ARM-RFICC and prevailing techniques is shown in 

Figure 9. Here, the proposed DH-ARM-RFICC achieved 

high-security levels of 98.63%, 98.52%, 98.62%, 98.87%, and 

98.63% for timing attacks, EM attacks, SPA, DPS, and 

template attacks, respectively. The Asymmetric Tent Map and 

Robust Frobenius Isogenies-based curves are employed in 

DH-ARM-RFICC for providing enhanced security level. The 

existing ECC, RSA, ElGamal, and AES attained low-security 

levels of 96.57%, 94.65%, 92.41%, and 90.14%, respectively 
for template attacks. Likewise, the conventional techniques 

obtained poor security levels for different types of SCAs. 

Thus, the results proved the robustness of the proposed DH-

ARM-RFICC in preventing key leakage. 

Graphical representation of the proposed GPBC-EWT and 

conventional techniques like EWT, STFT, CWT, and Discrete 

Wavelet Transform (DWT) are displayed in Figure 10. Here, 

the proposed GPBC-EWT achieved a low Mean Squared 

Error (MSE) of 0.0289 and a high Signal to Noise Ratio 

(SNR) of 54.3694. Likewise, the conventional EWT, STFT, 

CWT, and DWT obtained a high average MSE of 6.8354 and 

a low average SNR of 40.2415. Thus, the results proved that 
the proposed GPBC-EWT provided better performance for 

feature extraction than other existing techniques with the help 
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of Gini Point Biserial Correlation, thereby demonstrating the 

reliability of the proposed model. 

 

Figure 10 Graphical Representation Regarding MSE and SNR 

 

Figure 11 Complexity Analysis of the Training Time 

Figure 11 displays the training time complexity of the 
proposed LPRPO-LSTDCNN and prevailing techniques using 

Big O notation. Generally, Big O notation is employed to 

define the upper bound on the running time of an algorithm 

that gives a theoretical estimate of the algorithm's 

performance with input size. Here, the proposed LPRPO-

LSTDCNN had O(1) training time complexity, where the 

running time remains constant due to the inclusion of 

LPROP-based weight initialization and LS activation 

function. But, the existing LSTM had a training time 

complexity of O(n log n), which means that the LSTM’s 

running time increased linearly with the input size. Also, the 
prevailing RNN had a training time complexity of O(n^2), 

which means that the RNN’s running time increased 

quadratically with the input size. Likewise, conventional 

techniques like THDCNN and BiLSTM had high time 

complexities. Thus, the proposed LPRPO-LSTDCNN had low 

time complexity, and it effectively detected the SCAs than the 

prevailing techniques. 

Table 4 Comparative Study Regarding Related Works 

Study Method 
Accuracy 

(%) 

Training 
Time 

(ms) 

FPR 

(%) 

Proposed 

Work 

LPRPO-

LSTDCNN 
98.8748 37485 1.1372 

[26] 
WHISPER 

tool 
94.68 - 4.36 

[27] CNN 67.91 321000 2.15 

[28] RF 92 82810 - 

[29] CNN 91 - 1.93 

[30] BNN 93 - - 

The proposed work is compared with the existing models in 

SCA detection as shown in Table 4. The existing works used 

multiple machine learning tools, namely WHISPER, Random 

Forest (RF), CNN, and Binarized Neural Network (BNN) for 

classification. The proposed model preprocessed the 

encrypted signal traces. Then, the features were extracted and 

reduced for further processing. Finally, the LPRPO-

LSTDCNN classifier was used for classifying the SCA. Thus, 
the proposed model detected the attack in 37485ms with 

98.8748% accuracy and 1.1372% FPR. However, [26] could 

not detect the attack in large data, thus producing a higher 

FPR of 4.36%. Similarly, [27] and [28] reduced the attack 

detection with an accuracy of 67.91% and 92%, respectively, 

since the Public Key was accessed by all the users. In [29], all 

the extracted features were used for classification, which 

delayed the attack detection with a FPR of 1.93%. Also, [30] 

did not secure the data, which reduced the SCA detection with 

93% Accuracy. Hence, the proposed model achieved better 

performance in SCA detection. 

5. DISCUSSION 

In the proposed framework, the LPRPO-LSTDCNN classifier 

is modelled to perform SCA detection. With the help of 

LPRPO-based weight initialization and LS activation 

function, the proposed LPRPO-LSTDCNN achieved a high 

accuracy, precision, and recall of 98.87%, 98.86%, and 

98.88% which demonstrated the efficiency and reliability of 

the proposed model. Likewise, DH-ATM-RFICC is employed 

for secure transactions. Due to the inclusion of RFI-based 

curves and ATB-based private key generation, the proposed 

DH-ATM-RFICC obtained a high-security level of 98.65% 

and low encryption time of 987ms, which proved the 
enhanced security of the proposed model. Similarly, the IHE-
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SWIFFT was used for generating the hashcode; here, the IHE 

was modified with SWIFFT for offering collision resistance, 

thus making the adversaries harder to recover the key from 

the acquired side channel traces. The proposed IHE-SWIFFT 

achieved a low hash generation time of 638ms, which proved 
the low time complexity. The GPBC-EWT achieved a low 

MSE of 0.0289 and a high SNR of 54.3694, which proved the 

reliability of the proposed model. Likewise, the BoDF-based 

feature reduction and DH-based secret key generation 

provided better performance. But the existing techniques 

provided low performance in SCA detection and had security 

leakage. Thus, the results proved that the proposed framework 

was better compared to conventional techniques. 

6. CONCLUSION 

This research has proposed an effective framework for side 

channel attack detection having better computational load 
which involved evaluating factors like data processing, 

memory, power consumption, and storage resources. First, the 

device was installed and the UUID was generated. Then, with 

the help of the Secret Key, the signal traces were encrypted by 

using DH-ATM-RFICC within 987ms and with a 98.65% 

Security Level. The hash code was then generated using IHE-

SWIFFT algorithm within 638ms. Finally, the data under 

attacked was blocked, and the data with no attack was 

decrypted from the server in 978ms. Further, in our proposed 

system, the data was preprocessed and features were extracted 

using GPBC-EWT. The features were then reduced using 

BoDF and using the hybrid classifier LPRPO-LSTDCNN to 
detect the side channel attack. The classifier was trained in 

37485ms. Thus, the SCA was detected with 98.86% 

Precision, 98.88% Recall, and 98.87% Accuracy. It is also 

observed that that the model effectively detected the SCA and 

adopted the secure data transfer which make harder to recover 

the secret key. Thus, it was suitable for large-scale 

deployments due to its scalability for the increased number of 

data sizes, which showed the excellent real-world 

applicability and it provided the continuous protection for a 

large number of devices and adapted to emerging threats. 

6.1. Future Scope 

Even though the proposed model detected the SCA 

efficiently, the prevention of Side-Channel Attacks was not 

considered in this model. Therefore, in the future, SCA 

mitigation measures will be concentrated to improve the 

performance of the proposed architecture. 
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