
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 821

RESEARCH ARTICLE

Energy-Aware Optimization of Cloud Request

Placement and Resource Monitoring Using an

Evolutionary Algorithm for Cloud-assisted Systems

Santosh Kumar Paul

Faculty of Science (FOS), Sri Sri University, Cuttack, Odisha, India.

santoshkumarpaul22@gmail.com

Sunil Kumar Dhal

Faculty of Science (FOS), Sri Sri University, Cuttack, Odisha, India.

sunildhal@srisriuniversity.edu.in

Rakesh Nayak

Department of Computer Science and Engineering, School of Engineering, OP Jindal University, Raigarh, CG, India.

rakesh.nayak@opju.ac.in

Umashankar Ghugar

Department of Computer Science and Engineering, School of Engineering, OP Jindal University, Raigarh, CG, India.

✉ ughugar@gmail.com

Received: 08 August 2024 / Revised: 19 November 2024 / Accepted: 30 November 2024 / Published: 30 December 2024

Abstract – The exponential growth of data generated by various

aspects of life, particularly through internet-enabled devices, has

introduced significant challenges in processing such data within

strict time constraints. Cloud computing has emerged as a

potential solution due to its ability to handle heterogeneous,

energy-constraint, and non-cooperative data. However, the task

scheduling problem in cloud computing, being NP-hard,

demands efficient solutions that balance system performance

and energy consumption. Current methods often fail to address

the imbalanced system loads and fluctuating cloud requests

effectively, leading to increased energy usage and degraded

performance. This paper tackles these challenges by proposing

an energy-efficient load balancing strategy coupled with an

optimized cloud requests placement method. Task scheduling is

approached using the binary chaotic Jaya (BCJaya) algorithm,

which leverages evolutionary techniques to ensure high

performance. The proposed algorithm is evaluated against key

metrics, including Makespan, virtual machine (VM) utilization,

energy consumption, and load balancing rate. Additionally, the

BCJaya algorithm's efficacy is demonstrated using a real-world

benchmark dataset and is compared against established

baselines. The results show that BCJaya consistently

outperforms alternative methods, particularly in scenarios

involving increasing tasks and VMs, making it a robust solution

for cloud scheduling challenges.

Index Terms – Cloud Requests Placement, Resource Monitoring,

Task Scheduling, Resource Monitoring, Chaotic Jaya, Cloud

Computing.

1. INTRODUCTION

In today’s era of pervasive digitalization, every aspect of

human life is increasingly dependent on computational

systems and internet-enabled devices. This dependence has

led to an exponential increase in data generation, making

effective management of computational resources a critical

necessity. Cloud computing has emerged as a cornerstone for

addressing these challenges, offering scalable, on-demand

access to resources for storing, processing, and managing

data. However, the rapid growth of cloud computing has also

raised significant concerns about energy consumption,

resource optimization, and environmental impact. These

challenges are magnified by the heterogeneous, latency-

sensitive, and dynamic nature of workloads, necessitating

innovative solutions for resource management and energy

efficiency.

Request placement and resource monitoring are essential

components in cloud computing, significantly influencing the

performance and efficiency of cloud systems. Poor task

placement and ineffective resource monitoring can result in

inefficient resource utilization, higher energy consumption,

elevated operational costs, and a decline in Quality of Service

(QoS). Addressing these issues requires energy-aware

optimization techniques that not only improve resource

mailto:santoshkumarpaul22@gmail.com
mailto:sunildhal@srisriuniversity.edu.in
mailto:rakesh.nayak@opju.ac.in
mailto:ughugar@gmail.com

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 822

RESEARCH ARTICLE

utilization but also minimize energy expenditure. Cloud

computing has transfigured the business horizon as to how

computational resources are delivered and consumed. It

enables organizations to access computing power without

significant upfront investments, promoting agility, flexibility,

and cost savings. However, these benefits come with

challenges, especially in terms of energy efficiency. A typical

cloud datacenter houses thousands of servers, networking

devices, and cooling systems, all of which contribute to

substantial energy consumption. Studies suggest that

datacenters globally consume approximately 1-2% of the

world's total electricity, and this figure is expected to grow as

the demand for cloud services increases.

Task consolidation and resource management are now

feasible choices as a result of the development of cloud

computing which offers end users on-demand services over

the Internet based on a pricing structure. Cloud computing,

which provides virtualization techniques for the dynamic

scheduling of cloud requests, appears to be a popular solution.

Cloud requests must be handled promptly to reduce average

waiting time and execution time while effectively increasing

resource utilization. To make this feasible, heuristic

algorithms or standard scheduling cannot yield the best

results. The exponential growth of cloud computing can be

attributed to its dynamic environment, scalability,

customization, and on-demand access to computing resources.

The abstraction of virtual resource management, which makes

the technical complexities easier to understand, is one of its

main benefits.

1.1. Problem Statement

Effective task scheduling or cloud request placement for users

requesting services is necessary for efficient resource

monitoring in cloud computing [1-4]. When there are few

tasks and resources, scheduling is easy; however, it becomes

difficult when different user demands call for different levels

of service quality. Task consolidation and resource

monitoring, which are considered NP-hard problems, in cloud

computing is challenging because of the heterogeneous and

dynamic nature of datacenters, which makes it difficult to

solve NP-hard problems. Metaheuristic-based scheduling

techniques have proven to be more effective than traditional

and heuristic approaches [5, 6]. These non-deterministic

techniques, like meta-heuristic algorithms, have proven to be

appropriate and perform satisfactorily when used to solve NP-

hard optimization problems [7].

Numerous advantages come with cloud computing, including

fewer maintenance requirements, increased flexibility, and

consistent quality because of outside management. However,

finding the best mapping algorithm to allocate resources

among cloud requests is necessary for optimizing the resource

utilization (NP-hard [8]) rate. Improved results are obtained

by expanding the search space with population-based

algorithm-based metaheuristics. Withstanding the advantages

of such algorithms, these metaheuristics produce better

results. Because scheduling strategies guarantee that the cloud

requests are distributed among compatible virtual machines

(VMs), they are critical to effective cloud computing

solutions. One major problem that impacts QoS, performance,

and user experience is the placement of cloud requests on

suitable VMs. There is a dearth of research on resolving these

issues with the JAYA variant available in the literature [9]. It

is very difficult to get the best solution for placement and

resource monitoring problems in a given amount of time

when competing metrics are involved and tasks are

dynamically assigned to different resources. A heterogeneous

environment is defined by a fluctuating number of tasks and

virtual machines, which makes it difficult to verify the

algorithm's effectiveness in both homogeneous and

heterogeneous environments. Metaheuristic techniques can

yield approximate optimal solutions within predictable

timeframes, according to prior research [8].

1.2. Motivation

Several challenges complicate the implementation of energy-

aware optimization in cloud computing environments: Task

Heterogeneity: Cloud requests vary in terms of computational

requirements, priority, and deadlines, making uniform

optimization strategies ineffective. Dynamic Resource

Availability: Resource availability changes dynamically due

to varying workloads, hardware failures, and maintenance

activities. VM Consolidation Overheads: While consolidating

VMs onto fewer servers can save energy, excessive VM

migrations can introduce overheads, negating potential

savings. Trade-offs Between QoS and Energy Efficiency:

Ensuring high QoS while minimizing energy consumption

requires balancing conflicting objectives, particularly for

latency-sensitive applications. NP-Hard Nature of Task

Scheduling: Task scheduling in cloud environments is

inherently NP-hard, meaning that finding an optimal solution

requires significant computational effort. To address these

challenges, this study introduces an evolutionary approach to

optimize cloud request placement and resource monitoring.

The proposed method integrates Binary Chaotic Jaya

(BCJaya) optimization to address the limitations of existing

methods. BCJaya, an advanced metaheuristic algorithm,

combines chaotic maps with the Jaya algorithm to enhance

exploration and exploitation capabilities in the solution space.

The research focuses on addressing critical challenges such

as:

• Dynamic Workload Adaptability: Ensuring that the

optimization framework can adapt to fluctuating

workloads and resource availability.

• Energy-Aware Task Scheduling: Incorporating energy

metrics into the scheduling process to minimize power

consumption without compromising QoS.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 823

RESEARCH ARTICLE

• Load Balancing: Achieving a balanced workload

distribution across active servers to prevent resource

bottlenecks and underutilization.

• Reduction of VM Migration Overheads: Minimizing the

frequency and cost of VM migrations to achieve energy

efficiency without excessive overheads.

Using an evolutionary approach, this research attempts to

address cloud request placement on the underlying VMs with

effective resource monitoring throughout the system. In

particular, the goal of the study is to improve the traditional

Jaya algorithm by introducing a variation called Chaotic Jaya

(CJaya) to speed up convergence and produce ideal solutions.

Additionally, a binary version of the CJaya (BCJaya)

algorithm is designed to display the produced solution within

a range of 0 and 1. The primary motive for using the Jaya

metaheuristic approach for this problem is its simplicity and

power to strike a balance between local and global optima.

Both the best and worst solutions are estimated in a single

equation by considering very few control parameters which

makes it more powerful and efficient than others. Particle

swarm optimization (PSO) is a commonly used and accepted

standard method among various metaheuristic algorithms

[10]. Nevertheless, PSO fails to overcome local optima as a

global search technique, despite its advantages. As the

number of tasks within the problem domain increases, it also

faces challenges related to early convergence [11]. In contrast,

CJaya demonstrates a high convergence rate and does not get

trapped in local optima due to its simultaneous consideration

of both the best and worst solutions in a single equation [12].

Another popular and highly advantageous optimization

method is genetic algorithms (GA). However, because there

are a lot of control parameters in GA, it has a high

computational cost. On the other hand, because solutions are

updated using a single equation in a single step, BCJaya has

low computational complexity and requires less time.

Furthermore, BCJaya preserves a trade-off in the problem

space between particle exploration and exploitation capacity.

BCJaya reduces computational time because it doesn't require

additional control parameter tuning, unlike GA and PSO.

1.3. Contributions

To summarize, the following is a list of the major

contributions:

• To optimise the scheduling and resource monitoring, and

accomplish efficient load balancing, the Binary Chaotic

Jaya algorithm is proposed in conjunction with a resource

monitoring strategy,

• Taking into account a fitness function to protect the

interests of the user and the cloud service provider,

making sure the goals of load balancing, resource usage,

and energy consumption are maintained,

• Running simulations in environments in a heterogeneous

to show how effective the suggested algorithm is,

• To measure the scheduling metrics and validate the

algorithm's effectiveness, a benchmark dataset is used.

1.4. Flow of the paper

The remaining sections of the document are arranged as

follows: Section 2 reviews the current state of relevant

research. The various system models are shown in Section 3,

which is followed by the problem formulation. The proposed

methodology is explained in Section 4, with special attention

to the Binary Chaotic Jaya algorithm and the resource

monitoring strategy. In Section 5, test cases and dataset

utilization are experimentally evaluated. A comparative

analysis with existing algorithms is provided, and a discussion

follows. The paper is finally concluded with some future

perspectives in Section 6.

2. RELATED WORK

Cloud data centers strive for energy efficiency, often achieved

through dynamic virtual machine (VM) consolidation. By

dynamically consolidating VMs onto fewer active servers,

power consumption is significantly reduced. However, server

workloads fluctuate, necessitating frequent consolidation

adjustments. The following research papers propose

metaheuristic or evolutionary-based approaches to solve task

mapping problem considering various constraints. For

instance, Mishra and Majhi [13] proposed a hybrid load-

balancing approach integrating Genetic Algorithm (GA) with

Jaya optimization to efficiently schedule dynamic medical

data in cloud systems for biomedical applications. GA

generates the initial population of solutions, while Jaya

optimization identifies the most suitable virtual machines

(VMs) for executing these solutions. This integration

leverages the strengths of both algorithms, resulting in

improved scheduling and load-balancing efficiency. However,

the proposed method does not account for thermal aspects or

fluctuating workloads, which limits its applicability to

dynamic and real-time scenarios. The research also lacks

consideration of energy-aware metrics and dynamic VM

consolidation, leaving room for further exploration in these

areas. Zahedi et al. [14] introduced a "thermal-aware

consolidation" technique to address energy efficiency and

workload distribution in cloud datacenters. The model

categorizes servers based on their energy efficiency and

prioritizes VM placement on highly efficient servers. This

approach effectively reduces energy consumption and

mitigates thermal challenges by preventing hotspots. Despite

these advantages, the method does not adequately address

dynamic workloads or task prioritization. The lack of

consideration for Quality of Service (QoS) requirements and

workload variability in dynamic cloud environments

highlights an important research gap that future studies could

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 824

RESEARCH ARTICLE

address. Zhang et al. [15] developed a reservation-based VM

allocation strategy using an evolutionary algorithm to

optimize server energy consumption. The approach

strategically allocates VMs based on their instruction-to-

energy ratios, achieving significant energy savings. However,

the study primarily focuses on energy efficiency and does not

sufficiently address task heterogeneity or workload

imbalance. Additionally, the method overlooks real-time

workload fluctuations and dynamic task scheduling, which are

critical for enhancing cloud resource management under

varying conditions. Mishra et al. [16] proposed a dynamic

load scheduling approach for Infrastructure-as-a-Service

(IaaS) cloud ecosystems using the binary Jaya algorithm

integrated with a load-balancing technique. This approach

minimizes the number of active servers, ensuring efficient

task distribution and improved energy efficiency. However,

the model is limited by excessive VM migrations and the

absence of thermal management considerations. Moreover,

the study lacks an energy-aware framework and overlooks

thermal-aware consolidation techniques, which could enhance

its applicability in dynamic cloud environments. Llager et al.

[17] tackled the issue of "blind consolidation" in dynamic VM

consolidation, where excessive VM migrations can negate

energy savings due to high migration overheads. Their energy

and thermal-aware consolidation model ensures balanced

workload distribution while mitigating hotspots. This

approach effectively addresses energy efficiency and thermal

challenges. However, it does not consider task deadlines or

QoS constraints, which limits its applicability in scenarios

requiring strict service-level agreements (SLAs). The lack of

focus on resource heterogeneity further highlights areas for

improvement. Azizi et al. [18] proposed a two-phase VM

migration algorithm to address resource imbalance in

powered-on servers. The algorithm relocates VMs from

overloaded servers to efficient, powered-off servers, thereby

improving resource utilization and overall system efficiency.

While this method enhances resource distribution, it incurs

high overhead due to frequent VM migrations. The study also

lacks applicability to heterogeneous environments and

dynamic task scheduling, which are essential for real-world

cloud datacenter operations. Yavari et al. [19] introduced a

hybrid approach combining heuristics and metaheuristics to

address multi-dimensional constraints such as CPU, memory,

and temperature during VM consolidation. This method

improves performance by targeting VM migrations and

balancing resources effectively. However, its scalability is

limited when applied to large cloud systems. Additionally, the

study does not fully optimize energy consumption or QoS

requirements, leaving a gap in achieving comprehensive

efficiency in cloud resource management. Abdessamia et al.

[20] explored energy-efficient VM placement using the

Binary Gravitational Search Algorithm (BGSA). The

algorithm guides VMs toward high-efficiency physical

machines, enhancing energy savings. Despite its benefits, the

method primarily focuses on energy efficiency without

addressing thermal metrics or QoS constraints. Furthermore,

the absence of dynamic scheduling and workload

heterogeneity limits its practical application in diverse cloud

environments. Abualigah et al. [21] proposed a hybrid

Differential Evolution-AntLion Optimization (DE-ALO)

algorithm for multi-objective task scheduling in cloud

environments. The method maximizes resource utilization and

minimizes Makespan, demonstrating significant performance

improvements. However, the high computational complexity

of the hybrid approach makes it unsuitable for real-time or

large-scale scenarios. Additionally, the study does not address

dynamic workloads or energy efficiency, which are critical for

adaptive cloud systems. Mishra and Majhi [22] introduced a

load-balancing approach based on Binary Bird Swarm

Optimization (BBSO) for cloud computing environments.

This method effectively balances system loads and improves

resource utilization. However, the approach is limited to

homogeneous environments with a small number of tasks,

reducing its significance for real-world, large-scale, and

heterogeneous cloud systems. The absence of a focus on

energy efficiency and dynamic task scheduling further limits

its utility in modern cloud datacentre. The summary of these

related works is presented in Table 1.

Table 1 Summary of Related Works

Authors

(Reference)

Methodology Used Advantages Limitations Research Gaps

Mishra & Majhi

[13]

GA + Jaya optimization Efficient

scheduling and

load balancing

Ignores thermal aspects No dynamic

VM

consolidation

or energy

metrics

Zahedi et al. [14] Thermal-aware consolidation Reduces energy

and addresses

thermal issues

Limited dynamic workload

handling

No QoS or

workload

variability

consideration

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 825

RESEARCH ARTICLE

Zhang et al. [15] Reservation-based VM

allocation using evolutionary

algorithm

Optimizes energy

via instruction-to-

energy ratios

Ignores task heterogeneity

and workload imbalance

Lacks dynamic

task scheduling

Mishra et al. [16] Binary Jaya algorithm with

load balancing

Minimizes active

servers

Excessive VM migrations,

no thermal management

No energy-

aware or

thermal-aware

consolidation

Llager et al. [17] Energy and thermal-aware

VM consolidation

Prevents hotspots Lacks task deadline

handling

No QoS or

resource

heterogeneity

consideration

Azizi et al. [18] Two-phase VM migration Improves resource

utilization

High VM migration

overhead

Limited to

homogeneous

environments

Yavari et al. [19] Hybrid

heuristics/metaheuristics

Balances CPU,

memory, and

temperature

Limited scalability Does not

optimize

energy

consumption or

QoS

Abdessamia et al.

[20]

Binary Gravitational Search

Algorithm

Enhances energy

efficiency

Ignores thermal and QoS

metrics

No dynamic

scheduling or

workload

heterogeneity

Abualigah et al.

[21]

Hybrid DE-ALO Maximizes

resource

utilization,

minimizes

Makespan

High computational

complexity

Lacks dynamic

workloads or

energy

efficiency

Mishra & Majhi

[22]

Binary Bird Swarm

Optimization

Balances system

loads

Tested on homogeneous

environments

Limited to

small-scale,

homogeneous

environments

This research focuses on the integration of a resource

monitoring strategy and a requests placement technique to

achieve both an equitable workload distribution and an

optimal task mapping to virtual machines (VMs) for better

resource utilization. Workloads are divided among the VMs

by the Broker using a particular load balancing technique. It

also uses the proposed BCJaya-based scheduling algorithm to

figure out how to allocate tasks to virtual machines in the

most efficient way. Iteratively distributing the workload and

optimizing resource utilization, this process keeps going until

a balanced state is achieved through a compatible–based

resource monitoring strategy for an increasing number of

tasks on heterogeneous VMs.

3. SYSTEM MODELS AND PROBLEM FORMULATION

The Cloud-assisted scheduling and resource monitoring

framework is depicted in Figure 1. This figure illustrates a

Cloud computing framework designed for efficient task

scheduling and resource allocation using the Binary Chaotic

JAYA (BCJaya) optimization algorithm. The architecture is

centred around a Cloud datacenter, which acts as the

computational backbone for executing user tasks. The

framework incorporates various components that interact to

manage resources effectively, optimize task placement, and

meet Quality of Service (QoS) requirements.

The Cloud users represent the end-users who submit tasks to

the cloud. These tasks are sent via a request and response

channel, which facilitates communication between the users

and the cloud system. Once a task is submitted, it is passed

through the broker, an intermediary responsible for managing

task requests and responses between users and the datacenter.

Within the Cloud datacenter, the heart of the system lies in the

computational framework, where the BCJaya algorithm

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 826

RESEARCH ARTICLE

operates. The framework begins with resource monitoring and

load balancing, which tracks the status of physical resources

and ensures that tasks are distributed evenly across the

infrastructure. Tasks submitted by users are temporarily

stored in a task buffer, awaiting scheduling based on their

priority and resource requirements. The BCJaya algorithm is

used for both initial scheduling and final placement of tasks,

focusing on optimizing factors such as execution time, energy

efficiency, and resource utilization. The framework also

evaluates QoS metrics, which guide decision-making to meet

user expectations for performance and reliability.

The system relies on a pool of heterogeneous resources,

which includes physical machines with varying computational

capabilities, such as servers, desktops, and mobile devices.

These resources execute the tasks assigned by the scheduling

framework. A dedicated Cloud Information Service (CIS)

provides real-time metadata about resource availability,

capacity, and status, enabling informed decisions during the

scheduling process.

Finally, the placement and scheduling module determines the

most suitable physical machines for executing tasks, ensuring

optimal use of the infrastructure while adhering to constraints

like workload balancing and energy efficiency. Once tasks are

completed, the results are transmitted back to the users

through the broker.

Figure 1 Cloud-Assisted Request Placement and Resource Monitoring Framework

This architecture ensures an efficient, scalable, and QoS-

aware cloud computing environment. By leveraging the

BCJaya algorithm for scheduling and load balancing, it

achieves optimal resource utilization and maintains high

performance while meeting the dynamic demands of cloud

users.

3.1. Task-VM Model

A tremendous number of tasks is generated from the internet-

enabled devices by cloud users on a daily basis which requires

to be processed by computationally-rich and resource-rich

nodes. The generated tasks are of disparate nature in terms of

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 827

RESEARCH ARTICLE

size, specifications, resource requirements, bandwidth

requirements, speed, processing cores required to get executed,

etc. Therefore, the tasks are expressed in million instructions

(MI) and are assumed to be independent in nature. These are

denoted as T = {T1, T2, … , Ti, … , TN}, i ∈ N and are

characterised in terms of size (l), processing core (c), memory

(m), and storage (s) expressed as 〈Ti
l, Ti

c, Ti
m , Ti

s〉. Likewise,

the computationally-rich nodes are deployed in the Cloud layer

for processing these requests. The Cloud layer encompasses a

series of hosts deployed in a rack of servers. Furthermore, a

number of VMs are created under a series of hosts through

virtualization technology. The VMs are further classified as

homogeneous and heterogeneous in nature. Homogeneous in

nature, we mean, the technical specifications of all the VMs

are the same whereas different in a heterogeneous

environment. The VMs are expressed as VM =

{M1, M2, … ,MJ, … ,MVM}, j ∈ VM and are characterised in

terms of processing core, speed in MIPS, memory in GB,

storage in GB and bandwidth denoted as 〈Mj
c, Mj

m, Mj
s, Mj

BW〉.

This research considers a dynamic range of tasks and

heterogeneous VMs for the simulation and validation of the

effectiveness of the proposed strategy.

3.2. Scheduling Parameters

These parameters are also called Quality of Service (QoS)

parameters. These parameters hold significance in appraising

the performance of the proposed algorithm over others.

MAKESPAN (Makespan): it is the maximum execution time

of all the allocated services for each fog node, and is

expressed as shown in Equation (1) [23]:

Makespan = max∑ Exet(Mj)
N
i=1 (1)

The execution time of the jth VM (Exet(Mj)) is the time

required to process all the cloud requests on a VM and is

computed as in Equation (2):

Exet(Mj) = ∑ (Proct
j
+ Propt

j
)

T
k
j
ϵMj

 (2)

Where

Proct
j
=

L(Tk
j
)

ρ(Mj)×CPUrate(Mj)
 (3)

Propt
j
=

D((x1,x2)(y1,y2))

3×108 (4)

Where Proct
j
 is the processing time of the jth VM, Propt

j
is the

propagation time for sending an cloud request from an

internet-enabled device to the jth VM through distance D(),

L(Tk
j
) is the number of instructions in the kth request, ρ(Mj)

is the number of core present in the jth VM, and CPUrate(Mj)

is the processing capability of the jth VM.

VM UTILIZATION (UtilM): It's the level of virtual machine

(VM) usage. Minimising the makespan is the aim of load

balancing, which aims to optimise resource utilisation. On

average Equation (5) is used to determine the average

utilisation of all virtual machines (VMs), where M is the total

number of VMs [16].

UtilM
avg

=
∑ Exet(Mj)

M
j=1

makespan ×M
 (5)

DEGREE OF IMBALANCE (doi): The gauge for

determining task imbalances among VMs is the degree of

imbalance [22]. Equations (6) and (7) are used to measure it,

where Texei
max and Texei

min represent the highest and lowest

execution times of task Ti across all VMs. Moreover, Texei
avg

represents the average execution time. The task’s length is

represented by Len , the number of cores in the jth VM is

denoted by Mj
#c, and a total MIPS assigned to the jth VM is

represented by Mj
MIPS.

doi =
Texei

max−Texei
min

Texe
i
avg (6)

Ti =
Len

Mj
#c×Mj

MIPS (7)

3.3. Energy Consumption Model

An additional objective of this study is to optimize resource

utilization while minimizing energy consumption. Efficient

resource utilization can be achieved by ensuring that only the

necessary processors are active, while others remain idle or

powered down. When services are distributed across multiple

processing nodes, it often leads to some nodes being

underutilized, consuming energy inefficiently. Idle nodes can

still use approximately 30-40% of their peak energy

consumption. Therefore, to reduce the overall energy

consumption of virtual machines (VMs) in the cloud, it is

crucial to schedule services effectively. The energy usage of

the jth VM and the total energy consumed by all VMs in the

datacenter are mathematically represented by Equations (8-9)

[23].

E
C

Mj
= Exet(Mj) × activej + (Makespan − Exet(Mj) ×

idlej) (8)

EC
Total = ∑ EC

MjM
j=1 (9)

3.4. Problem Formulation Model

Assume a problem matrix with N × d -dimension {X =

{X11, X22, X33, … , Xij, … , Xnm}, Xij {T ∈

(1,2,3, … , i, … , N);M ∈ (1,2,3, … , j … ,M)}} represents each

particle in the problem space. The objective of this research is

to map the tasks or cloud requests to compatible VMs

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 828

RESEARCH ARTICLE

optimally to achieve the following objectives: (1) minimize

makespan (Makespan) and maximize average VM utilization

(UtilM
avg

) shown in Equation (10), (2) minimize the degree of

imbalance (doi) shown in Equation (11), and (3) minimize

total energy consumption (EC
Total) shown in Equation (12).

Each objective is stated with respect to the constraints in the

following equations.

𝕆1 = min
Tn,i

m Mn,i
m

∑
1

Makespan
× UtilM

avg
, m ∈ M, n ∈ T; (10)

𝕆2 = min
Mn,i

m
∑doi, m ∈ M, n ∈ T; (11)

𝕆3 = min
Mn,i

m
∑EC

Total, m ∈ M; (12)

Hence, the objective function considering minimization and

maximization of makespan and VM utilization (Equation

(10)), minimization of the degree of imbalance (Equation

(11)), and minimization of Energy consumption (Equation

(12)) has been formulated as shown in Equation (13):

𝕆 = 𝕆1 × α + 𝕆2 × β + 𝕆3 × γ (13)

subject to:

C1: α + β + γ = 1;

C2: ∑ ∑ 0 ≤ Xi,j ≤ 1;j∈Mi∈T

Equation (10) indicates that a datacenter's makespan should

be minimised and resource utilization to be maximized,

contingent on the required durations of tasks and execution

times of individual virtual machines. Though the makespan

and resource utilization are associated in a reverse linear

relationship, it is considered in one equation. The

minimization of the system's degree of imbalance is discussed

in Equation (11). In order to lessen the severity of imbalance,

this goal makes sure that loads are distributed evenly amongst

VMs. Equation (12) shows that resource utilisation should be

maximised. The weighted average of each sub-objective is

shown in Equation (13).

The primary objective (𝕆) will have a balancing factor of one,

according to Constraint (C1). Many weight values are used in

the simulation; it was found that α=0.5, β=0.25, and γ=0.25

are the most significant values. It is crucial to remember that

it takes a lot of work to figure out the exact weight values.

After we conducted tests and tracked our results using several

weight values, the precise weight values were taken into

account. Constraint C2 states that the optimal mapping of

tasks to virtual machines (VMs) should be represented by

either 0 or 1. It is a binary variable.

4. PROPOSED STRATEGY

This section explains the proposed methodology implemented

to carry out this research. The proposed strategy is a two-fold

mechanism. First, a mapping of tasks to VMs would be

initiated based on the resource monitoring. If the system is

identified as imbalanced, the resource monitoring algorithm

would be triggered to redistribute the workloads among VMs

based on resource availability and resource adaptability. In

addition, the tasks scheduling algorithm called BCJaya

(Binary Chaotic Jaya) would be executed for scheduling the

tasks among VMs. As a result, the optimal mapping of tasks

into VMs would take place resulting in a reduced makespan,

energy consumption, degree of imbalance and improved VM

utilization. In this regard, sub-section 4.1 presents the cloud

request placement strategy (task scheduling) using a binary

chaotic Jaya (BCJaya) algorithm. Next, the load balancing

and resource monitoring strategy is presented in sub-section

4.2.

4.1. Cloud Requests Placement Strategy Using BCJaya

Jaya is a population-based metaheuristic optimization

algorithm used to address constrained and unconstrained

optimization problems [16]. This algorithm consists of two

entities, such as particles and food sources. Likewise, our

cloud requests placement strategy consists of tasks as particles

and VMs as food sources. In the Jaya-based algorithm, each

particle competes among itself to get into the compatible food

source. Analogously, the tasks compete among themselves to

get into a compatible VM in our problem domain. The

position of each particle is updated in each iteration and so are

tasks. The fitness of each particle is estimated according to the

fitness value, and the best and worst positions are estimated

through a single equation in the Jaya algorithm. The fitness of

each task is evaluated through a defined fitness function in

Equation (13). The position of each particle is updated

through the following Equation (14).

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟1(𝐵𝑖 − |𝑋𝑖
𝑡|) − 𝑟2(𝑊𝑖 − |𝑋𝑖

𝑡|) (14)

Here, 𝑋𝑖
𝑡 and 𝑋𝑖

𝑡+1 are the current and the updated positions of

the particle 𝑖 at 𝑡 and 𝑡 + 1 iterations, respectively, 𝑟1 and 𝑟2

are arbitrary numbers between 0 and 1, 𝐵𝑖 and 𝑊𝑖 are the best

and worst solutions of the particle 𝑖.

However, the standard Jaya suffers from slow convergence

and consequently, local entrapment of the particles may take

place. Therefore, the chaotic JAYA (CJAYA) theory of chaos

serves as the foundation for this work. This technique is used

to overcome the drawback of being slower at the JAYA

algorithm's standard convergence rate. This is intended to

hasten exploration without becoming ensnared in local

optima. The standard JAYA and the CJAYA operate on

similar principles. Because of CJAYA, an arbitrary, chaotic

number generator is used to create the random numbers that

make up the initial population. Because of its simplicity, the

tent map function is used as a chaotic random number

generator in this study rather than other chaotic map

functions. Equation (15) is used to express it.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 829

RESEARCH ARTICLE

𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡

0.7
, 𝑋𝑖

𝑡 < 0.7

10

3
(1 − 𝑋𝑖

𝑡), 𝑋𝑖
𝑡 ≥ 0.7

 (15)

Note. 𝑋𝑖
𝑡 is the previous random number and 𝑋𝑖

𝑡+1 is the

newly generated chaotic random number. Since the initial

value affects the drifting pattern of some of the chaotic maps,

it is set to 0.7.

Initially, the continuous optimization problem is the focus of

the standard JAYA and its variations. Additionally, this has

been enhanced to address more dynamic optimization issues,

such as cloud computing task scheduling, that are limited to

0s and 1s, which requires the solutions to be converted to

binary. Therefore, the tangent hyperbolic logistic transfer

function is used [16]. It is represented by Equations (16) and

(17).

tanh(|𝑋𝑖
𝑘+1 |) =

𝑒
(|2𝑋𝑖

𝑘+1 |)
−1

𝑒
(|2𝑋𝑖

𝑘+1 |)
+1

 (16)

𝑋𝑖
𝑘+1 = {

1, 𝑖𝑓 𝑟𝑎𝑛𝑑() < tanh(|𝑋𝑖
𝑘+1 |)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (17)

The pseudo-code for the proposed BCJaya placement

algorithm is presented in Algorithm 1.

BEGIN

1. Initialize 𝑇 and 𝑀 set, Particles’ position using Chaos map

theory Eq. 15;

2. LOOP

 for 1: N

Estimate the fitness of each task using Equation (13);

 𝑖𝑓(𝕆 < 𝐵𝑖)

Update the task’s new fitness as the 𝐵𝑖;

End;

End;

 for 1: n

Initiate a new placement by estimating the position with

Equation (14);

Modify the tasks’ position through binary solutions with

Equation (16) and Equation (17);

end;

Till the maximum iteration is reached;

3. Optimal placement of tasks to VMs is accomplished;

END

Algorithm 1 Cloud Requests Placement Strategy Using

BCJaya

4.2. Load Balancing and Resource Monitoring Strategy

This strategy estimates the workloads and capacities of all the

underlying VMs. By comparing the capacity with workload, it

estimates the state of the VM and categorises them into one of

the groups Overutilized VM (OVM), Underutilized VM

(UVM) and Normalized VM (NVM). Next, the used

resources and available resources of all the UVMs are

estimated and then the tasks of OVMs are evaluated against

each UVM to check the adaptability for the offloading to

bring a balance across the total workloads in all the VMs.

These are delineated as follows:

Step 1: estimate the doi and check if the system is balanced or

not. If not, then trigger the load balancing operation as

follows.

Step 2: estimate the capacity of each VM and the capacity of

all the VMs.

The capacity of a VM (Equation (18)) is defined as the

maximum workload handled by a VM and is expressed with

respect to its attributes. The capacity of all the VMs is

denoted in Equation (19).

𝐶𝑎𝑝(𝑀𝑗) = 𝑀𝑗
𝑐 × 𝑀𝑗

𝑚 × 𝑀𝑗
𝑠 × 𝑀𝑗

𝐵𝑊 (18)

𝐶𝑎𝑝(𝑀) = ∑ 𝐶𝑎𝑝(𝑀𝑗)
𝑀
𝑗=1 (19)

Step 3: estimate the workload of each VM, the total workload,

and the average workload

The load on a virtual machine (VM) is characterized as the

total number of tasks assigned to it at a given time 𝑡. This

load is quantified using Equation (20), which evaluates the

ratio of the number of tasks allocated to a VM to its execution

time at the same time 𝑡. Similarly, the overall workload across

all VMs and the average workload of the datacenter are

determined using Equations (21) and (22), respectively. These

equations collectively provide an estimation of individual and

collective workloads within the cloud environment.

𝐿(𝑀𝑗
𝑡) =

𝑁𝑇(𝑡)

𝐸𝑥𝑒𝑡(𝑀𝑗)
 (20)

𝐿 = ∑ 𝐿(𝑀𝑗
𝑡)𝑀

𝑗=1 (21)

𝐿𝑎𝑣𝑔 =
1

𝑀
∑ 𝐿(𝑀𝑗

𝑡)𝑀
𝑗=1 (22)

Step 4: identify the state of the VMs, group them into three

classes, and sort them depending on their loads

The VMs’ state can be found by contrasting the VM’s load

with the average load. For instance, if the load of a VM is

greater than the average loads (𝐿(𝑀𝑗
𝑡) > 𝐿𝑎𝑣𝑔) , it can be

treated as an overutilized VM (OVM). Similarly, if the load of

a VM is less than the average loads (𝐿(𝑀𝑗
𝑡) < 𝐿𝑎𝑣𝑔), it can

be treated as an underutilized VM (UVM), otherwise, it is

referred to as normalized VM (NVM). Initially, the UVM

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 830

RESEARCH ARTICLE

group's underloaded resources are arranged according to

increasing loads. The second step involves rearranging the

underloaded resources in descending order of resource

utilisation while maintaining the same state of loads. Finally,

the OVM group's overloaded resources are arranged

according to decreasing load orders.

Step 5: Resource Monitoring for UVM

Resource monitoring is an essential step before migrating

tasks from an OVM to a suitable UVM for a trade-off. Hence,

the total resources available and total resources used by all the

UVMs are to be estimated. It is expressed in Equation (23)

and Equation (24). Here, vector 𝑇𝑖
⃗⃗ is the resource usage

pattern (core, memory, storage) of all the tasks, and vector 𝑇𝑅
⃗⃗⃗⃗

denotes the total resources of a UVM.

𝑇𝑅𝑢𝑠𝑒𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑀𝑗(𝑈𝑉𝑀)) = ∑ 𝑇𝑖

⃗⃗ 𝑁
𝑖=1 (23)

𝑇𝑅𝑎𝑣𝑎𝑖𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑀𝑗(𝑈𝑉𝑀)) = 𝑇𝑅

⃗⃗⃗⃗ − 𝑇𝑅𝑢𝑠𝑒𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (24)

Step 6: Identifying the adaptability and migration of tasks of

OVM to UVM based on adaptability value.

After estimating the available resources of UVM, it is pivotal

to identify the compatibility between the tasks of OVM with

all the UVMs for better placement of tasks and improved

performance. Hence, the adaptability is estimated in Equation

(26), where the value 0.5 is initialized for 𝛼. If the value of

the adaptability is less, it means better compatibility exists

and hence, migration or placement of that task to the

respective UVM is feasible. For checking the compatibility,

the similarity (Equation (25)) is identified between the task of

an OVM (𝑇𝑂
⃗⃗⃗⃗) with the available resources of the UVM.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos−1 (
𝑇𝑂⃗⃗ ⃗⃗ ⃗× 𝑇𝑅𝑎𝑣𝑎𝑖𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

|𝑇𝑂⃗⃗ ⃗⃗ ⃗||𝑇𝑅𝑎𝑣𝑎𝑖𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|

) (25)

𝑎𝑑𝑎𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝛼 × 𝑎𝑛𝑔𝑙𝑒 + (1 − 𝛼) × 𝑈𝑡𝑖𝑙𝑀 (26)

5. PERFORMANCE EVALUATION AND ANALYSIS

This section demonstrates the experimental setup and presents

the compared baselines and dataset utilization for carrying out

the simulations. Lastly, the obtained results are demonstrated

through graphs for different considered service parameters.

5.1. Experimental Setup

The current study's simulation tests leverage a cloud

environment to boost the capabilities of the CloudSim

simulator. The environment consists of both homogeneous

and heterogeneous virtual machines (VMs) housed in a cluster

with an arbitrary mesh topology. Numerous reliant tasks that

are dynamically generated need to be scheduled on the virtual

machines. The research uses 46 to 246 virtual machines

(VMs) and 500 to 2500 tasks. To create heterogeneity

between the VMs, each one's processing power must adhere

to a consistent distribution between 2000 and 20000 MIPS.

Virtual machines' power consumption ranges arbitrarily from

80 to 200 watts when they are in active mode. It is believed

that during idleness, 70% of the power used in the active state

is used. A 1000 Mbps bandwidth is allotted to the

communication channel, and a propagation delay of 1 to 3

milliseconds is considered to exist between the virtual

machines. The tasks are divided into three categories: hard

real-time activities, soft real-time tasks, and firm real-time

tasks. Hard real-time tasks are arbitrarily generated between

100 and 372 MI, with task sizes that are always between 100

and 500 MI. The second and third task types have sizes of

1028–4280 MI and 2400–6800 MI, respectively, with

matching deadlines of 500–2500 MI and 1500–4500 MI. A

random selection is made for the input and output file sizes

for each task type, ranging from 100 to 10,000 KB, 50 to

1000 KB, and 1 to 500 KB, respectively. The Java

programming language simulation experiments are

implemented using the CloudSim simulator. The trials are

performed on a laptop with Windows 11 that has an Intel®

Core i7-6600U CPU, four cores, and a 2.6 GHz clock speed.

It also has 16 GB of RAM. To ensure accurate results, each

experiment is conducted thirty times, and the average of the

results is displayed. For the suggested algorithm, the

maximum number of iterations is set to 750 and the

population size is set to 30.

In order to evaluate this algorithm's performance, the authors

considered actual workloads. The GoCJ: Google Cloud Jobs

dataset for distributed and cloud computing infrastructures,

which Google published in September 2018, was the dataset

that the authors used [24]. This dataset, which is kept in the

Mendeley data repository, consists of 19 text files, each with a

different number of jobs per million instructions (MI). Each

job is treated as a cloudlet based on its length in MI. For the

execution of the corresponding VMs, the number of cloudlets

(1000–2500) with different instruction sizes, ranging from

1000 to 5000, is taken into consideration.

5.2. Results Analysis

To appraise the effectiveness of the proposed algorithm, the

authors compared it with other baselines such as binary bird

swarm optimization (BBSO) [22], the standard Jaya, Binary

Jaya (BJaya) [16], and a hybrid genetic algorithm and Jaya

algorithm (GAYA) [13].

All these algorithms are validated for a set of scheduling

parameters like Makespan, VM Utilization, Load balancing

(doi), and Energy consumption. A distinct dataset with

varying task ranges in terms of lengths, MI, and execution

times is used to assess the performance parameters in order to

realise the impact of a growing set of tasks and virtual

machines on the suggested algorithm's scalability and

performance. The obtained results present the mean values of

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 831

RESEARCH ARTICLE

these performance parameters for the various task and virtual

machine ranges in a heterogeneous environment.

5.2.1. Performance Analysis for Makespan

The Makespan metric is a critical indicator of efficiency in

task scheduling algorithms, measuring the total time required

to execute all tasks. The provided graph compares five

algorithms—BCJaya, Binary Bird Swarm Optimization

(BBSO) [22], Standard Jaya, Binary Jaya (BJaya) [16], and

GAYA (GA + Jaya) [13]—across increasing workloads, from

500×46 to 2500×246 tasks and VMs. BCJaya consistently

outperforms the others, achieving the lowest Makespan across

all configurations, reflecting its superior scalability and

adaptability in handling dynamic, large-scale cloud

environments. By incorporating chaotic mappings into the

Jaya optimization framework, BCJaya effectively explores the

search space, avoids premature convergence, and ensures

efficient task allocation to virtual machines (VMs),

minimizing idle times and maximizing resource utilization.

Figure 2 shows the impact of makespan on the proposed

technique.

In contrast, BBSO performs the worst, showing the highest

Makespan values across all workloads. Its limited exploration

capabilities and tendency to get stuck in local optima result in

inefficient task allocation and scalability issues. Standard Jaya

shows moderate performance, achieving better Makespan

values than BBSO but lagging behind the hybrid approaches.

Its steady increase in Makespan with workload growth

indicates its limited adaptability in heterogeneous and

dynamic cloud settings.

Binary Jaya (BJaya) improves upon Standard Jaya by

introducing binary representation for task scheduling, better

aligning with the problem's discrete nature. While BJaya

outperforms Standard Jaya, it lacks the advanced adaptability

and efficiency provided by BCJaya’s chaotic mappings.

GAYA, which combines Genetic Algorithm (GA) for

generating initial solutions with Jaya for refinement,

demonstrates better performance than BJaya and Standard

Jaya. Its hybrid approach effectively balances exploration and

exploitation, achieving lower Makespan values. However,

GAYA’s performance slightly declines as workloads grow,

indicating its limitations in handling large-scale and dynamic

environments compared to BCJaya.

The Makespan trends reveal significant differences in

scalability. BCJaya exhibits the slowest growth in Makespan

as workloads increase, demonstrating its ability to balance

tasks effectively and maintain efficiency under high

workloads. In contrast, BBSO and Standard Jaya show steep

increases in Makespan, reflecting their inefficiency and

limited scalability. BJaya and GAYA offer moderate

improvements but fail to match BCJaya’s robustness and

efficiency.

The superior performance of BCJaya highlights the

importance of advanced optimization techniques. By

integrating chaotic mappings, BCJaya avoids local optima and

ensures faster convergence, resulting in consistently lower

Makespan values. This adaptability makes BCJaya highly

suitable for modern cloud environments, where workloads are

dynamic and heterogeneous. On the other hand, the poor

scalability of BBSO and Standard Jaya underscores the

limitations of traditional heuristic approaches. While BJaya

and GAYA represent steps forward, they fall short of

BCJaya’s performance, particularly for large workloads.

Figure 2 Performance Analysis of the Proposed BCJaya for

Makespan

5.2.2. Performance Analysis for VM Utilization

VM Utilization is a critical performance metric in virtualized

environments. It measures the extent to which a virtual

machine's resources (primarily CPU and memory) are being

used. High VM utilization indicates efficient resource

allocation, while low utilization suggests underutilization or

potential resource overprovisioning.

Figure 3 compares the VM Utilization performance of several

techniques: Binary Bird Swarm Optimization (BBSO),

Standard Jaya, Binary Jaya, GAYA, and the proposed

BCJaya. The x-axis represents different task and VM

configurations, while the y-axis indicates VM Utilization

percentage.

Across all task and VM configurations, BCJaya consistently

demonstrates superior VM Utilization compared to other

techniques. This indicates that BCJaya effectively allocates

resources and schedules tasks, maximizing the utilization of

virtual machines. As the task and VM configurations increase

in complexity, the performance gap between BCJaya and

other techniques widens. This suggests that BCJaya's

advantages are more pronounced in larger and more intricate

environments. BBSO, Standard Jaya, and Binary Jaya exhibit

some improvement over GAYA, but they still lag behind

0

50

100

150

200

250

500×46 1000×92 1500×146 2000×192 2500×246

M
a

k
es

p
a

n
 (

se
c
)

Tasks × VMs

BBSO[22] Jaya Bjaya[16] GAYA[13] BCJaya

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 832

RESEARCH ARTICLE

BCJaya. This highlights the impact of hybridization and

chaotic map incorporation in BCJaya.

BCJaya's optimization algorithms likely excel at assigning

tasks to VMs, ensuring optimal resource allocation and

minimizing idle time. The proposed technique may effectively

allocate CPU and memory resources to VMs, preventing

over-provisioning and underutilization. BCJaya is capable of

adapting to changing workloads and resource constraints,

ensuring sustained high utilization.

In a nutshell, Figure 3 demonstrates the significant potential

of BCJaya in optimizing VM Utilization. Its ability to

effectively allocate resources and schedule tasks makes it a

promising solution for improving the performance and

efficiency of virtualized environments.

Figure 3 Performance Analysis of the Proposed BCJaya for

VM Utilization

5.2.3. Performance Analysis for Energy Consumption

Figure 4 illustrates the performance metric of Energy

Consumption for various techniques, including Binary Bird

Swarm Optimization (BBSO), Standard Jaya, Binary Jaya,

GAYA, and the proposed BCJaya. A key observation is that

BCJaya consistently demonstrates the lowest energy

consumption across different task and VM configurations.

This superior performance highlights BCJaya's ability to

efficiently allocate resources and schedule tasks, minimizing

idle time and unnecessary energy expenditure.

While BBSO, Standard Jaya, and Binary Jaya exhibit some

improvement over GAYA, they still consume significantly

more energy than BCJaya, particularly in larger and more

complex scenarios. This underscores the impact of BCJaya's

hybridization and chaotic map incorporation, which enhance

its ability to optimize resource utilization and reduce energy

consumption. Reduction in makespan and increased efficient

utilization of resources lead to reduce the consumption of

energy in the datacentre. The reduction in energy

consumption achieved by BCJaya has significant implications

for datacenters and cloud computing environments. Lower

energy consumption translates to reduced operational costs

for datacenter operators and cloud service providers. By

minimizing energy usage, BCJaya contributes to a reduced

carbon footprint and promotes sustainable computing

practices. Efficient resource utilization can lead to improved

system reliability and reduced downtime. Because optimal

VM utilisation reduces server energy consumption, there is a

close, direct linear relationship between energy consumption

and VM utilisation.

5.2.4. Performance Analysis for Load Balancing Rate

Figure 5 illustrates the performance metric of Load Balancing

Rate for various techniques, including Binary Bird Swarm

Optimization (BBSO), Standard Jaya, Binary Jaya, GAYA,

and the proposed BCJaya. A key observation is BCJaya's

consistent outperformance across different tasks and VM

configurations, indicating its superior ability to effectively

distribute workload across VMs. This superior performance is

particularly evident in larger and more complex scenarios,

suggesting the efficacy of BCJaya's hybridization and chaotic

map incorporation.

While BBSO, Standard Jaya, and Binary Jaya exhibit some

improvement over GAYA, they still lag behind BCJaya,

highlighting its potential to optimize workload distribution

and improve load balancing. By effectively distributing

workload, BCJaya can minimize the overall job completion

time, leading to reduced system response times and improved

user experience. Optimal workload distribution ensures that

VMs are utilized efficiently, preventing idle resources and

maximizing system capacity. Balanced workload distribution

through the proposed similarity-and-compatibility-based load

balancing method helps prevent system overload and improve

overall system reliability.

Figure 4 Performance Analysis of the Proposed BCJaya for

Energy Consumption

The enhanced load balancing achieved by BCJaya is closely

linked to its ability to reduce makespan and increase VM

utilization. By efficiently distributing tasks across VMs,

0

10

20

30

40

50

60

500×46 1000×92 1500×146 2000×192 2500×246

V
M

 U
ti

li
za

ti
o

n
 (

%
)

Tasks × VMs

BBSO[22] Jaya Bjaya[16] GAYA[13] BCJaya

0

50

100

150

200

250

300

500×46 1000×92 1500×146 2000×192 2500×246E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
K

J
)

Tasks × VMs

BBSO[22] Jaya Bjaya[16] GAYA[13] BCJaya

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 833

RESEARCH ARTICLE

BCJaya minimizes idle resources and maximizes system

throughput. This, in turn, leads to reduced job completion

times and improved system performance.

Figure 5 Performance Analysis of the Proposed BCJaya Load

Balancing Rate (%)

6. CONCLUSIONS AND FUTURE DIRECTIONS

This study introduces a dynamic scheduling approach

combined with an efficient load balancing mechanism. The

objective function is designed to optimize multiple parameters

simultaneously: reducing the makespan, energy consumption,

and degree of imbalance while enhancing VM utilization. The

approach adopts a two-step strategy—first, it ensures an even

distribution of workloads across VMs to achieve load

balancing. This, in turn, significantly improves Quality of

Service (QoS) parameters. Following this, the Binary Chaotic

JAYA (BCJaya) algorithm is applied for task scheduling. The

chaotic principle integrated into Jaya helps address the

exploration-exploitation trade-off inherent in the standard

Jaya algorithm. Furthermore, the binary adaptation allows for

precise task-to-VM mapping in a discrete space. The method

is evaluated in a heterogeneous environment where the

number of tasks and virtual machines (VMs) dynamically

increases, providing a robust test for the algorithm's

efficiency. Simulation results highlight substantial

improvements in key performance metrics, including

makespan, load balancing efficiency, energy consumption,

and VM utilization. Compared to other algorithms, the

proposed approach consistently delivers superior

performance, demonstrating its effectiveness in dynamic

cloud environments.

For future work, prioritization of cloud requests could be done

to reduce the latency and incurred delay. Different natures of

tasks could be explored and simulated to witness the efficacy

of the proposed algorithm. A hybrid algorithm could be

devised to surmount the inherent limitations of the underlying

algorithm.

REFERENCES

[1] Mishra, K., & Majhi, S. (2020). A state-of-art on cloud load balancing

algorithms. International Journal of computing and digital

systems, 9(2), 201-220.
[2] Zhang, Z., Zhao, M., Wang, H., Cui, Z., & Zhang, W. (2022). An

efficient interval many-objective evolutionary algorithm for cloud task

scheduling problem under uncertainty. Information Sciences, 583, 56-
72.

[3] Ghafari, R., Kabutarkhani, F. H., & Mansouri, N. (2022). Task

scheduling algorithms for energy optimization in cloud environment: a
comprehensive review. Cluster Computing, 25(2), 1035-1093.

[4] Mahapatra, A., Mishra, K., Pradhan, R., & Majhi, S. K. (2023). Next

Generation Task Offloading Techniques in Evolving Computing
Paradigms: Comparative Analysis, Current Challenges, and Future

Research Perspectives. Archives of Computational Methods in

Engineering, 1-70. https://doi.org/10.1007/s11831-023-10021-2

[5] Zade, B. M. H., Mansouri, N., & Javidi, M. M. (2022). A two-stage

scheduler based on New Caledonian Crow Learning Algorithm and

reinforcement learning strategy for cloud environment. Journal of
Network and Computer Applications, 202, 103385.

[6] Manikandan, N., Gobalakrishnan, N., & Pradeep, K. (2022). Bee

optimization based random double adaptive whale optimization model
for task scheduling in cloud computing environment. Computer

Communications, 187, 35-44.

[7] Pradhan, A., Bisoy, S. K., & Das, A. (2022). A survey on PSO based
meta-heuristic scheduling mechanism in cloud computing

environment. Journal of King Saud University-Computer and

Information Sciences, 34(8), 4888-4901.
[8] Ullman, J. D. (1975). NP-complete scheduling problems. Journal of

Computer and System sciences, 10(3), 384-393.

[9] Kalra, M., & Singh, S. (2015). A review of metaheuristic scheduling
techniques in cloud computing. Egyptian informatics journal, 16(3),

275-295.

[10] Xu, L., Wang, K., Ouyang, Z., & Qi, X. (2014, August). An improved

binary PSO-based task scheduling algorithm in green cloud computing.

In 9th International Conference on Communications and Networking

in China (pp. 126-131). IEEE.
[11] Kaur, G., & Sharma, E. S. (2014). Optimized utilization of resources

using improved particle swarm optimization based task scheduling

algorithms in cloud computing. International Journal of Emerging
Technology and Advanced Engineering, 4(6), 110-115.

[12] Rao, R. V. (2019). Jaya: an advanced optimization algorithm and its

engineering applications, 770-780.
[13] Mishra, K., & Majhi, S. K. (2023). A novel improved hybrid

optimization algorithm for efficient dynamic medical data scheduling
in cloud-based systems for biomedical applications. Multimedia Tools

and Applications, 1-35. https://doi.org/10.1007/s11042-023-14448-4

[14] Zahedi Fard, S. Y., Ahmadi, M. R., & Adabi, S. (2017). A dynamic
VM consolidation technique for QoS and energy consumption in cloud

environment. The Journal of Supercomputing, 73(10), 4347-4368.

[15] Zhang, X., Wu, T., Chen, M., Wei, T., Zhou, J., Hu, S., & Buyya, R.
(2019). Energy-aware virtual machine allocation for cloud with

resource reservation. Journal of Systems and Software, 147, 147-161.

[16] Mishra, K., Pati, J., & Majhi, S. K. (2022). A dynamic load scheduling
in IaaS cloud using binary JAYA algorithm. Journal of King Saud

University-Computer and Information Sciences, 34(8), 4914-4930.

[17] Ilager, S., Ramamohanarao, K., & Buyya, R. (2019). ETAS: Energy
and thermal‐aware dynamic virtual machine consolidation in cloud

data center with proactive hotspot mitigation. Concurrency and

Computation: Practice and Experience, 31(17), e5221.
[18] Azizi, S., Zandsalimi, M. H., & Li, D. (2020). An energy-efficient

algorithm for virtual machine placement optimization in cloud data

centers. Cluster Computing, 23, 3421-3434.
[19] Yavari, M., Ghaffarpour Rahbar, A., & Fathi, M. H. (2019).

Temperature and energy-aware consolidation algorithms in cloud

computing. Journal of Cloud Computing, 8(1), 1-16.

0

50

100

150

200

500×46 1000×92 1500×146 2000×192 2500×246

L
o

a
d

 b
a

la
n

ci
n

g
 r

a
te

 (
%

)

Tasks × VMs

BBSO[22] Jaya Bjaya[16] GAYA[13] BCJaya

https://doi.org/10.1007/s11831-023-10021-2
https://doi.org/10.1007/s11042-023-14448-4

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/49 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 834

RESEARCH ARTICLE

[20] Abdessamia, F., Zhang, W. Z., & Tian, Y. C. (2020). Energy-
efficiency virtual machine placement based on binary gravitational

search algorithm. Cluster Computing, 23, 1577-1588.

[21] Abualigah, L., & Diabat, A. (2021). A novel hybrid antlion
optimization algorithm for multi-objective task scheduling problems in

cloud computing environments. Cluster Computing, 24, 205-223.

[22] Mishra, K., & Majhi, S. K. (2021). A binary Bird Swarm Optimization
based load balancing algorithm for cloud computing

environment. Open Computer Science, 11(1), 146-160.

[23] Singh, S., & Vidyarthi, D. P. (2023). An integrated approach of ML-
metaheuristics for secure service placement in fog-cloud

ecosystem. Internet of Things, 22, 100817.

https://doi.org/10.1016/j.iot.2023.100817
[24] Hussain, A., & Aleem, M. (2018). GoCJ: Google cloud jobs dataset for

distributed and cloud computing infrastructures. Data, 3(4), 38.

Authors

Santosh Kumar Paul completed his MCA,

M.Tech.(Comp.Sc.). He is currently pursuing

Ph.D. (Computer Science) at Sri Sri University
Cuttack. He has 15 years of experience in

teaching. Currently, he is working on load-
balancing optimization algorithms in cloud

computing.

Prof (Dr.) Sunil Kumar Dhal working as a

Professor at Sri Sri University. He has
completed his Master's in mathematics,

M.Tech.(Comp.Sc) and Ph.D. in Computer

Science. He has 25 years of teaching
experience. His current research focuses on

Quantitative Methods for Management,

Software Project Management, Data Analysis,
Management Science, Cloud computing,

Wireless Sensor networks, ERP etc. He has

many publications and patents and he authored many books.

How to cite this article:

Dr. Rakesh Nayak is author five books,
presently working as Asst. Dean and Head of

the Department of Computer Science and

Engineering at O P Jindal University, Raigarh,
Chhattisgarh. He received his Master degree in

Computer Applications from Indira Gandhi

National Open University in the year 2007 and
M.Tech (CSE) from Acharya Nagarjuna

University in 2010 and his Ph.D degree in

Computer Science from Behrampur University
in 2013. He has more than 22 years of teaching and administrative field in the

technical level institutions. He has guided 12 M.Tech Students. He has many

publications in international journals/conferences to his credit.

Dr. Umashankar Ghugar earned his full-time

doctoral degree from Berhampur University,

Odisha, in 2021, and his M. Tech degree in

Computer Science from Fakir Mohan University,

Balasore, in 2012. and his B.E. degree in IT from

Utkal University in 2006. Currently, He is
working as an Assistant Professor (Sr. Grade) in

the Department of CSE, OP Jindal University,
Raigarh, India. He has 15 years of teaching and

research experience in different organizations. He

has published 40 articles, including reputed journals, book chapters, and
conferences in international publishers. His research interests are in Computer

Networks, Network Security in WSN. He is a Reviewer of IEEE Access,

IEEE Transaction on Education, IEEE Transactions on Neural Networks and
Learning Systems, Security and Privacy (Wiley), International Journal of

Communication Systems (Wiley), International Journal of Distributed Sensor

Networks (Hindawi), International Journal of Knowledge Discovery in
Bioinformatics (IGI Global), and International Journal of Information

Security and Privacy (IGI Global) and a member of IEEE, IACSIT, CSTA,

and IRED.

Santosh Kumar Paul, Sunil Kumar Dhal, Rakesh Nayak, Umashankar Ghugar, “Energy-Aware Optimization of Cloud

Request Placement and Resource Monitoring Using an Evolutionary Algorithm for Cloud-assisted Systems”, International

Journal of Computer Networks and Applications (IJCNA), 11(6), PP: 821-834, 2024, DOI: 10.22247/ijcna/2024/49.

https://doi.org/10.1016/j.iot.2023.100817

