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Abstract – Cloud computing infrastructures are particularly 

vulnerable to Distributed Denial of Service (DDoS) attacks due 

to the large-scale and dynamic nature of resources.  Large data 

volumes are handled by cloud settings, which raises the 

computational cost of detection, and filtering malicious traffic 

from genuine traffic in such large quantities is difficult. The 

conventional detection techniques are insufficient. The optimized 

Elman Neural Network (ENN) used in this study's proposed 

enhanced DDoS attack detection framework combines centroid 

opposition-based learning (COBL) with bacterial colony 

optimization (BCO) called COBCO.  The conventional BCO 

lacks population diversity and can fall into local optima due to 

random initialization and population update.  To overcome the 

above issues, COBL is used for population initialization and 

population update to enhance population diversity and avoid 

local optima issues.  By imitating bacterial foraging behavior, the 

COBCO algorithm improves the ENN's capacity to explore and 

exploit the solution space, increasing the network's speed of 

convergence and accuracy of detection. Meanwhile, COBL 

enhances the learning process by producing a wider range of 

solid candidate solutions, which offset the drawbacks of 

conventional opposition-based learning.  Extensive simulations 

show that the suggested strategy outperforms traditional 

techniques in identifying different kinds of DDoS attacks. 

Index Terms – Elman Neural Network, Bacterial Colony 

Optimization, Centroid Opposition-Based Learning, 

Hyperparameter Optimization, Convergence Rate, DDoS Attack 

Detection. 

1. INTRODUCTION 

Cloud computing is a capable technology that gives customers 

an easy way to access resources and services via the Internet. 

Utility computing is replacing desktop computing with this 

technology. On-demand self-service, resource pooling, wide 

network access, quick adaptability, and measurable services 

are among the key benefits offered by cloud technology.  The 

cloud provides software, platforms, and infrastructure as a 

service through various delivery models, including private, 

public, and hybrid. For a few years, cloud services have been 

utilized by banks, hospitals, and educational institutions, 

following the lead of big cloud businesses [1].  Cloud 

computing has several advantages, but it also has several 

security flaws, dangers, and difficulties.  The DDoS attack 

poses a dangerous risk to the accessibility of cloud services 

and resources [2].  In cloud computing, a DDoS attack is an 

intentional attempt to overload a targeted server, service, or 

network with excessive incoming data to disrupt its regular 

operations [3].     

The ENN is intended to gather and store contextual data in a 

hidden layer. In 1990, Jeff Elman made it known. An input, a 

hidden, and an output layer make up its three layers.  Through 

a series of stages, the hidden layer sends the activation values 

back to itself, storing context information. This makes it 

possible for the network to process data sequences by 

preserving knowledge about earlier inputs over time.  ENNs 

are useful for capturing the many aspects of DDoS attacks 

because they can learn intricate non-linear correlations 

between input features[4]. They can identify minute changes 

in network traffic patterns that could be signs of an intrusion.  

Training complexity and high computational cost are common 

features of Elman networks. A substantial amount of time and 
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money may be needed to determine the ideal architecture, 

hyperparameters, and training methods.  Big networks with 

lots of traffic could find it difficult for Elman networks to 

scale. Large volumes of data processing in real-time may be 

difficult, which could cause delays or missed detections.  In 

large networks or high-speed traffic settings, training and 

deploying Elman networks may demand a substantial amount 

of processing power. 

Researchers and practitioners can effectively search the 

hyperparameter space and identify configurations that lead to 

optimal performance in DDoS attack detection by utilizing 

swarm intelligence (SI) techniques for hyperparameter 

optimization in ENNs.  These techniques aid in overcoming 

the difficulties associated with laborious search and manual 

modifications, resulting in ENNs that function better [5].  

ENNs hyperparameter optimization is determining an 

appropriate set of hyperparameters to maximize the network's 

performance in a particular task, such as DDoS attack 

detection.  The BCO is a recently developed SI method 

demonstrated after the way bacteria hunt for food. BCO can 

effectively search high-dimensional and non-convex search 

spaces while swiftly examining the hyperparameter space and 

obtaining good solutions hyperparameter optimization can be 

achieved with it [6] and it efficiently adjusts the ERNs' 

hyperparameters for better performance utilizing BCO.  

However, the conventional BCO algorithm has many 

shortcomings such as population diversity, local optima, and 

low convergence rate.  Hence, the present work developing a 

new improved BCO for optimizing the hyperparameters of 

ENN.  The improved method called COBCO uses the COBL 

method for population unitizing and updating the population.  

An improvement on OBL called COBL focuses on making 

optimization algorithms perform better by taking the centroid 

of opposed solutions into account.   By taking opposing 

solutions and their centroids into account, COBL adds even 

more variability. Searching regions distinct from the current 

solutions improves the search space research. Additionally, by 

directing the search towards the center of promising 

alternatives, it facilitates exploitation.  The research aims to 

use the COBL that achieves an appropriate balance between 

exploitation and exploration of BCO.  It accomplishes this by 

using the theory of centroid opposition, in which bacterial 

colonies travel in the opposite direction of the population's 

centroid to discover new locations while preserving ties to the 

promising ones.  This study's primary objectives are to use a 

COBCO to accelerate learning, lower error, and maximize 

ENN performance to the global minimum.  The significance 

of the new model lies in its ability to optimize the ENN's 

parameters to boost training efficiency, reduce network 

running time, and improve training speed and convergence.  

Create a detection system to increase the precision of 

differentiating between harmful and legitimate 

communication in cloud environments by utilizing the 

optimized ERNN.  Research has the following contributions:  

• The recommended COBCO+ENN is utilized to 

distinguish malicious data from incoming data. 

• The new population initialization and position updating 

are proposed to improve the performance of BCO called 

COBCO to enhance the convergence, avoid local optima, 

and enhance the population diversity. 

• The COBCO uses the COBL which offers a productive 

way to explore and utilize the solution space. 

• COBCO is used to optimize hyperparameters of ENN to 

enhance the detection accuracy and convergence rate.   

• The generated detection method was compared with a 

few benchmark detection algorithms for performance 

analysis. 

• Four distinct DDoS attack datasets are examined to assess 

the efficacy and derive experimental conclusions. 

The remaining sections are as follows: Section 2 covers 

various current research papers, while Sections 3, 4, 5, 6, and 

7 explore research methodologies such as ENN, BCO, COBL, 

COBCO, and the suggested COBCO-ENN.  The outcomes of 

the experiment are offered in Section 8, and the paper's 

conclusions are covered in Section 9. 

2. RELATED WORKS 

Relevant research, practical detection method development, 

and enhanced cloud environment security posture are all 

facilitated by related efforts in DDoS attack detection for 

cloud computing.  Related works provide a basis for 

innovation and advancement in cloud computing DDoS attack 

detection, propelling improvements in methods, tools, and 

approaches to fortify cloud infrastructure security.  The 

identification of current weaknesses and difficulties in DDoS 

attack detection that are unique to cloud computing systems is 

aided by related efforts. They shed light on the flaws in the 

detection techniques used today and suggest areas for 

development.  R. Priyadarshini et al. (2022) [7] suggested a 

unique source-based DDoS defense strategy that may be 

utilized to counteract DDoS attacks which is deployed at the 

SDN using SDN to identify abnormal DDoS attacks.  The 

planned work offers a DL-based detection approach that may 

block infected packets from causing more attacks and filters 

and forwards valid packets to the server using network traffic 

analysis mechanisms.  The developed method is detected on 

network or Transport level layers and lacks in other layers.  A. 

V. Kachavimath et al. (2021)  [8] developed a method for 

detecting DDoS attacks that was put forth by extracting 

various sequence patterns from the recorded traffic using deep 

learning. This method has a high detection rate. The outcomes 

of the suggested methodology have shown that the long short-
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term memory (LSTM) strategy performs better and has higher 

accuracy than the multilayer perceptron (MLP) and 

convolutional neural network (CNN).  Y. Sanjalawe et al. 

(2023)  [9] developed a new hybrid DL mode based on 

hybridizing CNN with LSTM for identifying both legitimate 

and malicious traffic,.  The suggested IDS performs better 

than the most advanced IDSs, according to the results.  Thus, 

the suggested IDS satisfies the needs for high security, 

automatic, effective, and self-decision DDoS assault 

detection.  However, both the above papers [8] and [9] 

produced high computation costs due to their random 

hyperparameters.  T. Khempetch et al. (2021) [10] suggested 

an LSTM algorithm and deep neural network (DNN) for 

detection. According to the findings, deep learning represents 

an additional avenue for identifying potential future 

disruption-causing threats.  D. Kumar et al. (2023)   [11] 

developed a detection based on LSTM that was built to detect 

DDoS threats on a representative sample of network traffic 

packets. The DL approach known as LSTM once trained, 

updates itself; LSTM operates quickly and accurately even 

with fewer data points.  LSTM takes more computation 

learning time to produce optimal results due to its random 

hyperparameters.   

S. Potluri et al. (2020)  [12] created a new technique for 

DDoS attacks, as well as methods for detecting and 

preventing them. The comprehensive analysis also describes 

the consequences of DDoS attacks on cloud platforms and the 

necessary protection methods for those effects.  Y. Sanjalawe 

et al. (2023) [13] developed a new detection method-based 

DNN approach called FS-WOA-DNN, together with a novel 

feature selection-whale optimization methodology, to 

counteract DDoS attacks. The DNN classifier is applied to the 

chosen features to distinguish between normal and 

compromised data. To further strengthen the security of the 

suggested architecture, homomorphic encryption is used to 

protect regular data, which is then safely stored on the cloud.  

Datasets used for DDoS detection are frequently unbalanced 

since there are a lot more instances of regular traffic than 

attack occurrences.  A. E. Cil et al. (2021) [14] recommended 

using the DNN as a DL model to identify attacks on the 

packet sample that was obtained from network traffic. 

Because the DNN comprises self-updating layers and 

incorporates extracting the features and classification 

procedures into its structure, it can activate quickly and 

precisely even with little data.  S. Velliangiri et al. (2021) [15] 

developed a DL-based classifier to detect DDoS attacks. User 

service requests are gathered and organized into log 

information. To shorten the classifier's training time, a few 

key features are chosen from the log file and classified using 

the Bhattacharya distance measure. In this case, the Deep 

Belief Network (DBN) based on Taylor-Elephant Herd 

Optimization is created by adjusting Elephant Herd 

Optimization (EHO) using the Taylor series.  However, it will 

take a high computation cost.  A. Amjad et al. (2019) [16] 

created the DDoS attack and the method to stop it, reducing 

the server side's vulnerability. The scenario involves a DDoS 

attack against cloud-based websites, where millions or 

perhaps trillions of packets are sent, causing them to differ 

between hosts. Utilizing ParrotSec and other operating 

systems to enable the attack.  S. UR Rehman et al. (2021)  

[17] developed to defend against real-world attacks, a unique, 

highly effective method called DIDDOS, utilizing a Gated 

Recurrent Unit (GRU).  However, the GRU produced high 

accuracy.  But computationally costly and demands a lot of 

computing power, particularly when evaluating massive 

amounts of network traffic in real-time. 

D. Alghazzawi et al. (2021) [18] propose utilizing a hybrid 

DL model, specifically a CNN with BiLSTM, to accurately 

forecast attacks.  Only the most relevant features were 

selected by rating that had the highest score in the given data 

set.  However, the hybrid method produced high accuracy and 

lacked overfitting.  A. V. Songa et al. (2023) [19] suggest a 

DDoS detection framework that uses Ensemble feature 

selection with RNN to address the current issue.  It combines 

an RNN with an Ensemble of several machine-learning 

techniques. The framework aims to select the appropriate 

features using the ensemble of six ML algorithms. Using 

RNN, these chosen traits are then utilized to categorize 

network traffic as normal or attack.  However, it has taken 

low computational time and produced low accuracy.  S. 

Balasubramaniam et al. et al. (2023) [20] created a novel 

technique, the suggested gradient hybrid leader optimization 

(GHLBO), to detect DDoS attacks efficiently. The deep 

stacked autoencoder (DSA), which effectively identifies 

attacks, is trained by this optimized technique. In this case, 

oversampling is used to augment the data, and a deep max-out 

network (DMN) with an overlap coefficient is used to fuse the 

features.   However, it has produced high accuracy and 

sometimes it fails to identify unknown traffic.  G. S. Kushwah 

et al. (2021) [21] developed a new DDoS detection system 

built on top of a modified Self-adaptive evolutionary extreme 

learning machine (SaE-ELM) was described which was 

enhanced by adding two new characteristics. It can, first of 

all, adjust to the most appropriate crossover operator. Second, 

it is capable of automatically figuring out how many hidden 

layer neurons are needed. The model's capacity for 

classification is enhanced by these features. However, 

compared to the SaE-ELM-based system, it displays a longer 

training time.  P. T. Dinh et al. (2021) [22] suggested 

approach, which consists of online and offline phases and 

implements a GRU, can lessen vanishing gradient issues by 

capturing complicated temporal dependent links in the data. 

Initially, the suggested plan acquires precise multivariate time 

series representations to mirror the typical patterns. 

Subsequently, input data reconstruction is done using these 

representations. Lastly, the reconstruction probabilities can be 
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utilized to understand data in addition to identifying 

abnormalities. To lower error rates, the suggested method 

additionally adds a self-adjusting threshold. In contrast, 

current solutions typically employ a hard threshold to evaluate 

anomalies, which raises error rates.  But it has a low 

convergence rate.  S. Sumathi et al. (2022) [23] suggested a 

gradient descent DL approach with LSTM and autoencoders 

and decoders. The hyperparameters are tuned optimally by 

using a hybrid HHO (Harris Hawks optimization) and PSO. 

The findings showed that the suggested LSTM DL model 

performed better than all other models created in the 

literature, and the suggested hybrid optimization approach 

picks the key characteristics.  DL models need a lot of 

processing power to train, especially those with a lot of layers 

and improper hyperparameters. The behavior and 

performance of DL are significantly influenced by 

hyperparameters. Hyperparameters are determined through 

the learning process, in deference to model parameters, which 

are learned during training. The accuracy, effectiveness, and 

generalizability of the model are all greatly impacted by their 

choice.  Hence, the present research work focused on 

hyperparameters optimization for ENN to enhance the 

accuracy, and convergence rate and reduce the computational 

time. 

3. ELMAN NEURAL NETWORK (ENNS) 

Elman introduced the ENN, a common technique, in 1990 

[24].  The ENN framework is shown in Figure 1.  One kind of 

feedback neural network, the ENN, gains a recurrent layer 

based on the hidden layer, which adds a memory function and 

functions as a delay operator.   It keeps the network stable 

globally and enables it to adapt to dynamic, time-varying 

features.   The structure of an ENN model normally consists 

of four layers: The hidden layer receives the information from 

the input layer, whose neurons are usually linear, and uses an 

activation function to translate or amplify it.   To establish a 

local ring structure, the connecting layer's job is to receive the 

output from the hidden layer and reply with data matching the 

preceding instance. Because the connecting layer unit has a 

deferred memory effect on the features included in previous 

data, the neural network's output is more influenced by the 

actual progress learning.  The output layer is ultimately used 

to output the results.   The structure of the BPNN serves as the 

foundation for the ENN, which automatically links the hidden 

layer's output to its input depending on the delay and storage 

functions of the context layer.  Because of the sensitivity of 

this joining process to the neural network's historical data, this 

internal feedback mechanism can improve the neural 

network's ability to handle dynamic input.  This recording of 

the dynamics to a kept internal state permits the scheme to 

adjust to time-varying features.   An ENN consists of an 

input, a hidden, an output, and a recurrent layer.   Each layer 

has one or more neurons that use a nonlinear function of the 

weighted sum of the input samples to convey data or samples.  

The mathematical model specification for the input layer is 

defined as equation (1),  

𝑋𝑖𝑡(𝑘) = ∑ 𝑋𝑖𝑡(𝑘 − 1)𝑛
𝑖=1                                                      (1) 

Here, an input 𝑡 − time and 𝑛  neurons are denoted by 𝑋𝑖𝑡 .  

Each neuron has the following input model defined as 

following equation (2),  

𝑛𝑒𝑡𝑗𝑡(𝑘) = ∑ 𝑊𝑖𝑗𝑋𝑖𝑡(𝑘 − 1) +𝑛
𝑖=1 ∑ 𝐶𝑗𝑟𝑗𝑡(𝑘)

𝑝
𝑗=1                   (2) 

 

 
Figure 1 ENN Architecture 
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𝑊𝑖𝑗: the hidden layer and input weights. Weights 𝐶𝑗 are those 

between recurrent and hidden layers. The hidden layer is 

defined as follows (Equation 3): 

𝑍𝑗𝑡(𝑘) = 𝑓(𝑛𝑒𝑡𝑗𝑘(𝑘) = ∑ 𝑊𝑖𝑗𝑋𝑖𝑡(𝑘 − 1) +𝑛
𝑖=1 ∑ 𝐶𝑗𝑅𝑗𝑡(𝑘)

𝑝
𝑗=1

                              (3)

     

 

Equation 4 shows the definition of the recurrent layer is as 

follows: 

𝑅𝑗𝑡(𝑘) = 𝑍𝑗𝑡(𝑘 − 1)                                                           (4) 

Equation 5 shows the output layer: 

𝑌𝑡(𝑘) = 𝑓(∑ 𝑉𝑗𝑍𝑗𝑡(𝑘)
𝑝
𝑗=1                                                     (5) 

The following equation (6) is the ENN network errors:  

𝐸 = ∑ (𝑡𝑡 − 𝑦𝑡)
2𝑚

𝑘=1                                                            (6) 

Here, 𝑡𝑡  is the actual and 𝑦𝑡   is the predicted value. 

4. BACTERIAL COLONY OPTIMIZATION (BCO) 

Niu and Wang (2012) proposed BCO, a population-based and 

kind of SI procedure [25] used in several practical 

applications [26-35].  Algorithm 1 illustrates the process of 

BCO.  To tackle the above problem, a novel bacterial 

algorithm called BCO was developed with swarm intelligence 

characteristics to expedite the optimization process. Stages of 

BCO include chemotaxis and communication, elimination and 

reproduction, migration, and the remaining four stages.  The 

entire BCO process takes advantage of the chemotaxis and 

communication phase.  The bacteria use the population 

statistics to modify their swimming and tumbling habits.  To 

update the positions of the microorganisms, a unique 

chemotaxis and communication method is applied.  

Throughout their lives, bacteria can be divided into two types 

of chemotaxis: swimming and tumbling. A stochastic 

direction participates in the actual swimming process when 

tumbling. The combined effects of the best searching director 

in Tumbling and the turbulent director have an impact on the 

updated locations and search direction of each bacterium. 

These effects are expressed in equation (7) as follows:  

𝑃𝑜𝑠𝑖(𝑇) = 𝑃𝑜𝑠𝑖(𝑇 − 1) + 𝐶(𝑖) ∗ [𝑓𝑖 . (𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑠𝑖(𝑇 −
1)) + (1 − 𝑓𝑖) ∗ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑃𝑜𝑠𝑖(𝑇 − 1)) + 𝑡𝑢𝑟𝑏𝑖]

          

(7) 

Bacteria lack a turbulence director, which would steer 

swimming toward an optimal state. This may be expressed in 

equation (8) as follows:   

𝑃𝑜𝑠𝑖(𝑇) = 𝑃𝑜𝑠𝑖(𝑇 − 1) + 𝐶(𝑖) ∗ [𝑓𝑖 . (𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑠𝑖(𝑇 −
1)) + (1 − 𝑓𝑖) ∗ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑃𝑜𝑠𝑖(𝑇 − 1))] 

                      

(8) 

𝐶(𝑖) = 𝐶𝑚𝑖𝑛 + (
𝐼𝑡𝑒𝑟𝑚𝑎𝑥−𝐼𝑡𝑒𝑟𝑗

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)
𝑛
(𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛)

              

(9) 

Where, 𝑡𝑢𝑟𝑏𝑖 - turbulent direction variance. 𝑓𝑖 ∈ {0,1} . The 

personal and global best value is represented by 𝑃𝑏𝑒𝑠𝑡 and 

𝐺𝑏𝑒𝑠𝑡respectively.  𝑛 is the chemotaxis step's linearly reducing 

method.  From the equation number (9), 𝐶(𝑖) - chemotaxis 

step size.  The maximum number of iterations and the current 

iteration are denoted by 𝐼𝑡𝑒𝑟𝑚𝑎𝑥  and 𝐼𝑡𝑒𝑟𝑗 , respectively.   In 

the phase of elimination and reproduction, the sick bacterium 

will be replaced by the high-energy bacterium, which will 

replicate them to build the newest people.  The high energy 

shows that the bacterium hunts for resources with remarkable 

efficiency.  The bacterium can migrate within a certain search 

space range during the migration phase when certain 

conditions are met.  During the migration, the bacteria 

typically go toward the most recent nutrients according to a 

specific likelihood. 

5. CENTROID OPPOSITION-BASED LEARNING 

(COBL) 

The OBL intelligence algorithm was developed by H R 

Tizhoosh to obtain the opposite estimate from the current 

estimate and enhance the capability of the provided answer 

[36].  Often, population-based optimization methods begin by 

producing a collection of solutions.  To construct the 

population, either past data or random selection can be 

applied.  After that, the populations are updated using the 

optimization process.  However, if the answer is not known in 

advance, the given solution is unable to converge to a global 

solution.  Furthermore, the global solution takes longer to 

converge.  Several studies have been carried out to mitigate 

these shortcomings by employing the benefits of the OBL 

method for population initialization and updating. 

Step 1: Set up the required parameters 

Step 2: For every bacterial colony 

Step 3: Chemotaxis and communication 

Step 4: Reproduction and elimination    

Step 5: Migration  

Step 6: If the final stage is not reached, step 2 should be 

taken; if not, the process should be terminated. 

Step 7: The best position should persist in the final position 

Algorithm 1 Bacterial Colony Optimization (BCO) 

5.1. OBL 

Given a real number 𝑥 that was determined within the interval 

𝑚 and 𝑛 let it be. The definition of the opposite number 𝑥̅  is 

define in equation (10) as follows: 

𝑥̄ = 𝑚 + 𝑛 − 𝑥
                                                               

 (10) 

Let 𝑥 = (𝑥1, 𝑥2, . . . . , 𝑥𝐷)  be a data sample with 𝐷  - 

dimensional space.  𝑥1, 𝑥2, . . . . , 𝑥𝐷 ∈ 𝑅  and 𝑥𝑖[𝑚𝑖 , 𝑛𝑖]∀𝑖 ∈
{1,2, . . . . . 𝐷}.  The opposite estimate, 𝑥̄, is in equation (11) 

then defined as 
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𝑥̄𝑖 = 𝑚𝑖 + 𝑛𝑖 − 𝑥𝑖 , 𝑖 = 1,2, . . . . , 𝐷
    

(11) 

5.2. COBL 

S. Rahnamayan et al. [37] presented the COBC, an OBL 

scheme, and it was effectively incorporated into the DE 

algorithm, outperforming its competing algorithms. The total 

population is taken into account while calculating the centroid 

opposite locations in a metaheuristic method. The body's 

centroid can be defined as follows if 𝑥 are 𝑁 positions in a 𝐷 -

D-dimensional search space that are carrying a unit of mass 

which is defined in equation (12) as follows: 

𝑀 =
𝑥1,𝑥2,…..,𝑥𝑁

𝑁
                                                               (12) 

The formula can be used to get the centroid point in the 𝑗𝑡ℎ 

dimension which is defined in equation (13) as follows,  

𝑀𝑗 =
1

𝑁
∑ 𝑥𝑖𝑗
𝑁
𝑖=1                                                               (13) 

Once the centroid value is known as M, the following 

equation (14) can be used to find the opposite point 𝑥̄𝑖  of a 

given point 𝑥𝑖 in the body: 

𝑥̄𝑖 = 2 ×𝑀 − 𝑥𝑖                                                            (14) 

6. COBCO METHOD 

To generate the center values of the opposing values from the 

random numbers, the current work builds a novel COBL 

scheme based on center opposition values.  By producing a 

set of centroid opposite solutions, the COBL approach 

increases the likelihood of obtaining higher-quality solutions.   

Rather than creating opposites for every possible solution, the 

opposites are created concerning the population's centroid. 

This strategy strikes a balance between exploration and 

exploitation by promoting searches in fresh, maybe uncharted 

territory while maintaining a focus on places with great 

potential.   

Two types of modifications, including population 

initialization and position updating using COBL, were carried 

out in the BCO.  In the first stage, COBL can assist in 

producing a variety of solutions. It is possible to generate 

contrary solutions by taking the centroid of the starting 

population into account. This increases the diversity of the 

starting population and may facilitate a more thorough 

investigation of the search space. COBL aids in striking a 

balance between exploitation—fine-tuning around the 

existing best solutions—and exploration—discovering new 

areas of the search space. To prevent premature convergence 

and guarantee that the global optimum is obtained or 

approximated, this balance is essential in BCO.  In the second 

stage, the algorithm can cover the search space more 

effectively and possibly achieve faster convergence and 

higher-quality solutions by taking advantage of opposites 

concerning the centroid.  A detailed discussion is given in the 

ensuing subsection.    

6.1. Population Initialization Using COBL   

Through population generation, the OBL algorithm enhances 

the provided answer.  By estimating the opposite answer, 𝑥̅𝑖 
for 𝑥𝑖  , an initial population, 𝑋 , is created.   Compute the 

fitness function values for both current and opposite values to 

get the ideal initial values for the initial population of a 

specific solution. Next, contrast the fitness metrics.  The 

fitness function values are used to select the starting 

population, which is the new population of the optimal 

solution.  During the initialization step, the search space 

range's starting population, 𝑋 , is initially randomly created.  

Then centroid-based opposite results 𝑋̅ = (𝑥̅1, 𝑥̅2, … . 𝑥̅𝐷) are 

calculated in the dynamic search space range [𝑎𝑗 , 𝑏𝑗] which 

are calculated as in equations (15) and (16) as follows: 

𝑎𝑗 = min
∀𝑖

(𝑥𝑖𝑗) ⁡                                                                  (15) 

𝑏𝑗 = max
∀𝑖

(𝑥𝑖𝑗)                                                                   (16) 

Where 𝑖 and  𝑗 are the index of the separate result dimension 

correspondingly. Upon computing the centroid opposite 

point⁡⁡𝑥̅𝑖𝑗 , it might surpass the boundaries of the search space.   

The following moves it to the search space if it is greater than 

𝑏𝑗 which is defined in equation (17) as follows: 

𝑥̅𝑗 == 𝑎𝑗 + (𝑀𝑗 − 𝑎𝑗) × 𝑟𝑎𝑛𝑑(0,1)⁡                               (17) 

The fitness values are calculated for both original and 

opposite solutions and select the 𝑁 best solutions from the set 

𝑋, 𝑋̅ according to its fitness. 

6.2. Population Updating     

The population update is a major endeavor that is moving the 

world closer to a global solution. This work uses the COBL 

algorithm to compute the opposite point of the present 

solution, which creates a new population.  After the position 

is updated, the fitness function (MSE) values are computed 

for each 𝑥𝑖 ⁡ of each bacterial colony.  The COBL algorithm is 

used to compute the opposite estimate for each position once 

the position has been updated, and the fitness function is then 

created for each 𝑋̅ .  To create a new population, the best 

solutions are combined from the two existing populations.  

The previous procedure is carried out again if the stopping 

requirement is not satisfied.  BCO incorporates a position 

update mechanism based on centroid opposition. The best 

solutions are chosen in this phase using the same 

methodology as the centroid opposition-based initialization 

phase, which involves applying COBC to the original 

solutions to determine the centroid opposite solutions. 

7. PROPOSED COBCO-ENN 

The proposed COBCO-ENN method is used to detect DDoS 

attacks. It can accelerate convergence and address the 

shortcomings of the ENN.  Recently, a SI method called BCO 
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was proposed. It has good accuracy and can search very wide 

regions for potential answers.  BCO does not, however, 

guarantee that the best solution will be found.  More 

specifically, because of internal iterations, the conventional 

BCO has a lengthy computation time and poor convergence.  

When the initial population and population updating are 

chosen inappropriately, any population-based algorithm fails 

to reach local optima and has a low convergence rate [38].    

The suggested approach avoids the local optima problem and 

increases the convergence rate by combining BCO and 

COBL, or COBCO.  Two types of adjustments are made to 

the CBCO to maintain a balance between exploration and 

exploitation: population initialization and position updating.  

To increase population diversity and ergodicity in the search, 

COBL is used once the bacteria are initiated to determine a 

better beginning location for each bacterium.  Its fitness 

values are determined using the mean square error (MSE), 

which is in equation (18) defined as,  

𝑀𝑆𝐸 =
1

𝑁
(𝑦𝑖 − 𝑦𝑖̂)

2
                                                           (18) 

where 𝑦𝑖 - predicted value. 𝑦𝑖̂ - real value. 𝑁 - sample's length.  

The ideal weights and thresholds are represented by the data 

on the best bacterium.  In the proposed method, normalized 

data is fed into the improved ENN model. ENN is trained and 

optimized with COBCO.  Every bacterium has been chosen as 

a search agent to represent the original solutions.  During 

training, each search agent's position is adjusted by 

minimizing the objective function (MSE).  COBCO bases its 

search for the optimal value for ENN on the objective 

function and the values of the initial parameters.  The output 

vectors are denormalized to obtain expected values.  

Experiments were conducted to show consistency in 

prediction since the SI technique can produce almost ideal 

solutions. Algorithm 2 and Figure 2 show the overview of the 

proposed COBCO-ENN detection model. 

Step 1: Initialize the necessary parameters  

Step 2: Initialization of the population using COBL 

Step 2.1: Create a random population of (𝑁) members, then 

calculate its fitness value. 

Step 2.2: Determine the fitness value by computing the 

opposite population, 𝑋̄ 

Step 2.3: Based on their fitness values, choose the best one to 

serve as the beginning population.    

Step 3: Chemotaxis and communication   

Step 4: Elimination and dispersal 

Step 5: Reproduction 

Step 6: Migration  

Step 7: Position update using COBL 

Step 7.1: The position of every bacterial colony is updated, 

and the fitness value of every solution is calculated. 

Step 7.2: Determine the fitness value for every solution as 

well as the centre of opposite point for the present one. 

Step 7.3: Based on the fitness function, select the appropriate 

solution 𝑋 ∪ 𝑋̄. 

Step 8: If the stopping state is met, the procedure should end; 

if not, move on to step 5. 

Step 9: Utilize the optimal hyperparameter when training the 

ERNN. The best bacteria data show the optimal 

hyperparameters that were chosen as the hyperparameter 

basis. Then identify the issue in the network. 

Step 10: The training is complete when it reaches the 

maximum number of epochs or the least error. 

Algorithm 2 Proposed COBCO-ERNN 

8. EXPERIMENTAL RESULTS 

To obtain the optimal hyperparameters of the ENN, minimize 

error, and determine the optimum detection accuracy, the 

current work suggested novel SI-based optimization strategies 

termed COBCO.  The optimal hyperparameters for the 

vectors are determined using the SI method.  The COBCO 

algorithm uses a bacteria's position as a dimension to build the 

connection weights, biases value set, and learning rate that are 

needed by the ENN approach.  The proposed COBCO-ENN 

technique is related to some well-known algorithms such as 

BCO-ENN [6], APSO-ENN [39], PSO-ENN [40], GA-ENN 

[41], ENN [42], BPNN [43], and SVM [44].  The related 

procedures are employed using MATLAB 2019b with an i5 

processor and 16 GB RAM on Windows 11.  

8.1. Dataset Collections 

Numerous intrusion detection assessment datasets include 

both normal and abnormal network traffic data.  The 

performance detection approach is analyzed using four 

datasets: NSL-KDD, UNSW-NB15, CIC-IDS2017, and CIC-

DDoS2019.  The following is a discussion of the dataset 

details as shown in Table 1: 

a) NSL-KDD: This dataset comprises four sorts of attacks: 

“DOS, R2L, U2R, and Probe. KDDTrain+, KDDTest+, 

and KDDTest-21 have 1,25,973, 22,544, and 11,850 

samples overall, respectively”.  Samples from this dataset 

include 41 features. 

b) UNSW-NB15: There are 2,540,044 samples in all in this 

dataset. This dataset's subset which contains 257,673 

samples. There are 175,341 and 82,332 samples for 

training and testing, respectively. Nine different attack 

types are included: “analysis, backdoor, denial-of-service, 

exploits, fuzzers, generic, reconnaissance, shell code, and 
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worms”. Table 3 provides further dataset details. Samples 

from this dataset include 48 features [45]. 

Table 1 Datasets Particulars 

Datasets Attributes Training 

samples 

Testing 

samples  

Total 

samples 

  

NSL-KDD  41 125973 34394 160367 

UNSW-

NB15 

48 175341 82332 257673 

CICIDS2017 78 1744184 747505 2491689 

CIC-

DDoS2019 

78 587, 966 411577 176389 

c) CICIDS2017: The five days of traffic from Monday 

through Friday are included in this dataset. Only normal 

samples are present on Monday; the traffic on the other 

days consists of both normal and attacked samples. The 

dataset comprises eight different kinds of attacks: 

“Bruteforce, DDoS, DoS, Heartbleed, Infiltration, 

Portscan, and Web”. This dataset has 2,491,689 samples 

in total—2,273,097 normal and 218,592 attack samples. 

The entire dataset is split into two subsets of 1,744,184 

and 747,505 samples, respectively, by dividing it into 

training and testing sets in a 70:30 ratio. Table 3 provides 

information on the various class types. Samples from this 

dataset include 78 features. 

d) CIC-DDoS2019: The dataset was gathered for testing and 

training on two different days. Twelve DDoS attacks are 

included in the training set; these include DDoS-based 

attacks from “SNMP, NetBIOS, LDAP, TFTP, NTP, 

SYN, UDP, WebDDoS, MSSQL, UDPLag, DNS, and 

SSDP. Seven DDoS assaults against PortScan, SYN, 

MSSQL, UDP-Lag, LDAP, UDP, and NetBIOS” are 

included in the testing data. The distribution of the various 

attacks is displayed in Figure 7. Using CICFlowMeter 

tools, the researchers retrieved over 80 flow features from 

the CIC-DDoS2019. The Canadian Institute for 

Cybersecurity website makes the dataset available to the 

general public inflow and PCAP file formats [46]. 

8.2. Preprocessing 

The focus of this research is on a binary classification issue 

for anomaly detection, in which every observation is assigned 

to either the attack or normal class. We performed the 

following pre-processing actions on the datasets we had 

chosen before training the DDoS attack model: 

a) Data cleaning: Destination and source IP, flow ID, and 

Port are the three types of socket information that are 

different in the CIC-IDS2017 and CIC-DDoS2019 

datasets.  Since socket-involved features can differ from 

network to network.  Hence, eliminated them from the 

data samples to solve the overfitting issue. Additionally, 

we eliminated from the dataset any samples that had the 

‘NaN’ and ‘INF’ feature values. 

b) Data encoding: Aside from the traffic labels of the CIC-

DDoS2019 and CIC-IDS2017, respectively, the final 

dataset includes 77 & 78 other attributes.  The categorical 

features, like protocol type, services, and flag, were 

converted into numerical features using one-hot encoding. 

For instance, the mappings for the TCP, UDP, and ICMP 

protocols are (1,0,0), (0,1,0), and (0,0,1), respectively. 

Similar to this, numerical features have been mapped to 

the "flag" feature with 11 values and the "services" feature 

with 70 values. As a result, 121 numerical features are 

ultimately created from 41 original features.   Binary 

encoding is also used to translate the non-numerical class 

labels into numerical categories. These cases are allocated 

to 1 and 0, respectively, because the only binary 

classification that we have taken into consideration in our 

model is to identify the anomalous and regular traffic from 

input data.  A dataset's duplication could cause the 

anomaly detection model to be biased toward more 

frequent records during training.  To fix this, we 

eliminated all of the duplicate records from the data and 

only retained one copy of each entry.  Following the 

process, the CIC-IDS2017 (DoS) dataset's sample count is 

lowered to 587, 966. 

c) Data normalization: The original value scales have been 

eliminated by normalizing the numerical features. Each 

feature has undergone Min-Max Normalization, which 

rescales the feature range to fall inside [0, 1].  The Min-

Max Normalization is as shown in the equations (19) as 

below: 

𝑧𝑖 =
𝑥𝑖−min⁡(𝑥)

max(𝑥)−min⁡(𝑥)
                                                              (19) 

where 𝑧𝑖⁡ is the 𝑖𝑡ℎ normalized data and 𝑥𝑖 is a feature.  

d) K-fold cross validation: The next experiment will use the 

k-fold validation methodology to randomly select the 

dataset and evaluate the effectiveness of the suggested 

method. The dataset is divided into k subgroups of the 

same size. In this investigation, a 10-fold subset is 

employed.  There are ten data subsets for each fold when 

K = 10. The data is divided into 10 folds with roughly 

equal magnitudes for each fold. On each of the ten data 

subsets, the cross-validation test is run using a 9-fold 

training set and a 1-fold testing set. 
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Figure 1  Flowchart for the Proposed Research Work 
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8.3. Parameter Optimization 

Hyperparameters are crucial in influencing the effectiveness, 

efficiency, and behavior of the algorithms in both swarm 

intelligence and deep learning.  Elman RNNs can benefit from 

the efficient application of COBCO for hyperparameter 

tuning. Elman RNNs are renowned for their capacity to detect 

temporal dependencies in sequential data; nevertheless, to 

attain peak performance, hyperparameters must be carefully 

adjusted. COBCO is an SI optimization algorithm that can 

help with this process because of its capacity for escape from 

local optima and adaptable search features.  A set of 

hyperparameters is represented by each bacterium. A 

bacterium's location inside the search space correlates to 

particular values of the hyperparameters.  With a given set of 

hyperparameters, the objective function assesses the Elman 

RNN's performance.   An inappropriate selection of ERNN 

hyperparameters may adversely affect network performance 

by increasing computation time, causing under- or overfitting, 

and lowering the convergence rate.  Therefore, choosing the 

ENN's hyperparameters is essential which directly affects the 

performances of the given solutions. 

Three hyperparameters are optimized in this present research 

work such as learning, weights and biases, and number of 

neurons.  An Elman RNN's weights and biases are crucial 

elements that control how the network interprets input, learns 

from it, captures temporal dependencies, and eventually 

generates predictions.  The selection of weights is between -

0.5 and 0. 5.  The learning rate, which regulates how much 

the weights and biases are changed during each training cycle 

of the neural network, is an essential hyperparameter.  The 

learning rate, which falls between 0.1 and 0.9, is taken into 

account.  An ENN's capacity, learning capability, and overall 

performance are all impacted by the significance 

hyperparameter of the number of hidden neurons.  An Elman 

RNN's ability to manage temporal dependencies, learn and 

represent patterns in the data, and use a minimal amount of 

processing resources is all greatly impacted by the number of 

hidden neurons in the network. Achieving a balance between 

underfitting and overfitting, computational efficiency, and the 

capacity to generalize well to new data all depend on selecting 

the appropriate number of hidden neurons.  There are between 

10 and 100 hidden neurons chosen. 

In BCO, parameters are essential for defining how the 

optimization algorithm behaves and how effective it is. BCO 

is a technique for solving optimization issues that draws 

inspiration from the behavior of bacterial colonies found in 

nature.  The parameter of the BCO is shown in Table 2.  The 

convergence rate of BCO is decided based on its chemotaxis 

step (𝑁𝐶)  values and swim step (𝑁𝑠) .   It takes longer to 

compute the chemotaxis step when it is higher.  As a result, 

the current study chooses a limited number of chemotaxis 

steps such as 𝑁𝐶 = 100. Swim step is selected as ⁡𝑁𝑠 = 4.  

The reproduction value is designated as ⁡(𝑁𝑟𝑒 = 4), and the 

dispersal step value is designated as 𝑁𝑒𝑑 = 2 .  Dispersal 

values, step size, and likelihood of elimination are all crucial 

elements in figuring out how well the BCO algorithm works.  

The best performance is defined as having the lowest goal 

value.  The lowest step size value (𝐶𝑚𝑖𝑛) and greatest step 

size value (𝐶𝑚𝑎𝑥) are two distinct step size values.  An escape 

from the local optima problem is an ideal value, and the 

elimination and dispersal probability  𝑃𝑒𝑑 ⁡  value is another 

important BCO parameter.  Therefore, 0.25 is the chosen 

probability value.  The parameter values for the remaining 

algorithm are set to those found in its reference papers, like k-

means [47], ACO [48], PSO [49], BFO [50], and BCO [28]. 

Table 2 Parameter’s Values of BCO and ERNN 

ERNN BCO 

Parameter Value Parameter Value 

Activation 

function   

sigmoid 

TanH 
𝑆 100 

Objective 

function  

MSE 
𝑁𝐶  100 

Learning 

rate  

0.05 
𝑁𝑠 4 

Training 

epochs  

1000 
𝑁𝑟𝑒 4 

Error  0.0005 𝑁𝑒𝑑 2 

Weight 

range  

-0.5 and 0.5 
𝑃𝑒𝑑  0.25 

Hidden 

neurons  

10-100 
𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 

0.1 and 

0.4 

8.4. Performance Measures 

An essential component in detecting DDoS attacks is the 

study and discussion of the results.  A crucial component of 

DDoS attack detection is results analysis and discussion, 

which offers insights into the types of attacks, their effects, 

the limitations of detection, and potential areas for 

development.  The present section discusses the results 

analysis for analyzing the performance of the proposed 

methods.  To evaluate the created detection method's 

suitability for comparisons, four distinct performance criteria 

are taken into account across the four datasets.  Performance 

measurements are important for evaluating how well DDoS 

attack detection systems work. DDoS detection systems can 

enhance network security and lessen the impact of DDoS 

attacks by improving their capacity to precisely and quickly 

identify and mitigate DDoS attacks. This can be achieved by 

tracking and adjusting certain performance parameters. Our 
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suggested model has been assessed using the following four 

performance metrics as follows,  

8.4.1. Accuracy 

DDoS attack detection systems must be accurate in 

differentiating between malicious activity and legitimate 

traffic to identify DDoS attacks.  The percentage of exactly 

identified examples among all examples is known as accuracy 

which is shown in Equation (20),  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑇𝑃⁡+⁡𝑇𝑁

𝑇𝑃+⁡𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100                                    (20) 

Table 3 Training Result Analysis for Accuracy 

Methods NSL-KDD UNSW-NB15 CICIDS2017 CIC-DDoS2019 

COBCO+ENN 97.11 98.22 98.11 98.95 

BCO+ENN 95.14 97.19 97.49 97.13 

IPSO +ENN 94.43 96.47 96.77 95.06 

PSO+ENN 92.75 94.76 95.74 94.37 

GA+ENN 90.15 93.11 93.73 91.78 

ENN 85.77 92.49 91.79 88.84 

BPNN 82.48 87.47 90.17 85.45 

 

 

Figure 2 Training Result Analysis for Accuracy 

The accuracy-based performance training results for all 

datasets, including NSL-KDD, UNSW-NB15, CICIDS2017, 

and CIC-DDoS2019, are displayed in Table 3 and Figure 3, 

respectively.  Table 3 and Figure 3 show that, when compared 

to alternative approaches, the suggested method produced 

high accuracy for all datasets, including 97.11 percent 

accuracy for NSL-KDD, 98.22 percent accuracy for UNSW-

NB15, 98.11 percent accuracy for CICIDS2017, and 98.95 

percent accuracy for CIC-DDoS2019.  Figure 4 shows that, 

when compared to alternative approaches, the suggested 

method produced high testing accuracy for all datasets. 

70

75

80

85

90

95

100

105

NSL-KDD UNSW-NB15 CICIDS2017 CIC-DDoS2019

COBCO+ENN BCO+ENN IPSO +ENN PSO+ENN GA+ENN ENN BPNN



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/50                         Volume 11, Issue 6, November – December (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       846 

     

RESEARCH ARTICLE 

 

Figure 3 Testing Result Analysis for Accuracy 

8.4.2. Precision 

Precision, which gauges the system's capacity to accurately 

detect harmful activity without incorrectly classifying benign 

traffic, is a crucial performance metric in DDoS attack 

detection. Precision becomes more crucial in situations when 

reducing false alarms is crucial.  The percentage of real 

positives among all predicted positives is measured by 

precision which is shown in Equation (21).      

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ = ⁡⁡
𝑇𝑃

𝑇𝑃⁡+⁡𝐹𝑃
× 100                                            (21) 

Table 4 Training Result Analysis for Precision 

Methods NSL-KDD UNSW-NB15 CICIDS2017 CIC-DDoS2019 

COBCO+ENN 98.17 99.76 98.43 98.51 

BCO+ENN 97.47 97.21 97.19 97.34 

IPSO +ENN 96.80 96.44 96.44 96.46 

PSO+ENN 95.76 95.75 95.48 94.76 

GA+ENN 94.11 93.21 93.89 93.64 

ENN 93.47 92.43 92.47 91.27 

BPNN 91.71 90.16 90.23 88.23 

The precision-based performance results for all datasets, 

including NSL-KDD, UNSW-NB15, CICIDS2017, and CIC-

DDoS2019, are displayed in Table 4 and Figure 5, 

respectively.  Table 4 and Figure 5 show that, when compared 

to alternative approaches, the suggested method produced 

high accuracy for all datasets, including 98.17 percent 

accuracy for NSL-KDD, 99.76 percent accuracy for UNSW-

NB15, 98.43 percent accuracy for CICIDS2017, and 98.51 

percent accuracy for CIC-DDoS2019. Figure 6 shows that, 

when compared to alternative approaches, the suggested 

method produced high testing accuracy for all datasets. 
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Figure 4 Training Result Analysis for Precision 

 

Figure 5 Testing Result Analysis for Precision 

8.4.3. Recall 

Recall is a vital parameter, especially in situations where it is 

imperative to detect every possible danger when assessing the 

effectiveness of DDoS attack detection systems.  Recall 

quantifies the percentage of accurately detected true positives 

which is shown in Equation (22)  

𝑅𝑒𝑐𝑎𝑙𝑙⁡ = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                                                     (22) 

The recall-based performance results for all datasets, 

including NSL-KDD, UNSW-NB15, CICIDS2017, and CIC-

DDoS2019, are displayed in Table 5 and Figure 7, 

respectively.   

Table 5 and Figure 7 shows that, when compared to 

alternative approaches, the suggested method produced high 

accuracy for all datasets, including 98.14 percent accuracy for 

NSL-KDD, 98.10 percent accuracy for UNSW-NB15, 97.96 

percent accuracy for CICIDS2017, and 99.08 percent 

accuracy for CIC-DDoS2019.   

Figure 8 shows that, when compared to alternative 

approaches, the suggested method produced high testing 

accuracy for all datasets. 
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Table 5 Training Result Analysis for Recall 

Methods NSL-KDD 
UNSW-

NB15 
CICIDS2017 CIC-DDoS2019 

COBCO+ENN 98.14 98.10 97.96 99.08 

BCO+ENN 97.76 97.49 96.41 97.28 

IPSO +ENN 96.88 96.47 95.74 95.37 

PSO+ENN 96.65 95.63 94.63 94.09 

GA+ENN 94.00 93.22 93.14 92.85 

ENN 91.16 92.17 92.77 90.57 

BPNN 88.79 90.71 91.47 87.28 

 

 

Figure 6 Training Result Analysis for Recall 

 

Figure 7 Testing Result Analysis for Recall 
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8.4.4. F1-Score 

An essential indicator for assessing the effectiveness of DDoS 

attack detection systems is the F-score, particularly in 

situations where recall and precision must be balanced. It 

offers a more thorough evaluation of the detection system's 

efficacy by combining these two indicators into a single score.  

It is shown as Equation (23) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2⁡ ×⁡
𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡×⁡𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+⁡𝑅𝑒𝑐𝑎𝑙𝑙
× 100                        (23)

Table 6 Training Result Analysis for F-Score 

Methods NSL-KDD 
UNSW-

NB15 
CICIDS2017 CIC-DDoS2019 

COBCO+ENN 99.10 98.16 98.29 98.07 

BCO+ENN 98.63 97.40 97.52 96.82 

IPSO +ENN 97.10 96.46 95.74 95.17 

PSO+ENN 96.77 95.33 94.16 93.56 

GA+ENN 95.47 94.19 93.78 92.97 

ENN 93.05 92.74 92.79 90.28 

BPNN 92.77 89.58 90.14 88.14 

 

 

Figure 8 Training Result Analysis for F-Score 

The F-Score-based performance results for all datasets, 

including NSL-KDD, UNSW-NB15, CICIDS2017, and CIC-

DDoS2019, are displayed in Table 6 and Figure 9 

respectively.   

Table 6 and Figure 9 show that, when compared to alternative 

approaches, the suggested method produced high accuracy for 

all datasets, including 98.10 percent accuracy for NSL-KDD, 

98.16 percent accuracy for UNSW-NB15, 98.29 percent 

accuracy for CICIDS2017, and 99.07 percent accuracy for 

CIC-DDoS2019.    

Figure 10 shows that, when compared to alternative 

approaches, the suggested method produced high testing 

accuracy for all datasets.  From the equations (20), (21), (22), 

and (23), TP (True positive): An attack instance is measured 

as TP if it is accurately characterized.  

 FP (False positive): An attack is measured when a normal 

instance is classified as such.  TN (True negative): A normal 

occurrence is measured if it is classified as normal.  FN (False 

negative): An attack instance is measured as FN if it is 

classified as normal. 
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Figure 9 Testing Result Analysis for F-Score 

8.4.5. 

Convergence Analysis  

To analyze the performance of optimized ENN methods, 

convergence analysis is also considered in the present work.  

Convergence analysis is an essential component that is vital to 

comprehending and assessing detection model performance 

for multiple reasons.  Understanding the behavior and 

effectiveness of ENN in DDoS attack detection tasks is 

crucial for making sure the model learns efficiently, 

generalizes well, and produces accurate results. This is where 

convergence analysis comes in.  The convergence analysis is 

conducted on the loss as it varies over epochs. Plot the 

number of epochs versus the training loss (MSE).  Finding out 

whether the optimized ENN achieves a consistent 

performance level and how well it can learn to detect DDoS 

attacks are revealed by performing a convergence analysis.  

The convergence study of DDoS attack detection techniques 

for all datasets, including NSL-KDD, UNSW-NB15, 

CICIDS2017, and CIC-DDoS2019, can be observed in 

Figures 11, 12, 13, and 14. 

 
Figure 10 Convergence Analysis of Detection Method for NSL-KDD 
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Figure 11 Convergence Analysis of Detection Method for UNSW-NB15 

 

Figure 12 Convergence Analysis of Detection Method for CICIDS2017 

 

Figure 13 Convergence Analysis of Detection Method for CIC-DDoS2019 
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According to the experiment results, the combination of 

COBCO with Elman RNNs presents a viable method for 

DDoS attack detection. The process of optimization improves 

the network's capacity to quickly and precisely identify 

attacks, offering strong security for cloud services. To fully 

achieve its potential, this approach's actual application 

necessitates careful consideration of computational resources 

and data quality.  When COBCO is used to optimize the 

ENN, the accuracy of DDoS attack detection can be greatly 

increased. More accurate detection models are produced by 

adjusting the neural network's hyperparameters with the aid of 

COBCO. By identifying intricate patterns in network traffic 

that point to possible DDoS attacks, this optimization can 

increase the total detection rate beyond that of conventional 

techniques. Overall performance evaluation shows that the 

more adaptive real-time detector of the new and improved 

ERNN technology can analyse dangerous data from incoming 

data. 

9. CONCLUSIONS 

In this work, we optimized the ENN using CBCO which 

presents a unique method for detecting attacks.  The model's 

capacity to traverse the intricate solution space was greatly 

improved by the integration of CBCO with ENN, which 

resulted in quicker convergence and better accuracy in 

identifying different DDoS attack patterns. By producing a 

wide range of potential solutions, COBL enhanced the 

detection framework and reduced the drawbacks of 

conventional OBL methods. Our comprehensive simulation 

results presented that the recommended method performs 

better than the state-of-the-art DDoS detection methods, 

especially when it comes to accuracy and detection rate. The 

improved performance is ascribed to the complementary 

abilities of BCO's optimization skills and COBL's capacity to 

infuse the ENN with more resilient learning dynamics.  

Overall, the results point to a promising direction for the 

development of DDoS detection techniques in cloud 

computing, providing a very practical and scalable answer to 

security issues facing the industry. This is because BCO and 

COBL work well together. Subsequent research endeavors 

will center around enhancing the model, investigating its 

suitability for various categories of cyber hazards, and 

verifying the methodology in authentic cloud systems. 
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