
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 835

RESEARCH ARTICLE

DDoS Attack Detection in Cloud Computing Using

Optimized Elman Neural Network Based on

Bacterial Colony Optimization and Centroid

Opposition-Based Learning

S. Kalvikkarasi

PG and Research Department of Computer Science, Government Arts College (Autonomous) (Affiliated to

Bharathidasan university, Trichy), Karur, Tamil Nadu, India.

✉ kalvijaya2021@gmail.com

A. Saraswathi

PG and Research Department of Computer Science, Government Arts College (Autonomous) (Affiliated to

Bharathidasan university, Trichy), Karur, Tamil Nadu, India.

sarasdharam78@gmail.com

Received: 19 August 2024 / Revised: 02 December 2024 / Accepted: 14 December 2024 / Published: 30 December 2024

Abstract – Cloud computing infrastructures are particularly

vulnerable to Distributed Denial of Service (DDoS) attacks due

to the large-scale and dynamic nature of resources. Large data

volumes are handled by cloud settings, which raises the

computational cost of detection, and filtering malicious traffic

from genuine traffic in such large quantities is difficult. The

conventional detection techniques are insufficient. The optimized

Elman Neural Network (ENN) used in this study's proposed

enhanced DDoS attack detection framework combines centroid

opposition-based learning (COBL) with bacterial colony

optimization (BCO) called COBCO. The conventional BCO

lacks population diversity and can fall into local optima due to

random initialization and population update. To overcome the

above issues, COBL is used for population initialization and

population update to enhance population diversity and avoid

local optima issues. By imitating bacterial foraging behavior, the

COBCO algorithm improves the ENN's capacity to explore and

exploit the solution space, increasing the network's speed of

convergence and accuracy of detection. Meanwhile, COBL

enhances the learning process by producing a wider range of

solid candidate solutions, which offset the drawbacks of

conventional opposition-based learning. Extensive simulations

show that the suggested strategy outperforms traditional

techniques in identifying different kinds of DDoS attacks.

Index Terms – Elman Neural Network, Bacterial Colony

Optimization, Centroid Opposition-Based Learning,

Hyperparameter Optimization, Convergence Rate, DDoS Attack

Detection.

1. INTRODUCTION

Cloud computing is a capable technology that gives customers

an easy way to access resources and services via the Internet.

Utility computing is replacing desktop computing with this

technology. On-demand self-service, resource pooling, wide

network access, quick adaptability, and measurable services

are among the key benefits offered by cloud technology. The

cloud provides software, platforms, and infrastructure as a

service through various delivery models, including private,

public, and hybrid. For a few years, cloud services have been

utilized by banks, hospitals, and educational institutions,

following the lead of big cloud businesses [1]. Cloud

computing has several advantages, but it also has several

security flaws, dangers, and difficulties. The DDoS attack

poses a dangerous risk to the accessibility of cloud services

and resources [2]. In cloud computing, a DDoS attack is an

intentional attempt to overload a targeted server, service, or

network with excessive incoming data to disrupt its regular

operations [3].

The ENN is intended to gather and store contextual data in a

hidden layer. In 1990, Jeff Elman made it known. An input, a

hidden, and an output layer make up its three layers. Through

a series of stages, the hidden layer sends the activation values

back to itself, storing context information. This makes it

possible for the network to process data sequences by

preserving knowledge about earlier inputs over time. ENNs

are useful for capturing the many aspects of DDoS attacks

because they can learn intricate non-linear correlations

between input features[4]. They can identify minute changes

in network traffic patterns that could be signs of an intrusion.

Training complexity and high computational cost are common

features of Elman networks. A substantial amount of time and

mailto:kalvijaya2021@gmail.com
mailto:sarasdharam78@gmail.com

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 836

RESEARCH ARTICLE

money may be needed to determine the ideal architecture,

hyperparameters, and training methods. Big networks with

lots of traffic could find it difficult for Elman networks to

scale. Large volumes of data processing in real-time may be

difficult, which could cause delays or missed detections. In

large networks or high-speed traffic settings, training and

deploying Elman networks may demand a substantial amount

of processing power.

Researchers and practitioners can effectively search the

hyperparameter space and identify configurations that lead to

optimal performance in DDoS attack detection by utilizing

swarm intelligence (SI) techniques for hyperparameter

optimization in ENNs. These techniques aid in overcoming

the difficulties associated with laborious search and manual

modifications, resulting in ENNs that function better [5].

ENNs hyperparameter optimization is determining an

appropriate set of hyperparameters to maximize the network's

performance in a particular task, such as DDoS attack

detection. The BCO is a recently developed SI method

demonstrated after the way bacteria hunt for food. BCO can

effectively search high-dimensional and non-convex search

spaces while swiftly examining the hyperparameter space and

obtaining good solutions hyperparameter optimization can be

achieved with it [6] and it efficiently adjusts the ERNs'

hyperparameters for better performance utilizing BCO.

However, the conventional BCO algorithm has many

shortcomings such as population diversity, local optima, and

low convergence rate. Hence, the present work developing a

new improved BCO for optimizing the hyperparameters of

ENN. The improved method called COBCO uses the COBL

method for population unitizing and updating the population.

An improvement on OBL called COBL focuses on making

optimization algorithms perform better by taking the centroid

of opposed solutions into account. By taking opposing

solutions and their centroids into account, COBL adds even

more variability. Searching regions distinct from the current

solutions improves the search space research. Additionally, by

directing the search towards the center of promising

alternatives, it facilitates exploitation. The research aims to

use the COBL that achieves an appropriate balance between

exploitation and exploration of BCO. It accomplishes this by

using the theory of centroid opposition, in which bacterial

colonies travel in the opposite direction of the population's

centroid to discover new locations while preserving ties to the

promising ones. This study's primary objectives are to use a

COBCO to accelerate learning, lower error, and maximize

ENN performance to the global minimum. The significance

of the new model lies in its ability to optimize the ENN's

parameters to boost training efficiency, reduce network

running time, and improve training speed and convergence.

Create a detection system to increase the precision of

differentiating between harmful and legitimate

communication in cloud environments by utilizing the

optimized ERNN. Research has the following contributions:

• The recommended COBCO+ENN is utilized to

distinguish malicious data from incoming data.

• The new population initialization and position updating

are proposed to improve the performance of BCO called

COBCO to enhance the convergence, avoid local optima,

and enhance the population diversity.

• The COBCO uses the COBL which offers a productive

way to explore and utilize the solution space.

• COBCO is used to optimize hyperparameters of ENN to

enhance the detection accuracy and convergence rate.

• The generated detection method was compared with a

few benchmark detection algorithms for performance

analysis.

• Four distinct DDoS attack datasets are examined to assess

the efficacy and derive experimental conclusions.

The remaining sections are as follows: Section 2 covers

various current research papers, while Sections 3, 4, 5, 6, and

7 explore research methodologies such as ENN, BCO, COBL,

COBCO, and the suggested COBCO-ENN. The outcomes of

the experiment are offered in Section 8, and the paper's

conclusions are covered in Section 9.

2. RELATED WORKS

Relevant research, practical detection method development,

and enhanced cloud environment security posture are all

facilitated by related efforts in DDoS attack detection for

cloud computing. Related works provide a basis for

innovation and advancement in cloud computing DDoS attack

detection, propelling improvements in methods, tools, and

approaches to fortify cloud infrastructure security. The

identification of current weaknesses and difficulties in DDoS

attack detection that are unique to cloud computing systems is

aided by related efforts. They shed light on the flaws in the

detection techniques used today and suggest areas for

development. R. Priyadarshini et al. (2022) [7] suggested a

unique source-based DDoS defense strategy that may be

utilized to counteract DDoS attacks which is deployed at the

SDN using SDN to identify abnormal DDoS attacks. The

planned work offers a DL-based detection approach that may

block infected packets from causing more attacks and filters

and forwards valid packets to the server using network traffic

analysis mechanisms. The developed method is detected on

network or Transport level layers and lacks in other layers. A.

V. Kachavimath et al. (2021) [8] developed a method for

detecting DDoS attacks that was put forth by extracting

various sequence patterns from the recorded traffic using deep

learning. This method has a high detection rate. The outcomes

of the suggested methodology have shown that the long short-

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 837

RESEARCH ARTICLE

term memory (LSTM) strategy performs better and has higher

accuracy than the multilayer perceptron (MLP) and

convolutional neural network (CNN). Y. Sanjalawe et al.

(2023) [9] developed a new hybrid DL mode based on

hybridizing CNN with LSTM for identifying both legitimate

and malicious traffic,. The suggested IDS performs better

than the most advanced IDSs, according to the results. Thus,

the suggested IDS satisfies the needs for high security,

automatic, effective, and self-decision DDoS assault

detection. However, both the above papers [8] and [9]

produced high computation costs due to their random

hyperparameters. T. Khempetch et al. (2021) [10] suggested

an LSTM algorithm and deep neural network (DNN) for

detection. According to the findings, deep learning represents

an additional avenue for identifying potential future

disruption-causing threats. D. Kumar et al. (2023) [11]

developed a detection based on LSTM that was built to detect

DDoS threats on a representative sample of network traffic

packets. The DL approach known as LSTM once trained,

updates itself; LSTM operates quickly and accurately even

with fewer data points. LSTM takes more computation

learning time to produce optimal results due to its random

hyperparameters.

S. Potluri et al. (2020) [12] created a new technique for

DDoS attacks, as well as methods for detecting and

preventing them. The comprehensive analysis also describes

the consequences of DDoS attacks on cloud platforms and the

necessary protection methods for those effects. Y. Sanjalawe

et al. (2023) [13] developed a new detection method-based

DNN approach called FS-WOA-DNN, together with a novel

feature selection-whale optimization methodology, to

counteract DDoS attacks. The DNN classifier is applied to the

chosen features to distinguish between normal and

compromised data. To further strengthen the security of the

suggested architecture, homomorphic encryption is used to

protect regular data, which is then safely stored on the cloud.

Datasets used for DDoS detection are frequently unbalanced

since there are a lot more instances of regular traffic than

attack occurrences. A. E. Cil et al. (2021) [14] recommended

using the DNN as a DL model to identify attacks on the

packet sample that was obtained from network traffic.

Because the DNN comprises self-updating layers and

incorporates extracting the features and classification

procedures into its structure, it can activate quickly and

precisely even with little data. S. Velliangiri et al. (2021) [15]

developed a DL-based classifier to detect DDoS attacks. User

service requests are gathered and organized into log

information. To shorten the classifier's training time, a few

key features are chosen from the log file and classified using

the Bhattacharya distance measure. In this case, the Deep

Belief Network (DBN) based on Taylor-Elephant Herd

Optimization is created by adjusting Elephant Herd

Optimization (EHO) using the Taylor series. However, it will

take a high computation cost. A. Amjad et al. (2019) [16]

created the DDoS attack and the method to stop it, reducing

the server side's vulnerability. The scenario involves a DDoS

attack against cloud-based websites, where millions or

perhaps trillions of packets are sent, causing them to differ

between hosts. Utilizing ParrotSec and other operating

systems to enable the attack. S. UR Rehman et al. (2021)

[17] developed to defend against real-world attacks, a unique,

highly effective method called DIDDOS, utilizing a Gated

Recurrent Unit (GRU). However, the GRU produced high

accuracy. But computationally costly and demands a lot of

computing power, particularly when evaluating massive

amounts of network traffic in real-time.

D. Alghazzawi et al. (2021) [18] propose utilizing a hybrid

DL model, specifically a CNN with BiLSTM, to accurately

forecast attacks. Only the most relevant features were

selected by rating that had the highest score in the given data

set. However, the hybrid method produced high accuracy and

lacked overfitting. A. V. Songa et al. (2023) [19] suggest a

DDoS detection framework that uses Ensemble feature

selection with RNN to address the current issue. It combines

an RNN with an Ensemble of several machine-learning

techniques. The framework aims to select the appropriate

features using the ensemble of six ML algorithms. Using

RNN, these chosen traits are then utilized to categorize

network traffic as normal or attack. However, it has taken

low computational time and produced low accuracy. S.

Balasubramaniam et al. et al. (2023) [20] created a novel

technique, the suggested gradient hybrid leader optimization

(GHLBO), to detect DDoS attacks efficiently. The deep

stacked autoencoder (DSA), which effectively identifies

attacks, is trained by this optimized technique. In this case,

oversampling is used to augment the data, and a deep max-out

network (DMN) with an overlap coefficient is used to fuse the

features. However, it has produced high accuracy and

sometimes it fails to identify unknown traffic. G. S. Kushwah

et al. (2021) [21] developed a new DDoS detection system

built on top of a modified Self-adaptive evolutionary extreme

learning machine (SaE-ELM) was described which was

enhanced by adding two new characteristics. It can, first of

all, adjust to the most appropriate crossover operator. Second,

it is capable of automatically figuring out how many hidden

layer neurons are needed. The model's capacity for

classification is enhanced by these features. However,

compared to the SaE-ELM-based system, it displays a longer

training time. P. T. Dinh et al. (2021) [22] suggested

approach, which consists of online and offline phases and

implements a GRU, can lessen vanishing gradient issues by

capturing complicated temporal dependent links in the data.

Initially, the suggested plan acquires precise multivariate time

series representations to mirror the typical patterns.

Subsequently, input data reconstruction is done using these

representations. Lastly, the reconstruction probabilities can be

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 838

RESEARCH ARTICLE

utilized to understand data in addition to identifying

abnormalities. To lower error rates, the suggested method

additionally adds a self-adjusting threshold. In contrast,

current solutions typically employ a hard threshold to evaluate

anomalies, which raises error rates. But it has a low

convergence rate. S. Sumathi et al. (2022) [23] suggested a

gradient descent DL approach with LSTM and autoencoders

and decoders. The hyperparameters are tuned optimally by

using a hybrid HHO (Harris Hawks optimization) and PSO.

The findings showed that the suggested LSTM DL model

performed better than all other models created in the

literature, and the suggested hybrid optimization approach

picks the key characteristics. DL models need a lot of

processing power to train, especially those with a lot of layers

and improper hyperparameters. The behavior and

performance of DL are significantly influenced by

hyperparameters. Hyperparameters are determined through

the learning process, in deference to model parameters, which

are learned during training. The accuracy, effectiveness, and

generalizability of the model are all greatly impacted by their

choice. Hence, the present research work focused on

hyperparameters optimization for ENN to enhance the

accuracy, and convergence rate and reduce the computational

time.

3. ELMAN NEURAL NETWORK (ENNS)

Elman introduced the ENN, a common technique, in 1990

[24]. The ENN framework is shown in Figure 1. One kind of

feedback neural network, the ENN, gains a recurrent layer

based on the hidden layer, which adds a memory function and

functions as a delay operator. It keeps the network stable

globally and enables it to adapt to dynamic, time-varying

features. The structure of an ENN model normally consists

of four layers: The hidden layer receives the information from

the input layer, whose neurons are usually linear, and uses an

activation function to translate or amplify it. To establish a

local ring structure, the connecting layer's job is to receive the

output from the hidden layer and reply with data matching the

preceding instance. Because the connecting layer unit has a

deferred memory effect on the features included in previous

data, the neural network's output is more influenced by the

actual progress learning. The output layer is ultimately used

to output the results. The structure of the BPNN serves as the

foundation for the ENN, which automatically links the hidden

layer's output to its input depending on the delay and storage

functions of the context layer. Because of the sensitivity of

this joining process to the neural network's historical data, this

internal feedback mechanism can improve the neural

network's ability to handle dynamic input. This recording of

the dynamics to a kept internal state permits the scheme to

adjust to time-varying features. An ENN consists of an

input, a hidden, an output, and a recurrent layer. Each layer

has one or more neurons that use a nonlinear function of the

weighted sum of the input samples to convey data or samples.

The mathematical model specification for the input layer is

defined as equation (1),

𝑋𝑖𝑡(𝑘) = ∑ 𝑋𝑖𝑡(𝑘 − 1)𝑛
𝑖=1 (1)

Here, an input 𝑡 − time and 𝑛 neurons are denoted by 𝑋𝑖𝑡 .

Each neuron has the following input model defined as

following equation (2),

𝑛𝑒𝑡𝑗𝑡(𝑘) = ∑ 𝑊𝑖𝑗𝑋𝑖𝑡(𝑘 − 1) +𝑛
𝑖=1 ∑ 𝐶𝑗𝑟𝑗𝑡(𝑘)

𝑝
𝑗=1 (2)

Figure 1 ENN Architecture

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 839

RESEARCH ARTICLE

𝑊𝑖𝑗: the hidden layer and input weights. Weights 𝐶𝑗 are those

between recurrent and hidden layers. The hidden layer is

defined as follows (Equation 3):

𝑍𝑗𝑡(𝑘) = 𝑓(𝑛𝑒𝑡𝑗𝑘(𝑘) = ∑ 𝑊𝑖𝑗𝑋𝑖𝑡(𝑘 − 1) +𝑛
𝑖=1 ∑ 𝐶𝑗𝑅𝑗𝑡(𝑘)

𝑝
𝑗=1

 (3)

Equation 4 shows the definition of the recurrent layer is as

follows:

𝑅𝑗𝑡(𝑘) = 𝑍𝑗𝑡(𝑘 − 1) (4)

Equation 5 shows the output layer:

𝑌𝑡(𝑘) = 𝑓(∑ 𝑉𝑗𝑍𝑗𝑡(𝑘)
𝑝
𝑗=1 (5)

The following equation (6) is the ENN network errors:

𝐸 = ∑ (𝑡𝑡 − 𝑦𝑡)
2𝑚

𝑘=1 (6)

Here, 𝑡𝑡 is the actual and 𝑦𝑡 is the predicted value.

4. BACTERIAL COLONY OPTIMIZATION (BCO)

Niu and Wang (2012) proposed BCO, a population-based and

kind of SI procedure [25] used in several practical

applications [26-35]. Algorithm 1 illustrates the process of

BCO. To tackle the above problem, a novel bacterial

algorithm called BCO was developed with swarm intelligence

characteristics to expedite the optimization process. Stages of

BCO include chemotaxis and communication, elimination and

reproduction, migration, and the remaining four stages. The

entire BCO process takes advantage of the chemotaxis and

communication phase. The bacteria use the population

statistics to modify their swimming and tumbling habits. To

update the positions of the microorganisms, a unique

chemotaxis and communication method is applied.

Throughout their lives, bacteria can be divided into two types

of chemotaxis: swimming and tumbling. A stochastic

direction participates in the actual swimming process when

tumbling. The combined effects of the best searching director

in Tumbling and the turbulent director have an impact on the

updated locations and search direction of each bacterium.

These effects are expressed in equation (7) as follows:

𝑃𝑜𝑠𝑖(𝑇) = 𝑃𝑜𝑠𝑖(𝑇 − 1) + 𝐶(𝑖) ∗ [𝑓𝑖 . (𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑠𝑖(𝑇 −
1)) + (1 − 𝑓𝑖) ∗ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑃𝑜𝑠𝑖(𝑇 − 1)) + 𝑡𝑢𝑟𝑏𝑖]

(7)

Bacteria lack a turbulence director, which would steer

swimming toward an optimal state. This may be expressed in

equation (8) as follows:

𝑃𝑜𝑠𝑖(𝑇) = 𝑃𝑜𝑠𝑖(𝑇 − 1) + 𝐶(𝑖) ∗ [𝑓𝑖 . (𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑠𝑖(𝑇 −
1)) + (1 − 𝑓𝑖) ∗ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑃𝑜𝑠𝑖(𝑇 − 1))]

(8)

𝐶(𝑖) = 𝐶𝑚𝑖𝑛 + (
𝐼𝑡𝑒𝑟𝑚𝑎𝑥−𝐼𝑡𝑒𝑟𝑗

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)
𝑛
(𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛)

(9)

Where, 𝑡𝑢𝑟𝑏𝑖 - turbulent direction variance. 𝑓𝑖 ∈ {0,1} . The

personal and global best value is represented by 𝑃𝑏𝑒𝑠𝑡 and

𝐺𝑏𝑒𝑠𝑡respectively. 𝑛 is the chemotaxis step's linearly reducing

method. From the equation number (9), 𝐶(𝑖) - chemotaxis

step size. The maximum number of iterations and the current

iteration are denoted by 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 and 𝐼𝑡𝑒𝑟𝑗 , respectively. In

the phase of elimination and reproduction, the sick bacterium

will be replaced by the high-energy bacterium, which will

replicate them to build the newest people. The high energy

shows that the bacterium hunts for resources with remarkable

efficiency. The bacterium can migrate within a certain search

space range during the migration phase when certain

conditions are met. During the migration, the bacteria

typically go toward the most recent nutrients according to a

specific likelihood.

5. CENTROID OPPOSITION-BASED LEARNING

(COBL)

The OBL intelligence algorithm was developed by H R

Tizhoosh to obtain the opposite estimate from the current

estimate and enhance the capability of the provided answer

[36]. Often, population-based optimization methods begin by

producing a collection of solutions. To construct the

population, either past data or random selection can be

applied. After that, the populations are updated using the

optimization process. However, if the answer is not known in

advance, the given solution is unable to converge to a global

solution. Furthermore, the global solution takes longer to

converge. Several studies have been carried out to mitigate

these shortcomings by employing the benefits of the OBL

method for population initialization and updating.

Step 1: Set up the required parameters

Step 2: For every bacterial colony

Step 3: Chemotaxis and communication

Step 4: Reproduction and elimination

Step 5: Migration

Step 6: If the final stage is not reached, step 2 should be

taken; if not, the process should be terminated.

Step 7: The best position should persist in the final position

Algorithm 1 Bacterial Colony Optimization (BCO)

5.1. OBL

Given a real number 𝑥 that was determined within the interval

𝑚 and 𝑛 let it be. The definition of the opposite number 𝑥̅ is

define in equation (10) as follows:

𝑥̄ = 𝑚 + 𝑛 − 𝑥

 (10)

Let 𝑥 = (𝑥1, 𝑥2, , 𝑥𝐷) be a data sample with 𝐷 -

dimensional space. 𝑥1, 𝑥2, , 𝑥𝐷 ∈ 𝑅 and 𝑥𝑖[𝑚𝑖 , 𝑛𝑖]∀𝑖 ∈
{1,2, 𝐷}. The opposite estimate, 𝑥̄, is in equation (11)

then defined as

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 840

RESEARCH ARTICLE

𝑥̄𝑖 = 𝑚𝑖 + 𝑛𝑖 − 𝑥𝑖 , 𝑖 = 1,2, , 𝐷

(11)

5.2. COBL

S. Rahnamayan et al. [37] presented the COBC, an OBL

scheme, and it was effectively incorporated into the DE

algorithm, outperforming its competing algorithms. The total

population is taken into account while calculating the centroid

opposite locations in a metaheuristic method. The body's

centroid can be defined as follows if 𝑥 are 𝑁 positions in a 𝐷 -

D-dimensional search space that are carrying a unit of mass

which is defined in equation (12) as follows:

𝑀 =
𝑥1,𝑥2,…..,𝑥𝑁

𝑁
 (12)

The formula can be used to get the centroid point in the 𝑗𝑡ℎ

dimension which is defined in equation (13) as follows,

𝑀𝑗 =
1

𝑁
∑ 𝑥𝑖𝑗
𝑁
𝑖=1 (13)

Once the centroid value is known as M, the following

equation (14) can be used to find the opposite point 𝑥̄𝑖 of a

given point 𝑥𝑖 in the body:

𝑥̄𝑖 = 2 ×𝑀 − 𝑥𝑖 (14)

6. COBCO METHOD

To generate the center values of the opposing values from the

random numbers, the current work builds a novel COBL

scheme based on center opposition values. By producing a

set of centroid opposite solutions, the COBL approach

increases the likelihood of obtaining higher-quality solutions.

Rather than creating opposites for every possible solution, the

opposites are created concerning the population's centroid.

This strategy strikes a balance between exploration and

exploitation by promoting searches in fresh, maybe uncharted

territory while maintaining a focus on places with great

potential.

Two types of modifications, including population

initialization and position updating using COBL, were carried

out in the BCO. In the first stage, COBL can assist in

producing a variety of solutions. It is possible to generate

contrary solutions by taking the centroid of the starting

population into account. This increases the diversity of the

starting population and may facilitate a more thorough

investigation of the search space. COBL aids in striking a

balance between exploitation—fine-tuning around the

existing best solutions—and exploration—discovering new

areas of the search space. To prevent premature convergence

and guarantee that the global optimum is obtained or

approximated, this balance is essential in BCO. In the second

stage, the algorithm can cover the search space more

effectively and possibly achieve faster convergence and

higher-quality solutions by taking advantage of opposites

concerning the centroid. A detailed discussion is given in the

ensuing subsection.

6.1. Population Initialization Using COBL

Through population generation, the OBL algorithm enhances

the provided answer. By estimating the opposite answer, 𝑥̅𝑖
for 𝑥𝑖 , an initial population, 𝑋 , is created. Compute the

fitness function values for both current and opposite values to

get the ideal initial values for the initial population of a

specific solution. Next, contrast the fitness metrics. The

fitness function values are used to select the starting

population, which is the new population of the optimal

solution. During the initialization step, the search space

range's starting population, 𝑋 , is initially randomly created.

Then centroid-based opposite results 𝑋̅ = (𝑥̅1, 𝑥̅2, … . 𝑥̅𝐷) are

calculated in the dynamic search space range [𝑎𝑗 , 𝑏𝑗] which

are calculated as in equations (15) and (16) as follows:

𝑎𝑗 = min
∀𝑖

(𝑥𝑖𝑗) ⁡ (15)

𝑏𝑗 = max
∀𝑖

(𝑥𝑖𝑗) (16)

Where 𝑖 and 𝑗 are the index of the separate result dimension

correspondingly. Upon computing the centroid opposite

point⁡⁡𝑥̅𝑖𝑗 , it might surpass the boundaries of the search space.

The following moves it to the search space if it is greater than

𝑏𝑗 which is defined in equation (17) as follows:

𝑥̅𝑗 == 𝑎𝑗 + (𝑀𝑗 − 𝑎𝑗) × 𝑟𝑎𝑛𝑑(0,1)⁡ (17)

The fitness values are calculated for both original and

opposite solutions and select the 𝑁 best solutions from the set

𝑋, 𝑋̅ according to its fitness.

6.2. Population Updating

The population update is a major endeavor that is moving the

world closer to a global solution. This work uses the COBL

algorithm to compute the opposite point of the present

solution, which creates a new population. After the position

is updated, the fitness function (MSE) values are computed

for each 𝑥𝑖 ⁡ of each bacterial colony. The COBL algorithm is

used to compute the opposite estimate for each position once

the position has been updated, and the fitness function is then

created for each 𝑋̅ . To create a new population, the best

solutions are combined from the two existing populations.

The previous procedure is carried out again if the stopping

requirement is not satisfied. BCO incorporates a position

update mechanism based on centroid opposition. The best

solutions are chosen in this phase using the same

methodology as the centroid opposition-based initialization

phase, which involves applying COBC to the original

solutions to determine the centroid opposite solutions.

7. PROPOSED COBCO-ENN

The proposed COBCO-ENN method is used to detect DDoS

attacks. It can accelerate convergence and address the

shortcomings of the ENN. Recently, a SI method called BCO

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 841

RESEARCH ARTICLE

was proposed. It has good accuracy and can search very wide

regions for potential answers. BCO does not, however,

guarantee that the best solution will be found. More

specifically, because of internal iterations, the conventional

BCO has a lengthy computation time and poor convergence.

When the initial population and population updating are

chosen inappropriately, any population-based algorithm fails

to reach local optima and has a low convergence rate [38].

The suggested approach avoids the local optima problem and

increases the convergence rate by combining BCO and

COBL, or COBCO. Two types of adjustments are made to

the CBCO to maintain a balance between exploration and

exploitation: population initialization and position updating.

To increase population diversity and ergodicity in the search,

COBL is used once the bacteria are initiated to determine a

better beginning location for each bacterium. Its fitness

values are determined using the mean square error (MSE),

which is in equation (18) defined as,

𝑀𝑆𝐸 =
1

𝑁
(𝑦𝑖 − 𝑦𝑖̂)

2
 (18)

where 𝑦𝑖 - predicted value. 𝑦𝑖̂ - real value. 𝑁 - sample's length.

The ideal weights and thresholds are represented by the data

on the best bacterium. In the proposed method, normalized

data is fed into the improved ENN model. ENN is trained and

optimized with COBCO. Every bacterium has been chosen as

a search agent to represent the original solutions. During

training, each search agent's position is adjusted by

minimizing the objective function (MSE). COBCO bases its

search for the optimal value for ENN on the objective

function and the values of the initial parameters. The output

vectors are denormalized to obtain expected values.

Experiments were conducted to show consistency in

prediction since the SI technique can produce almost ideal

solutions. Algorithm 2 and Figure 2 show the overview of the

proposed COBCO-ENN detection model.

Step 1: Initialize the necessary parameters

Step 2: Initialization of the population using COBL

Step 2.1: Create a random population of (𝑁) members, then

calculate its fitness value.

Step 2.2: Determine the fitness value by computing the

opposite population, 𝑋̄

Step 2.3: Based on their fitness values, choose the best one to

serve as the beginning population.

Step 3: Chemotaxis and communication

Step 4: Elimination and dispersal

Step 5: Reproduction

Step 6: Migration

Step 7: Position update using COBL

Step 7.1: The position of every bacterial colony is updated,

and the fitness value of every solution is calculated.

Step 7.2: Determine the fitness value for every solution as

well as the centre of opposite point for the present one.

Step 7.3: Based on the fitness function, select the appropriate

solution 𝑋 ∪ 𝑋̄.

Step 8: If the stopping state is met, the procedure should end;

if not, move on to step 5.

Step 9: Utilize the optimal hyperparameter when training the

ERNN. The best bacteria data show the optimal

hyperparameters that were chosen as the hyperparameter

basis. Then identify the issue in the network.

Step 10: The training is complete when it reaches the

maximum number of epochs or the least error.

Algorithm 2 Proposed COBCO-ERNN

8. EXPERIMENTAL RESULTS

To obtain the optimal hyperparameters of the ENN, minimize

error, and determine the optimum detection accuracy, the

current work suggested novel SI-based optimization strategies

termed COBCO. The optimal hyperparameters for the

vectors are determined using the SI method. The COBCO

algorithm uses a bacteria's position as a dimension to build the

connection weights, biases value set, and learning rate that are

needed by the ENN approach. The proposed COBCO-ENN

technique is related to some well-known algorithms such as

BCO-ENN [6], APSO-ENN [39], PSO-ENN [40], GA-ENN

[41], ENN [42], BPNN [43], and SVM [44]. The related

procedures are employed using MATLAB 2019b with an i5

processor and 16 GB RAM on Windows 11.

8.1. Dataset Collections

Numerous intrusion detection assessment datasets include

both normal and abnormal network traffic data. The

performance detection approach is analyzed using four

datasets: NSL-KDD, UNSW-NB15, CIC-IDS2017, and CIC-

DDoS2019. The following is a discussion of the dataset

details as shown in Table 1:

a) NSL-KDD: This dataset comprises four sorts of attacks:

“DOS, R2L, U2R, and Probe. KDDTrain+, KDDTest+,

and KDDTest-21 have 1,25,973, 22,544, and 11,850

samples overall, respectively”. Samples from this dataset

include 41 features.

b) UNSW-NB15: There are 2,540,044 samples in all in this

dataset. This dataset's subset which contains 257,673

samples. There are 175,341 and 82,332 samples for

training and testing, respectively. Nine different attack

types are included: “analysis, backdoor, denial-of-service,

exploits, fuzzers, generic, reconnaissance, shell code, and

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 842

RESEARCH ARTICLE

worms”. Table 3 provides further dataset details. Samples

from this dataset include 48 features [45].

Table 1 Datasets Particulars

Datasets Attributes Training

samples

Testing

samples

Total

samples

NSL-KDD 41 125973 34394 160367

UNSW-

NB15

48 175341 82332 257673

CICIDS2017 78 1744184 747505 2491689

CIC-

DDoS2019

78 587, 966 411577 176389

c) CICIDS2017: The five days of traffic from Monday

through Friday are included in this dataset. Only normal

samples are present on Monday; the traffic on the other

days consists of both normal and attacked samples. The

dataset comprises eight different kinds of attacks:

“Bruteforce, DDoS, DoS, Heartbleed, Infiltration,

Portscan, and Web”. This dataset has 2,491,689 samples

in total—2,273,097 normal and 218,592 attack samples.

The entire dataset is split into two subsets of 1,744,184

and 747,505 samples, respectively, by dividing it into

training and testing sets in a 70:30 ratio. Table 3 provides

information on the various class types. Samples from this

dataset include 78 features.

d) CIC-DDoS2019: The dataset was gathered for testing and

training on two different days. Twelve DDoS attacks are

included in the training set; these include DDoS-based

attacks from “SNMP, NetBIOS, LDAP, TFTP, NTP,

SYN, UDP, WebDDoS, MSSQL, UDPLag, DNS, and

SSDP. Seven DDoS assaults against PortScan, SYN,

MSSQL, UDP-Lag, LDAP, UDP, and NetBIOS” are

included in the testing data. The distribution of the various

attacks is displayed in Figure 7. Using CICFlowMeter

tools, the researchers retrieved over 80 flow features from

the CIC-DDoS2019. The Canadian Institute for

Cybersecurity website makes the dataset available to the

general public inflow and PCAP file formats [46].

8.2. Preprocessing

The focus of this research is on a binary classification issue

for anomaly detection, in which every observation is assigned

to either the attack or normal class. We performed the

following pre-processing actions on the datasets we had

chosen before training the DDoS attack model:

a) Data cleaning: Destination and source IP, flow ID, and

Port are the three types of socket information that are

different in the CIC-IDS2017 and CIC-DDoS2019

datasets. Since socket-involved features can differ from

network to network. Hence, eliminated them from the

data samples to solve the overfitting issue. Additionally,

we eliminated from the dataset any samples that had the

‘NaN’ and ‘INF’ feature values.

b) Data encoding: Aside from the traffic labels of the CIC-

DDoS2019 and CIC-IDS2017, respectively, the final

dataset includes 77 & 78 other attributes. The categorical

features, like protocol type, services, and flag, were

converted into numerical features using one-hot encoding.

For instance, the mappings for the TCP, UDP, and ICMP

protocols are (1,0,0), (0,1,0), and (0,0,1), respectively.

Similar to this, numerical features have been mapped to

the "flag" feature with 11 values and the "services" feature

with 70 values. As a result, 121 numerical features are

ultimately created from 41 original features. Binary

encoding is also used to translate the non-numerical class

labels into numerical categories. These cases are allocated

to 1 and 0, respectively, because the only binary

classification that we have taken into consideration in our

model is to identify the anomalous and regular traffic from

input data. A dataset's duplication could cause the

anomaly detection model to be biased toward more

frequent records during training. To fix this, we

eliminated all of the duplicate records from the data and

only retained one copy of each entry. Following the

process, the CIC-IDS2017 (DoS) dataset's sample count is

lowered to 587, 966.

c) Data normalization: The original value scales have been

eliminated by normalizing the numerical features. Each

feature has undergone Min-Max Normalization, which

rescales the feature range to fall inside [0, 1]. The Min-

Max Normalization is as shown in the equations (19) as

below:

𝑧𝑖 =
𝑥𝑖−min⁡(𝑥)

max(𝑥)−min⁡(𝑥)
 (19)

where 𝑧𝑖⁡ is the 𝑖𝑡ℎ normalized data and 𝑥𝑖 is a feature.

d) K-fold cross validation: The next experiment will use the

k-fold validation methodology to randomly select the

dataset and evaluate the effectiveness of the suggested

method. The dataset is divided into k subgroups of the

same size. In this investigation, a 10-fold subset is

employed. There are ten data subsets for each fold when

K = 10. The data is divided into 10 folds with roughly

equal magnitudes for each fold. On each of the ten data

subsets, the cross-validation test is run using a 9-fold

training set and a 1-fold testing set.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 843

RESEARCH ARTICLE

Figure 1 Flowchart for the Proposed Research Work

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 844

RESEARCH ARTICLE

8.3. Parameter Optimization

Hyperparameters are crucial in influencing the effectiveness,

efficiency, and behavior of the algorithms in both swarm

intelligence and deep learning. Elman RNNs can benefit from

the efficient application of COBCO for hyperparameter

tuning. Elman RNNs are renowned for their capacity to detect

temporal dependencies in sequential data; nevertheless, to

attain peak performance, hyperparameters must be carefully

adjusted. COBCO is an SI optimization algorithm that can

help with this process because of its capacity for escape from

local optima and adaptable search features. A set of

hyperparameters is represented by each bacterium. A

bacterium's location inside the search space correlates to

particular values of the hyperparameters. With a given set of

hyperparameters, the objective function assesses the Elman

RNN's performance. An inappropriate selection of ERNN

hyperparameters may adversely affect network performance

by increasing computation time, causing under- or overfitting,

and lowering the convergence rate. Therefore, choosing the

ENN's hyperparameters is essential which directly affects the

performances of the given solutions.

Three hyperparameters are optimized in this present research

work such as learning, weights and biases, and number of

neurons. An Elman RNN's weights and biases are crucial

elements that control how the network interprets input, learns

from it, captures temporal dependencies, and eventually

generates predictions. The selection of weights is between -

0.5 and 0. 5. The learning rate, which regulates how much

the weights and biases are changed during each training cycle

of the neural network, is an essential hyperparameter. The

learning rate, which falls between 0.1 and 0.9, is taken into

account. An ENN's capacity, learning capability, and overall

performance are all impacted by the significance

hyperparameter of the number of hidden neurons. An Elman

RNN's ability to manage temporal dependencies, learn and

represent patterns in the data, and use a minimal amount of

processing resources is all greatly impacted by the number of

hidden neurons in the network. Achieving a balance between

underfitting and overfitting, computational efficiency, and the

capacity to generalize well to new data all depend on selecting

the appropriate number of hidden neurons. There are between

10 and 100 hidden neurons chosen.

In BCO, parameters are essential for defining how the

optimization algorithm behaves and how effective it is. BCO

is a technique for solving optimization issues that draws

inspiration from the behavior of bacterial colonies found in

nature. The parameter of the BCO is shown in Table 2. The

convergence rate of BCO is decided based on its chemotaxis

step (𝑁𝐶) values and swim step (𝑁𝑠) . It takes longer to

compute the chemotaxis step when it is higher. As a result,

the current study chooses a limited number of chemotaxis

steps such as 𝑁𝐶 = 100. Swim step is selected as ⁡𝑁𝑠 = 4.

The reproduction value is designated as ⁡(𝑁𝑟𝑒 = 4), and the

dispersal step value is designated as 𝑁𝑒𝑑 = 2 . Dispersal

values, step size, and likelihood of elimination are all crucial

elements in figuring out how well the BCO algorithm works.

The best performance is defined as having the lowest goal

value. The lowest step size value (𝐶𝑚𝑖𝑛) and greatest step

size value (𝐶𝑚𝑎𝑥) are two distinct step size values. An escape

from the local optima problem is an ideal value, and the

elimination and dispersal probability 𝑃𝑒𝑑 ⁡ value is another

important BCO parameter. Therefore, 0.25 is the chosen

probability value. The parameter values for the remaining

algorithm are set to those found in its reference papers, like k-

means [47], ACO [48], PSO [49], BFO [50], and BCO [28].

Table 2 Parameter’s Values of BCO and ERNN

ERNN BCO

Parameter Value Parameter Value

Activation

function

sigmoid

TanH
𝑆 100

Objective

function

MSE
𝑁𝐶 100

Learning

rate

0.05
𝑁𝑠 4

Training

epochs

1000
𝑁𝑟𝑒 4

Error 0.0005 𝑁𝑒𝑑 2

Weight

range

-0.5 and 0.5
𝑃𝑒𝑑 0.25

Hidden

neurons

10-100
𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥

0.1 and

0.4

8.4. Performance Measures

An essential component in detecting DDoS attacks is the

study and discussion of the results. A crucial component of

DDoS attack detection is results analysis and discussion,

which offers insights into the types of attacks, their effects,

the limitations of detection, and potential areas for

development. The present section discusses the results

analysis for analyzing the performance of the proposed

methods. To evaluate the created detection method's

suitability for comparisons, four distinct performance criteria

are taken into account across the four datasets. Performance

measurements are important for evaluating how well DDoS

attack detection systems work. DDoS detection systems can

enhance network security and lessen the impact of DDoS

attacks by improving their capacity to precisely and quickly

identify and mitigate DDoS attacks. This can be achieved by

tracking and adjusting certain performance parameters. Our

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 845

RESEARCH ARTICLE

suggested model has been assessed using the following four

performance metrics as follows,

8.4.1. Accuracy

DDoS attack detection systems must be accurate in

differentiating between malicious activity and legitimate

traffic to identify DDoS attacks. The percentage of exactly

identified examples among all examples is known as accuracy

which is shown in Equation (20),

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑇𝑃⁡+⁡𝑇𝑁

𝑇𝑃+⁡𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100 (20)

Table 3 Training Result Analysis for Accuracy

Methods NSL-KDD UNSW-NB15 CICIDS2017 CIC-DDoS2019

COBCO+ENN 97.11 98.22 98.11 98.95

BCO+ENN 95.14 97.19 97.49 97.13

IPSO +ENN 94.43 96.47 96.77 95.06

PSO+ENN 92.75 94.76 95.74 94.37

GA+ENN 90.15 93.11 93.73 91.78

ENN 85.77 92.49 91.79 88.84

BPNN 82.48 87.47 90.17 85.45

Figure 2 Training Result Analysis for Accuracy

The accuracy-based performance training results for all

datasets, including NSL-KDD, UNSW-NB15, CICIDS2017,

and CIC-DDoS2019, are displayed in Table 3 and Figure 3,

respectively. Table 3 and Figure 3 show that, when compared

to alternative approaches, the suggested method produced

high accuracy for all datasets, including 97.11 percent

accuracy for NSL-KDD, 98.22 percent accuracy for UNSW-

NB15, 98.11 percent accuracy for CICIDS2017, and 98.95

percent accuracy for CIC-DDoS2019. Figure 4 shows that,

when compared to alternative approaches, the suggested

method produced high testing accuracy for all datasets.

70

75

80

85

90

95

100

105

NSL-KDD UNSW-NB15 CICIDS2017 CIC-DDoS2019

COBCO+ENN BCO+ENN IPSO +ENN PSO+ENN GA+ENN ENN BPNN

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 846

RESEARCH ARTICLE

Figure 3 Testing Result Analysis for Accuracy

8.4.2. Precision

Precision, which gauges the system's capacity to accurately

detect harmful activity without incorrectly classifying benign

traffic, is a crucial performance metric in DDoS attack

detection. Precision becomes more crucial in situations when

reducing false alarms is crucial. The percentage of real

positives among all predicted positives is measured by

precision which is shown in Equation (21).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ = ⁡⁡
𝑇𝑃

𝑇𝑃⁡+⁡𝐹𝑃
× 100 (21)

Table 4 Training Result Analysis for Precision

Methods NSL-KDD UNSW-NB15 CICIDS2017 CIC-DDoS2019

COBCO+ENN 98.17 99.76 98.43 98.51

BCO+ENN 97.47 97.21 97.19 97.34

IPSO +ENN 96.80 96.44 96.44 96.46

PSO+ENN 95.76 95.75 95.48 94.76

GA+ENN 94.11 93.21 93.89 93.64

ENN 93.47 92.43 92.47 91.27

BPNN 91.71 90.16 90.23 88.23

The precision-based performance results for all datasets,

including NSL-KDD, UNSW-NB15, CICIDS2017, and CIC-

DDoS2019, are displayed in Table 4 and Figure 5,

respectively. Table 4 and Figure 5 show that, when compared

to alternative approaches, the suggested method produced

high accuracy for all datasets, including 98.17 percent

accuracy for NSL-KDD, 99.76 percent accuracy for UNSW-

NB15, 98.43 percent accuracy for CICIDS2017, and 98.51

percent accuracy for CIC-DDoS2019. Figure 6 shows that,

when compared to alternative approaches, the suggested

method produced high testing accuracy for all datasets.

0
.8

9
6

2

0
.9

8
2

5

0
.9

8
1

4

0
.9

8
5

2

0
.8

8
8

1

0
.9

7
6

6

0
.9

7
3

4

0
.9

7
3

6

0
.8

6
3

3

0
.9

5
3

6

0
.9

6
3

4

0
.9

5
8

6

0
.8

4
3 0
.9

4
6

8

0
.9

4
3

7

0
.9

4
1

6

0
.8

2
1 0
.9

3
6

8

0
.9

2
3

4

0
.9

0
4

9

0
.7

8
6 0

.9
2

3
5

0
.8

9
9

6

0
.8

7
3

6

0
.7

5
0

2

0
.8

8
2

6

0
.8

6
8

5

0
.8

5
2

5

NSL-KDD UNSW-NB 1 5 CICIDS2 0 1 7 CIC-DDOS2 0 1 9

COBCO+ENN BCO+ENN IPSO +ENN PSO+ENN GA+ENN ENN BPNN

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 847

RESEARCH ARTICLE

Figure 4 Training Result Analysis for Precision

Figure 5 Testing Result Analysis for Precision

8.4.3. Recall

Recall is a vital parameter, especially in situations where it is

imperative to detect every possible danger when assessing the

effectiveness of DDoS attack detection systems. Recall

quantifies the percentage of accurately detected true positives

which is shown in Equation (22)

𝑅𝑒𝑐𝑎𝑙𝑙⁡ = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 (22)

The recall-based performance results for all datasets,

including NSL-KDD, UNSW-NB15, CICIDS2017, and CIC-

DDoS2019, are displayed in Table 5 and Figure 7,

respectively.

Table 5 and Figure 7 shows that, when compared to

alternative approaches, the suggested method produced high

accuracy for all datasets, including 98.14 percent accuracy for

NSL-KDD, 98.10 percent accuracy for UNSW-NB15, 97.96

percent accuracy for CICIDS2017, and 99.08 percent

accuracy for CIC-DDoS2019.

Figure 8 shows that, when compared to alternative

approaches, the suggested method produced high testing

accuracy for all datasets.

82

84

86

88

90

92

94

96

98

100

102

NSL-KDD UNSW-NB15 CICIDS2017 CIC-DDoS2019

COBCO+ENN BCO+ENN IPSO +ENN PSO+ENN GA+ENN ENN BPNN

0
.8

9
4

5

0
.9

8
6

9

0
.9

8
3

6

0
.9

8
3

6

0
.8

8
1

2

0
.9

7
3

2

0
.9

7
3

9

0
.9

6
2

1

0
.8

5
1 0
.9

6
3

2

0
.9

6
3

4

0
.9

3
8

9

0
.8

5
8

9

0
.9

5
6

7

0
.9

4
3

4

0
.9

2
5

8

0
.8

3
9

8

0
.9

2
6

9

0
.9

2
3

4

0
.9

1
3

6

0
.8

2
1

0
.9

0
3

2

0
.9

0
2

6

0
.8

8
6

8

0
.7

7
1

0
.8

6
9

5

0
.8

7
2

2

0
.8

6
6

9

NSL-KDD UNSW-NB 1 5 CICIDS2 0 1 7 CIC-DDOS2 0 1 9

COBCO+ENN BCO+ENN IPSO +ENN PSO+ENN GA+ENN ENN BPNN

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 848

RESEARCH ARTICLE

Table 5 Training Result Analysis for Recall

Methods NSL-KDD
UNSW-

NB15
CICIDS2017 CIC-DDoS2019

COBCO+ENN 98.14 98.10 97.96 99.08

BCO+ENN 97.76 97.49 96.41 97.28

IPSO +ENN 96.88 96.47 95.74 95.37

PSO+ENN 96.65 95.63 94.63 94.09

GA+ENN 94.00 93.22 93.14 92.85

ENN 91.16 92.17 92.77 90.57

BPNN 88.79 90.71 91.47 87.28

Figure 6 Training Result Analysis for Recall

Figure 7 Testing Result Analysis for Recall

80

82

84

86

88

90

92

94

96

98

100

NSL-KDD UNSW-NB15 CICIDS2017 CIC-DDoS2019

COBCO+ENN BCO+ENN IPSO +ENN PSO+ENN GA+ENN ENN BPNN

0
.8

8
5

6

0
.9

8
6

9

0
.9

7
6

9

0
.9

8
4

2

0
.8

7
2

2

0
.9

8
2

6

0
.9

7
3

6

0
.9

7
6

4

0
.8

5
6

2

0
.9

7
3

4

0
.9

6
3

4

0
.9

7
4

4

0
.8

4
4

5

0
.9

5
1

9

0
.9

3
8

8

0
.9

4
5

4

0
.8

2
8

8

0
.9

4
5

8

0
.9

2
5

4

0
.9

2
6

7

0
.7

9
9

9

0
.9

3
6

7

0
.8

8
3

2

0
.9

0
6

7

0
.7

6
9

5 0
.9

1
5

7

0
.8

4
3

6

0
.8

7
6

4

NSL-KDD UNSW-NB 1 5 CICIDS2 0 1 7 CIC-DDOS2 0 1 9

COBCO+ENN BCO+ENN IPSO +ENN PSO+ENN GA+ENN ENN BPNN

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 849

RESEARCH ARTICLE

8.4.4. F1-Score

An essential indicator for assessing the effectiveness of DDoS

attack detection systems is the F-score, particularly in

situations where recall and precision must be balanced. It

offers a more thorough evaluation of the detection system's

efficacy by combining these two indicators into a single score.

It is shown as Equation (23)

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2⁡ ×⁡
𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡×⁡𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+⁡𝑅𝑒𝑐𝑎𝑙𝑙
× 100 (23)

Table 6 Training Result Analysis for F-Score

Methods NSL-KDD
UNSW-

NB15
CICIDS2017 CIC-DDoS2019

COBCO+ENN 99.10 98.16 98.29 98.07

BCO+ENN 98.63 97.40 97.52 96.82

IPSO +ENN 97.10 96.46 95.74 95.17

PSO+ENN 96.77 95.33 94.16 93.56

GA+ENN 95.47 94.19 93.78 92.97

ENN 93.05 92.74 92.79 90.28

BPNN 92.77 89.58 90.14 88.14

Figure 8 Training Result Analysis for F-Score

The F-Score-based performance results for all datasets,

including NSL-KDD, UNSW-NB15, CICIDS2017, and CIC-

DDoS2019, are displayed in Table 6 and Figure 9

respectively.

Table 6 and Figure 9 show that, when compared to alternative

approaches, the suggested method produced high accuracy for

all datasets, including 98.10 percent accuracy for NSL-KDD,

98.16 percent accuracy for UNSW-NB15, 98.29 percent

accuracy for CICIDS2017, and 99.07 percent accuracy for

CIC-DDoS2019.

Figure 10 shows that, when compared to alternative

approaches, the suggested method produced high testing

accuracy for all datasets. From the equations (20), (21), (22),

and (23), TP (True positive): An attack instance is measured

as TP if it is accurately characterized.

 FP (False positive): An attack is measured when a normal

instance is classified as such. TN (True negative): A normal

occurrence is measured if it is classified as normal. FN (False

negative): An attack instance is measured as FN if it is

classified as normal.

82

84

86

88

90

92

94

96

98

100

NSL-KDD UNSW-NB15 CICIDS2017 CIC-DDoS2019

COBCO+ENN BCO+ENN IPSO +ENN PSO+ENN GA+ENN ENN BPNN

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 850

RESEARCH ARTICLE

Figure 9 Testing Result Analysis for F-Score

8.4.5.

Convergence Analysis

To analyze the performance of optimized ENN methods,

convergence analysis is also considered in the present work.

Convergence analysis is an essential component that is vital to

comprehending and assessing detection model performance

for multiple reasons. Understanding the behavior and

effectiveness of ENN in DDoS attack detection tasks is

crucial for making sure the model learns efficiently,

generalizes well, and produces accurate results. This is where

convergence analysis comes in. The convergence analysis is

conducted on the loss as it varies over epochs. Plot the

number of epochs versus the training loss (MSE). Finding out

whether the optimized ENN achieves a consistent

performance level and how well it can learn to detect DDoS

attacks are revealed by performing a convergence analysis.

The convergence study of DDoS attack detection techniques

for all datasets, including NSL-KDD, UNSW-NB15,

CICIDS2017, and CIC-DDoS2019, can be observed in

Figures 11, 12, 13, and 14.

Figure 10 Convergence Analysis of Detection Method for NSL-KDD

0
.8

8
6

4

0
.9

7
3

4

0
.9

7
7

2

0
.9

4
3

5

0
.8

7
6

6

0
.9

6
3

5

0
.9

6
2

5

0
.9

5
6

5

0
.8

6
1

3

0
.9

4
5

4

0
.9

4
3

6

0
.9

3
1

5

0
.8

5
9

9

0
.9

1
6

5

0
.9

2
6

8

0
.9

0
6

6

0
.8

3
9

6

0
.8

6
9

3

0
.9

1
6

9

0
.8

8
9

3

0
.8

1
4

6

0
.8

4
6

6

0
.9

0
4

1

0
.8

5
1

4

0
.8

2
5

0
.7

9
4

2

0
.8

7
2

5

0
.8

3
3

4

NSL-KDD UNSW-NB 1 5 CICIDS2 0 1 7 CIC-DDOS2 0 1 9

COBCO+ENN BCO+ENN IPSO +ENN PSO+ENN GA+ENN ENN BPNN

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 851

RESEARCH ARTICLE

Figure 11 Convergence Analysis of Detection Method for UNSW-NB15

Figure 12 Convergence Analysis of Detection Method for CICIDS2017

Figure 13 Convergence Analysis of Detection Method for CIC-DDoS2019

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 852

RESEARCH ARTICLE

According to the experiment results, the combination of

COBCO with Elman RNNs presents a viable method for

DDoS attack detection. The process of optimization improves

the network's capacity to quickly and precisely identify

attacks, offering strong security for cloud services. To fully

achieve its potential, this approach's actual application

necessitates careful consideration of computational resources

and data quality. When COBCO is used to optimize the

ENN, the accuracy of DDoS attack detection can be greatly

increased. More accurate detection models are produced by

adjusting the neural network's hyperparameters with the aid of

COBCO. By identifying intricate patterns in network traffic

that point to possible DDoS attacks, this optimization can

increase the total detection rate beyond that of conventional

techniques. Overall performance evaluation shows that the

more adaptive real-time detector of the new and improved

ERNN technology can analyse dangerous data from incoming

data.

9. CONCLUSIONS

In this work, we optimized the ENN using CBCO which

presents a unique method for detecting attacks. The model's

capacity to traverse the intricate solution space was greatly

improved by the integration of CBCO with ENN, which

resulted in quicker convergence and better accuracy in

identifying different DDoS attack patterns. By producing a

wide range of potential solutions, COBL enhanced the

detection framework and reduced the drawbacks of

conventional OBL methods. Our comprehensive simulation

results presented that the recommended method performs

better than the state-of-the-art DDoS detection methods,

especially when it comes to accuracy and detection rate. The

improved performance is ascribed to the complementary

abilities of BCO's optimization skills and COBL's capacity to

infuse the ENN with more resilient learning dynamics.

Overall, the results point to a promising direction for the

development of DDoS detection techniques in cloud

computing, providing a very practical and scalable answer to

security issues facing the industry. This is because BCO and

COBL work well together. Subsequent research endeavors

will center around enhancing the model, investigating its

suitability for various categories of cyber hazards, and

verifying the methodology in authentic cloud systems.

REFERENCES

[1] M. Alam, M. Shahid, and S. Mustajab, "Security challenges for

workflow allocation model in cloud computing environment: a
comprehensive survey, framework, taxonomy, open issues, and future

directions," The Journal of Supercomputing, pp. 1-65, 2024.

[2] D. N, J. Katiravan, and S. S.P, "Botnet Attack Detection in IoT
Devices using Ensemble Classifiers with Reduced Feature Space,"

International Research Journal of Multidisciplinary Technovation, vol.

6, no. 3, pp. 274-295, 05/22 2024, doi: 10.54392/irjmt24321.
[3] S. K. V, M. K. V, C. N. Azmea, and K. K. Vaigandla, "BCSDNCC: A

Secure Blockchain SDN framework for IoT and Cloud Computing,"

International Research Journal of Multidisciplinary Technovation, vol.
6, no. 3, pp. 26-44, 04/16 2024, doi: 10.54392/irjmt2433.

[4] P. Ravi Kiran Varma, S. RR, and M. Vanitha, "Enhanced Elman spike

neural network based intrusion attack detection in software defined
Internet of Things network," Concurrency and Computation: Practice

and Experience, vol. 35, no. 2, p. e7503, 2023.

[5] M. T. Hussan, G. V. Reddy, P. Anitha, A. Kanagaraj, and P. Naresh,
"DDoS attack detection in IoT environment using optimized Elman

recurrent neural networks based on chaotic bacterial colony

optimization," Cluster Computing, pp. 1-22, 2023.
[6] B. Sivasakthi and D. Selvanayagi, "Prediction of osteoporosis disease

using enhanced Elman recurrent neural network with bacterial colony

optimization," in Computational Vision and Bio-Inspired Computing:
Proceedings of ICCVBIC 2022: Springer, 2023, pp. 211-220.

[7] R. Priyadarshini and R. K. Barik, "A deep learning based intelligent

framework to mitigate DDoS attack in fog environment," Journal of

King Saud University-Computer and Information Sciences, vol. 34, no.

3, pp. 825-831, 2022.

[8] A. V. Kachavimath and D. Narayan, "A deep learning-based
framework for distributed denial-of-service attacks detection in cloud

environment," in Advances in Computing and Network
Communications: Proceedings of CoCoNet 2020, Volume 1, 2021:

Springer, pp. 605-618.

[9] Y. Sanjalawe and T. Althobaiti, "DDoS Attack Detection in Cloud
Computing Based on Ensemble Feature Selection and Deep Learning,"

Computers, Materials & Continua, vol. 75, no. 2, 2023.

[10] T. Khempetch and P. Wuttidittachotti, "DDoS attack detection using
deep learning," IAES International Journal of Artificial Intelligence,

vol. 10, no. 2, p. 382, 2021.

[11] D. Kumar, R. Pateriya, R. K. Gupta, V. Dehalwar, and A. Sharma,
"DDoS detection using deep learning," Procedia Computer Science,

vol. 218, pp. 2420-2429, 2023.

[12] S. Potluri, M. Mangla, S. Satpathy, and S. N. Mohanty, "Detection and
prevention mechanisms for DDoS attack in cloud computing

environment," in 2020 11th international conference on computing,

communication and networking technologies (ICCCNT), 2020: IEEE,
pp. 1-6.

[13] A. Agarwal, M. Khari, and R. Singh, "Detection of DDOS attack using

deep learning model in cloud storage application," Wireless Personal
Communications, pp. 1-21, 2022.

[14] A. E. Cil, K. Yildiz, and A. Buldu, "Detection of DDoS attacks with

feed forward based deep neural network model," Expert Systems with
Applications, vol. 169, p. 114520, 2021.

[15] S. Velliangiri, P. Karthikeyan, and V. Vinoth Kumar, "Detection of

distributed denial of service attack in cloud computing using the
optimization-based deep networks," Journal of Experimental &

Theoretical Artificial Intelligence, vol. 33, no. 3, pp. 405-424, 2021.

[16] A. Amjad, T. Alyas, U. Farooq, and M. A. Tariq, "Detection and
mitigation of DDoS attack in cloud computing using machine learning

algorithm," EAI Endorsed Transactions on Scalable Information

Systems, vol. 6, no. 23, pp. e7-e7, 2019.
[17] S. Ur Rehman et al., "DIDDOS: An approach for detection and

identification of Distributed Denial of Service (DDoS) cyberattacks

using Gated Recurrent Units (GRU)," Future Generation Computer
Systems, vol. 118, pp. 453-466, 2021.

[18] D. Alghazzawi, O. Bamasag, H. Ullah, and M. Z. Asghar, "Efficient

detection of DDoS attacks using a hybrid deep learning model with
improved feature selection," Applied Sciences, vol. 11, no. 24, p.

11634, 2021.

[19] A. V. Songa and G. R. Karri, "Ensemble-RNN: A Robust Framework
for DDoS Detection in Cloud Environment," Majlesi Journal of

Electrical Engineering, vol. 17, no. 4, pp. 31-44, 2023.

[20] S. Balasubramaniam et al., "Optimization enabled deep learning-based
DDoS attack detection in cloud computing," International Journal of

Intelligent Systems, vol. 2023, 2023.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 853

RESEARCH ARTICLE

[21] G. S. Kushwah and V. Ranga, "Optimized extreme learning machine
for detecting DDoS attacks in cloud computing," Computers &

Security, vol. 105, p. 102260, 2021.

[22] P. T. Dinh and M. Park, "R-EDoS: robust economic denial of
sustainability detection in an SDN-based cloud through stochastic

recurrent neural network," IEEE Access, vol. 9, pp. 35057-35074,

2021.
[23] S. Sumathi, R. Rajesh, and S. Lim, "Recurrent and deep learning

neural network models for DDoS attack detection," Journal of Sensors,

vol. 2022, 2022.
[24] J. L. Elman, "Finding structure in time," Cognitive science, vol. 14, no.

2, pp. 179-211, 1990.

[25] B. Niu and H. Wang, "Bacterial colony optimization: principles and
foundations," in Emerging Intelligent Computing Technology and

Applications: 8th International Conference, ICIC 2012, Huangshan,

China, July 25-29, 2012. Proceedings 8, 2012: Springer, pp. 501-506.

[26] K. Vijayakumari and V. Baby Deepa, "Fuzzy C-means hybrid with

fuzzy bacterial colony optimization," in Advances in electrical and

computer technologies: select proceedings of ICAECT 2020, 2021:
Springer, pp. 75-87.

[27] V. Prakash, V. Vinothina, K. Kalaiselvi, and K. Velusamy, "An
improved bacterial colony optimization using opposition-based

learning for data clustering," Cluster Computing, vol. 25, no. 6, pp.

4009-4025, 2022.
[28] J. Revathi, V. Eswaramurthy, and P. Padmavathi, "Bacterial colony

optimization for data clustering," in 2019 IEEE International

Conference on Electrical, Computer and Communication Technologies
(ICECCT), 2019: IEEE, pp. 1-4.

[29] J. Revathi, V. Eswaramurthy, and P. Padmavathi, "Hybrid data

clustering approaches using bacterial colony optimization and k-
means," in IOP Conference Series: Materials Science and Engineering,

2021, vol. 1070, no. 1: IOP Publishing, p. 012064.

[30] K. Tamilarisi, M. Gogulkumar, and K. Velusamy, "Data clustering
using bacterial colony optimization with particle swarm optimization,"

in 2021 Fourth International Conference on Electrical, Computer and

Communication Technologies (ICECCT), 2021: IEEE, pp. 1-5.
[31] S. S. Babu and K. Jayasudha, "A simplex method-based bacterial

colony optimization for data clustering," in Innovative Data

Communication Technologies and Application: Proceedings of
ICIDCA 2021: Springer, 2022, pp. 987-995.

[32] S. S. Babu and K. Jayasudha, "A simplex method-based bacterial

colony optimization algorithm for data clustering analysis,"
International Journal of Pattern Recognition and Artificial Intelligence,

vol. 36, no. 12, p. 2259027, 2022.

[33] H. Wang, L. Tan, and B. Niu, "Feature selection for classification of
microarray gene expression cancers using Bacterial Colony

Optimization with multi-dimensional population," Swarm and

Evolutionary Computation, vol. 48, pp. 172-181, 2019.
[34] S. İlkin, T. H. Gençtürk, F. K. Gülağız, H. Özcan, M. A. Altuncu, and

S. Şahin, "hybSVM: Bacterial colony optimization algorithm based

SVM for malignant melanoma detection," Engineering Science and
Technology, an International Journal, vol. 24, no. 5, pp. 1059-1071,

2021.

[35] B. Niu, T. Xie, Y. Bi, and J. Liu, "Bacterial colony optimization for
integrated yard truck scheduling and storage allocation problem," in

Intelligent Computing in Bioinformatics: 10th International

Conference, ICIC 2014, Taiyuan, China, August 3-6, 2014.
Proceedings 10, 2014: Springer, pp. 431-437.

[36] H. R. Tizhoosh, "Opposition-based learning: a new scheme for

machine intelligence," in International Conference on Computational
Intelligence for Modelling, Control and Automation and International

Conference on Intelligent Agents, Web Technologies and Internet

Commerce (CIMCA-IAWTIC'06), 2005, vol. 1: IEEE, pp. 695-701.
[37] S. Rahnamayan, J. Jesuthasan, F. Bourennani, H. Salehinejad, and G.

F. Naterer, "Computing opposition by involving entire population," in

2014 IEEE congress on evolutionary computation (CEC), 2014: IEEE,
pp. 1800-1807.

[38] R. S. Parpinelli, G. F. Plichoski, R. S. D. Silva, and P. H. Narloch, "A
review of techniques for online control of parameters in swarm

intelligence and evolutionary computation algorithms," International

Journal of Bio-Inspired Computation, vol. 13, no. 1, pp. 1-20, 2019.
[39] L. Yang, F. Wang, J. Zhang, and W. Ren, "Remaining useful life

prediction of ultrasonic motor based on Elman neural network with

improved particle swarm optimization," Measurement, vol. 143, pp.
27-38, 2019.

[40] Y. Wang, L. Wang, F. Yang, W. Di, and Q. Chang, "Advantages of

direct input-to-output connections in neural networks: The Elman
network for stock index forecasting," Information Sciences, vol. 547,

pp. 1066-1079, 2021.

[41] A. Sadeghi-Niaraki, P. Mirshafiei, M. Shakeri, and S.-M. Choi, "Short-
term traffic flow prediction using the modified elman recurrent neural

network optimized through a genetic algorithm," IEEE Access, vol. 8,

pp. 217526-217540, 2020.

[42] N. Chowdhury, "A comparative analysis of feed-forward neural

network & recurrent neural network to detect intrusion," in 2008

International Conference on Electrical and Computer Engineering,
2008: IEEE, pp. 488-492.

[43] Z. Chiba, N. Abghour, K. Moussaid, A. El Omri, and M. Rida, "A
novel architecture combined with optimal parameters for back

propagation neural networks applied to anomaly network intrusion

detection," Computers & Security, vol. 75, pp. 36-58, 2018.
[44] T. A. Tuan, H. V. Long, L. H. Son, R. Kumar, I. Priyadarshini, and N.

T. K. Son, "Performance evaluation of Botnet DDoS attack detection

using machine learning," Evolutionary Intelligence, vol. 13, no. 2, pp.
283-294, 2020.

[45] N. Moustafa and J. Slay, "UNSW-NB15: a comprehensive data set for

network intrusion detection systems (UNSW-NB15 network data set),"
in 2015 Military Communications and Information Systems

Conference (MilCIS), 10-12 Nov. 2015 2015, pp. 1-6, doi:

10.1109/MilCIS.2015.7348942.
[46] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani,

"Developing realistic distributed denial of service (DDoS) attack

dataset and taxonomy," in 2019 international carnahan conference on
security technology (ICCST), 2019: IEEE, pp. 1-8.

[47] A. Likas, N. Vlassis, and J. J. Verbeek, "The global k-means clustering

algorithm," Pattern recognition, vol. 36, no. 2, pp. 451-461, 2003.
[48] P. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, "An ant colony

approach for clustering," Analytica Chimica Acta, vol. 509, no. 2, pp.

187-195, 2004.
[49] I. De Falco, A. Della Cioppa, and E. Tarantino, "Facing classification

problems with particle swarm optimization," Applied Soft Computing,

vol. 7, no. 3, pp. 652-658, 2007.
[50] M. Wan, L. Li, J. Xiao, C. Wang, and Y. Yang, "Data clustering using

bacterial foraging optimization," Journal of Intelligent Information

Systems, vol. 38, no. 2, pp. 321-341, 2012.

Authors

Mrs. S. Kalvikkarasi is working as an Assistant

professor, PG and Research Department of
Computer Science, Government Arts College,

Trichy-22. She has 19 years of teaching experience

and has also presented papers at various international
conferences. She is pursuing a Ph.D(Computer

Science) Part-time at Government Arts College,

Karur.

Dr. A. Saraswathi is working as an Associate

professor, PG and Research Department of Computer

Science, Government Arts College, Karur. She has
23 years of Teaching experience and 10 years of

experience in Research. She has published more than

15 international publications in various journals.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/50 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 854

RESEARCH ARTICLE

How to cite this article:

S. Kalvikkarasi, A. Saraswathi, “DDoS Attack Detection in Cloud Computing Using Optimized Elman Neural Network

Based on Bacterial Colony Optimization and Centroid Opposition-Based Learning”, International Journal of Computer

Networks and Applications (IJCNA), 11(6), PP: 835-854, 2024, DOI: 10.22247/ijcna/2024/50.

