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Abstract – As 6G networks expand, they generate large amounts 

of data and connect various devices, challenging conventional 

network management techniques. To address these challenges, a 

Speed-optimized Long Short-Term Memory (SP-LSTM) model 

and Reinforcement Learning (RL) have been developed to 

predict network congestion and optimize routing, respectively, 

by considering link ID, time, throughput metrics, and congestion 

levels. However, the SP-LSTM may struggle to adapt to sudden 

changes in network conditions and capture complex spatial 

dependencies effectively. This limitation could influence its 

accuracy in predicting congestion in dynamic 6G networks 

where spatial and temporal interactions play a crucial role. 

Improving the model's utilization of spatial and temporal data is 

vital to enhance its predictive capabilities and address network 

congestion effectively. Hence, this manuscript introduces a novel 

Speed-optimized Attention-based Hybrid Graph Convolutional 

Network-LSTM model (SPAH-GCN-LSTM) to predict network 

congestion in 6G networks. This model combines global and local 

spatial correlations in traffic data through global and local 

spatial-temporal modules to enhance prediction accuracy. The 

global module utilizes a global correlation matrix and SP-LSTM 

to capture global spatial-temporal relationship. The local module 

combines a Fully Connected Layer (FCL), GCN, and SP-LSTM 

to obtain local spatial relationship. Then, the outputs of these 

modules are fused using a soft attention strategy to focus on 

important features for accurate prediction. Moreover, the RL 

approach is used for dynamic routing based on the predicted 

congestion conditions and real-time feedback. Finally, 

experimental results show the superior performance of the 

SPAH-GCN-LSTM model compared to existing models in 6G 

networks. 

Index Terms – 6G Networks, Network Congestion Prediction, 

Dynamic Routing, Reinforcement Learning, SP-LSTM, GCN, 

Spatial-Temporal Correlation, Attention Strategy. 

 

1. INTRODUCTION 

In the early stages of networking, static and rigid routing 

policies sufficed for maintaining stable connections within 

simpler infrastructures. These traditional paradigms, while 

effective in the past, are now showing their limitations in 

addressing the complexities of modern-day networks, 

especially as the 6G era begins. With 6G’s unprecedented 

data capacity, integration of diverse devices, and emphasis on 

ultra-low latency, new network management strategies are 

essential for unlocking its full potential [1]. The dynamic 

landscape of 6G, supporting advanced real-time applications 

like remote robotic surgeries and autonomous vehicles, 

underscores the latency issues, which demand more flexible 

and intelligent routing systems [2-3]. 

Monetization and exposure mechanisms are crucial for the 

6G’s development, mirroring the priorities established during 

the 5G era. The deployment of 6G networks will only 

intensify the current focus of communication service 

providers on monetizing 5G [4]. From the outset, 6G must 

build upon and expand the exposure and monetization 

functionalities of its ancestor. Additionally, automation of 

network tasks is becoming increasingly vital due to the 

growing complexity of network infrastructures. With more 

access technologies like new spectrum bands and multiple 

network slices, manually optimizing these networks is 

becoming unfeasible [5]. Thus, Artificial 

Intelligence/Machine Learning (AI/ML) will be integrated as 

a fundamental element of 6G’s design [6]. This AI-driven 

functionality will replace much of the manual effort involved 

in network management, from deployment to optimization, 

and incorporate intent-based management as a key feature [7-

8]. However, maintaining ultra-low latency becomes 
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significantly more challenging in congested networks. The 

high volume of data traffic in such situations can introduce 

delays, especially when rerouting is necessary due to 

congestion [9]. The latency involved in redirecting data can 

degrade the performance of latency-sensitive applications. To 

address this, AI, particularly ML and Deep Learning (DL), 

offers promising solutions for tackling the complexities of 6G 

[10-11]. LSTM networks, a type of Recurrent Neural 

Networks (RNNs), are good at modeling complicated, non-

linear dependencies in time-series data. This has changed 

predictive analytics for 6G network management [12-13].  

From these perspectives, Shi et al. [14] have employed LSTM 

models for traffic prediction, enabling light path 

reconfiguration in hybrid data center networks. Despite their 

promise, LSTM networks face challenges such as 

computational intensity and the difficulty of managing long-

term dependencies. To alleviate these issues, Tshakwanda et 

al. [15] integrated predictive analytics with dynamic routing 

to optimize resource use and enhance network performance. 

The two-tier system has been developed by combining SP-

LSTM with RL for forecasting and adaptable routing in 6G 

systems. SP-LSTM predicts network congestion, enabling 

preemptive measures, while RL optimizes routing paths based 

on these prediction outcomes. This model leverages constant 

training, supporting with the progressing nature of 6G 

systems. It addresses key requirements such as ultra-low 

delay, consistency, and supervision of heterogeneous network 

elements. The rapid learning and forecasting capabilities of 

SP-LSTM make it particularly advantageous in highly 

dynamic network environments. 

1.1. Problem Statement 

Recent research has explored local temporal correlation in 

traffic flow using models like LSTM and SP-LSTM. Instead, 

spatial correlation also plays a significant role in traffic 

dynamics, especially in the same direction where congestion 

at one node can affect surrounding areas. Graph techniques 

such as GCN and Graph Attention Network (GAN), which 

analyze spatial correlation, often concentrate on local 

relationships.  

Incorporating global spatial correlation, which considers 

information from distant nodes, can improve prediction 

accuracy by providing a broader spatial context. Existing 

studies may overlook regions with similar traffic patterns that 

are geographically distant. By incorporating global spatial 

correlation, researchers can enhance the analysis of spatial 

relationships in traffic flow. GCN has shown promise in 

handling non-Euclidean datasets by leveraging network 

topology to aggregate spatial data. However, using multilayer 

GCNs may lead to smoothing issues, affecting network 

congestion predictive analytics. Addressing these challenges 

is essential to boost the accuracy of predicting congestion 

(traffic flow) in 6G networks. 

1.2. Major Contributions 

This manuscript introduces a new hybrid DL model, the 

SPAH-GCN-LSTM network model, for predicting network 

congestion in 6G networks. The key contributions of this 

model include: 

• Incorporating global and local spatial-temporal 

correlations through two main modules: 

→ Global spatial-temporal module: It utilizes a global 

relationship matrix and SP-LSTM network to obtain 

global spatial-temporal relationships in network traffic 

data. 

→ Local spatial-temporal module: It combines the FCL, 

GCN, and SP-LSTM to effectively extract local spatial 

correlations. 

• Fusing the outputs from these modules using a soft 

attention strategy, enables the model to focus on the most 

significant features and improve the accuracy of network 

congestion predictions. 

• Applying RL-based dynamic routing technique to adjust 

the routing plan according to the actual response and 

predicted congestion states. 

• Finally, extensive experiments demonstrate that the 

SPAH-GCN-LSTM model attains better performance in 

network congestion prediction compared to the 

conventional models. 

1.3. Outline of the Manuscript 

Section 2 reviews the literature, Section 3 details the SPAH-

GCN-LSTM model, and Section 4 presents its performance. 

Section 5 concludes this study and recommends upcoming 

enhancements. 

2. LITERATURE SURVEY 

Automated forecasting, powered by AI, is revolutionizing 

network management by leveraging historical data to predict 

future network conditions. This forward-looking method 

facilitates data-driven decisions, improving network 

performance, reliability, and efficiency. This section surveys 

recent research on the use of AI in 6G networks for network 

management tasks. 

An LSTM-based encoder-decoder network [16] was presented 

for intelligent traffic prediction using real-world multivariate 

information from edge 𝜇-packets in a testbed paradigm. The 

model forecasts the statistical features of the data traffic 

incoming at the network's edge devices that are supported by 

cloud driven technology. An Attention-based Spatial-

Temporal Graph Neural Network (ASTGNN) [17] was 

introduced for traffic prediction. A self-attention approach 

was used in the temporal dimension to obtain the time-based 
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interactions in traffic information and global receptive fields 

for long-term forecasting. A dynamic GCN with self-attention 

was utilized in the spatial dimension to capture spatial 

correlations dynamically.  

A hybrid model [18] was developed by combining Support 

Vector Machine (SVM) and Naïve Bayes (NB) to forecast 

traffic congestion in 5G/6G networks through effective 

handling of the resources. The gathered information was pre-

processed to eliminate unwanted noises and then sent through 

SVM and NB for learning. The output is stored in the cloud. 

These trained outputs were then input to the Fused Machine 

Learning (FML) to achieve higher accuracy and better 

decision making. A hybrid congestion control strategy using 

LSTM and SVM [19] was designed for 5G/6G networks. The 

model addressed slice failure and load balancing in the 

network, which in turn enhances the decision –making 

capability of the model. A new Multi-Task (MT) DL model 

[20] was developed for predicting citywide cellular network 

traffic. They included a Dual Modular Feature Sharing 

(DMFS) layer that combines a Convolutional Gated Recurrent 

Unit (ConvGRU) and 3D Convolutional Neural Network 

(CNN) to capture long-term spatio-temporal correlations and 

local spatio-temporal fluctuations in the data. In the MT 

learning layer, individual tasks predict service-specific traffic 

data using the FCL. 

A high-speed traffic prediction method [21] was developed 

utilizing ML and RNN. They initially explored a Variable 

Sampling Rate-Normalized Least Mean Square (VSR-NLMS) 

flexible forecasting technique to convert time series 

forecasting archives. Subsequently, a VSR-LSTM was created 

for real-world network traffic forecasting.  Similarly, an 

Adaptive Time Stepping-GRU (ATS-GRU) was developed 

[22] for real-world web traffic forecasting in 6G satellite 

networks. The ATS-GRU method improves network 

management by maximizing the use of resources according to 

accurate predictions, while simultaneously decreasing costs 

and keeping network performance constant. A graph-based 

training model [23] was introduced for predicting traffic flow 

in mobile edge computing in 5G/6G systems. In this model, 

node embedding was learned and fused using Graph Attention 

network (GAT) and a transformer model was used to forecast 

truck incidence get into edge systems for the next day.  

The DL model with an Efficient Hybrid Attention (EHA) 

strategy [24] was developed to enhance the analysis of 5G 

network traffic data by incorporating attention into 

convolution. They utilized depthwise separable convolution 

for feature extraction, leading to improved efficiency of the 

lightweight convolution layer. Table 1 summarizes the above-

studied Congestion prediction methods in terms of their merits, 

and demerits. 

Table 1 Comparison of Congestion Prediction Methods 

Ref. 

No. 
Methodologies used Merits Demerits 

[16] 
LSTM-based encoder 

decoder 

The model executes straightforward 

accumulation of data packets which 

reduces the number of CPU cycles 

It cannot capture spatial correlations 

among data which affecting prediction 

accuracy 

[17] ASTGNN 

It provides more versatile method for 

simulating the intricate dynamics and 

recurring patterns found in traffic data 

over the long term. 

It has high predictive errors when dealing 

with sparse or missing data. In addition, 

long-term traffic prediction was still a 

challenge, especially as the prediction 

interval gets longer. 

[18] SVM, NB, FML 

It effectively combined 5G and 6G 

networks while handling huge amount 

of data in the network 

This model struggles to capture spatial and 

temporal relationships in the traffic data, 

leading to reduced accuracy 

[19] LSTM, SVM 

Provides adequate bandwidth for every 

traffic entering the network based on 

accurate predictions of possible future 

traffic. 

The prediction accuracy is affected by 

network settings. It did not capture spatial 

relationships in network traffic data.  

 

[20] 
DMFS, ConvGRU, 3D-

CNN 

This method allows for more efficient 

and accurate traffic management by 

capturing the complexities of diverse 

service demands within a unified 

framework. 

High Mean Absolute Error (MAE) caused 

by the randomness and burstiness of 

internet traffic data hindered its 

performance 
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[21] VSR-LSTM 

This approach enhances the precision of 

real-time traffic forecasting, leading to 

better optimization of network resource 

distribution. 

This model cannot learn spatial 

relationships in the data, leading to lower 

prediction accuracy.  

[22] ATS-GRU 

Even under difficult conditions, such as 

those caused by high-speed mobile 

connections or network congestion, the 

model is able to accurately anticipate 

traffic in real-time by dynamically 

adjusting sample intervals. 

It suffers from high prediction errors 

attributed to inadequate learning of spatio-

temporal relationships 

[23] GAT 

Attention Networks improves 

embedding of inputs and   learning 

graph network, so that the prediction is 

improved. 

Even though provide best prediction 

accuracy, it is highly dependent on   

transportation systems, where vehicles 

frequently enter and leave the network, 

leading to challenges in maintaining 

updated and accurate predictions. 

[24] EHA 

This method effectively derives feature 

in the spatio-temporal domain, leading 

to improved predictive performance. 

They faced challenges when dealing with 

abrupt changes in traffic data, leading to 

high RMSE and MAE values. 

This study emphasizes the importance of selecting the optimal 

congestion prediction model for making routing decisions in 

networks with 6G capability. A variety of ML- and DL-based 

techniques was used to anticipate the congestion. Even so, 

problems like the limited number of training parameters, the 

fact that parameter values change in different network 

environments, and the fact that ML and DL models cannot 

learn new things make it hard to use congestion prediction 

techniques. This study presents the SPAH-GCN-LSTM 

model, which effectively learns geographically and 

temporally varying parameters to address these issues. 

Throughput, overhead and resource usage are all improved 

when two modules of GCN and LSTM are used to improve 

congestion prediction for route optimization. 

2.1. Research Gap 

The existing literature on congestion prediction for 6G 

networks lacks effective integration of global and local spatial-

temporal correlations, leading to challenges in adapting to 

dynamic environments and scalability issues. Attention 

strategies are underutilized. In addition, congestion prediction 

and routing optimization are often treated as separate 

processes. As a result, a more comprehensive, adaptive, and 

scalable approach is needed to address these limitations and 

accurately predict congestion in complex 6G network 

topologies. 

3. PROPOSED METHODOLOGY 

The SPAH-GCN-LSTM model for congestion prediction in 

6G networks is explained in this section. Figure 1 provides a 

visual representation of the proposed study. The model 

processes network traffic data through two main modules: a 

global module (utilizing SP-LSTM and a global correlation 

matrix) and a local module (employing GCN and FCL). The 

outputs of these modules are combined using a soft attention 

strategy to generate predictions for network congestion. These 

predictions are then used in an RL-based optimized routing 

system to determine the best routing paths. The model's 

performance is evaluated to assess its effectiveness in 

predicting and managing network congestion. 

3.1. Preliminaries 

This study covers the following relevant definitions: 

1. Topology adjacency matrix 𝐴 ∈ ℝ𝑁×𝑁  is a matrix 

composed of elements 𝑎𝑖𝑗 , where 𝑁 is the number of links. 

The value of 𝑎𝑖𝑗  is calculated based on the distance 

between links using a threshold Gaussian kernel, as: 

𝑎𝑖𝑗 = {𝑒
−

𝑑(𝑖,𝑗)2

𝜎2⁄
, 𝑑(𝑖, 𝑗) < 𝜆

0, 𝑑(𝑖, 𝑗) ≥ 𝜆
   (1) 

In equation (1), 𝑎𝑖𝑗  is the neighboring weight between links 𝑖 

and 𝑗, 𝑑(𝑖, 𝑗) represents the distance between links 𝑖 and 𝑗, 𝜎2 

denotes the standard variation and 𝜆 defines a threshold.  

2. Global correlation matrix 𝐶 ∈ ℝ𝑁×𝑁  defines the spatial 

association between links 𝑖 and 𝑗. A non-zero value in 𝐶𝑖𝑗 

defines the spatial association degree between links 𝑖 and 

𝑗. 

3. Spatio-temporal feature matrix 𝑋𝑇
𝑆 ∈ ℝ𝑇×𝑆 is created using 

the complete characteristics of traffic flow in the system, 

where 𝑇 = {1, … , 𝑡}  represents time steps and 𝑆 =
{1, … , 𝑠} represents the total number of links. 
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The prediction task is to forecast future congestion (𝑦𝑡+1) 

according to 𝑋𝑇
𝑆, 𝐴, and 𝐶 at the current moment (𝑡). 

𝑦𝑡+1 = 𝑓(𝑋𝑡−𝑇
𝑆 , … , 𝑋𝑡−1

𝑆 , 𝑋𝑡
𝑆; 𝐴; 𝐶)   (2) 

In equation (2), 𝑓 is the mapping function. 

 

Figure 1 Schematic Representation of the Proposed Study 

3.2. Network Congestion Prediction Using SPAH-GCN-

LSTM Model 

Figure 2 illustrates the architecture of SPAH-GCN-LSTM 

model, consisting of two modules for local and global spatial-

temporal correlation modeling. The global module includes a 

global graph convolution and SP-LSTM to obtain global 

spatial characteristics and temporal correlations. The local 

module comprises the FCL, GCN, and SP-LSTM to extract 

node features and local spatial correlations. The outputs of 

both modules are merged and subjected to a soft attention 

strategy for accurate prediction using the softmax function. 

 

Figure 2 Architecture of SPAH-GCN-LSTM Model for Network Congestion Prediction 

3.2.1. Spatial Correlation  

This study examines spatial correlation using GCN, focusing 

on global and local perspectives.  

3.2.1.1. Local Spatial Correlation 

The Approximate Personalized Propagation of Neural 

Prediction (APPNP) framework extracts the local spatial 

relationship of traffic flow by assigning smaller weights to 

links with more adjacent links during the convolution task. It 

utilizes PageRank for link feature propagation, encoding 

characteristics for all source links and increasing the 

possibility of communication reverse to the source link. This 

allows the framework to equilibrium the retention of local 

characteristics and extraction of locality characteristics 

effectively. The design procedures of this model are given 

below. 

𝑍(0) = 𝐻 = 𝑓𝜃(𝑋)    (3) 

𝑍(𝑘+1) = (1 − 𝛿)𝐴̂𝑍(𝑘) + 𝛿𝐻   (4) 

In equations (3) and (4), 𝑋  is the input and 𝑓𝜃  is a neural 

network used to extract features of each link. 𝛿 represents the 

percentage of features. Figure 3 shows the spatial relationship 
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of links and their first-order adjacent links (i.e., directly 

connected through a common node), so 𝑘  is set to 1. The 

formulas for extracting local spatial correlation are 

represented in equations (5) and (6): 

𝑍(0) = 𝑊𝐿
(1)

𝑋 + 𝑏𝐿
(1)

    (5) 

𝐺𝐶𝑁𝐿(𝑋, 𝐴) = 𝜎 ((1 − 𝛿)𝐴̂𝑍(0) + 𝛿𝑍(0))  (6) 

The FCL extracts link features using weight matrix (𝑊𝐿
(1)

) 

and bias matrix (𝑏𝐿
(1)

) . 𝐺𝐶𝑁𝐿(∙)  represents the local spatial 

relationship outcome. 

 

Figure 3 Process of Extracting Local Spatial Correlation 

Features 

3.2.1.2. Global Spatial Correlation 

To analyze the relationship between links in a time-series 

traffic flow data, a Pearson correlation coefficient is utilized. 

A relationship threshold 𝑘 is established to determine high-

relationship links. If the relationship value exceeds 𝑘 , it is 

retained; or else, it is assigned to 0. This process results in 

creating 𝐶, which is then employed to aggregate the features 

of highly correlated links using the GCN model. The Pearson 

correlation coefficient is determined by equation (7). 

𝐶𝑖𝑗 =
∑ (𝑥𝑡

𝑖−𝑋̅𝑖)(𝑥𝑡
𝑗

−𝑋̅𝑗)𝑇
𝑡=1

√∑ (𝑥𝑡
𝑖−𝑋̅𝑖)

2𝑇
𝑡=1

√∑ (𝑥𝑡
𝑗

−𝑋̅𝑗)
2

𝑇
𝑡=1

   (7) 

In equation (7) , 𝑋𝑖 = (𝑥1
𝑖 , … , 𝑥𝑡

𝑖)  and 𝑋𝑗 = (𝑥1
𝑗
, … , 𝑥𝑡

𝑗
) 

represent the traffic flow features of links 𝑖  and 𝑗 , 

respectively, with 𝑋̅𝑖  and 𝑋̅𝑗  denoting their respective mean 

values. 𝐶  defines a directed weighted graph, illustrated in 

Figure 4, where links and directions represent influence 

weights and associations, respectively. By convolving 𝐶 with 

the feature matrix, high-correlation link features are 

aggregated to uncover global spatial relationships. The 

updated design procedure for the global GCN according to 𝐶 

is as follows: 

𝐺𝐶𝑁𝐺(𝑋, 𝐶) = 𝜎(𝐶 × 𝑋 × 𝑊𝐺
(1)

)   (8) 

In equation (8), 𝑊𝐺
(1)

 is a weight matrix of the global GCN, 

𝐺𝐶𝑁𝐺(∙) denotes the global spatial relationship outcome. 

 

Figure 4 Process of Extracting Global Spatial Correlation Features 

3.2.2. Temporal Correlation 

SP-LSTM is a popular neural network for forecasting time 

series data that overcomes issues like gradient explosion and 

vanishing gradients in RNNs. It makes simpler the traditional 

LSTM design by uniting the forget and input gates into a 

unified update gate, improving efficiency similar to GRU 

while maintaining LSTM's ability to handle long sequences 

[15]. The local and global spatial relationship outputs are 

separately input into the SP-LSTM.  

For the local spatial relationship outcome, the SP-LSTM 

design procedures are given below in details from equation 

(9) to equation (12). 
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Update gate, 𝑢𝑡
𝑙 = 𝜎(𝑊𝑢

𝑙[𝐺𝐶𝑁𝐿(𝑋, 𝐴), ℎ𝑡−1
𝑙 ] + 𝑏𝑢

𝑙 ) (9) 

Candidate cell state, 𝐶̃𝑡
𝑙 = tanh(𝑊𝐶

𝑙[𝐺𝐶𝑁𝐿(𝑋, 𝐴), ℎ𝑡−1
𝑙 ] + 𝑏𝐶

𝑙 )
                                                            (10) 

Cell state, 𝐶𝑡
𝑙 = 𝑢𝑡

𝑙 × 𝐶𝑡−1
𝑙 + (1 − 𝑢𝑡

𝑙 ) × 𝐶̃𝑡
𝑙  (11) 

Output gate, 𝑜𝑡
𝑙 = 𝜎(𝑊𝑜

𝑙[𝐺𝐶𝑁𝐿(𝑋, 𝐴), ℎ𝑡−1
𝑙 , 𝐶̃𝑡

𝑙] + 𝑏𝑜
𝑙 ) (12) 

Where, 𝑢𝑡
𝑙  represents the update gate at 𝑡, ℎ𝑡−1

𝑙  is the hidden 

state at time 𝑡 − 1. 𝑊𝑢
𝑙 , 𝑊𝐶

𝑙 , and 𝑊𝑜
𝑙  are the weight matrices 

for the update gate, candidate memory, and output gate, 

correspondingly. Similarly, 𝑏𝑢
𝑙 , 𝑏𝐶

𝑙 , and 𝑏𝑜
𝑙  are the bias vectors 

for the update gate, candidate memory, and output gate, 

respectively. 𝐶̃𝑡
𝑙  is the candidate cell state at 𝑡, 𝐶𝑡

𝑙  is the cell 

state at 𝑡 , 𝑜𝑡
𝑙  is the output gate at 𝑡 , and 𝜎  represents the 

sigmoid function. 

The SP-LSTM network concatenates the previous hidden 

layer output ℎ𝑡−1
𝑙  with the current input 𝐺𝐶𝑁𝐿(𝑋, 𝐴)  for a 

given time series. The data is then transformed into [0,1] 

using 𝜎 to create gate signals 𝑢𝑡
𝑙  and 𝐶̃𝑡

𝑙 . These gate signals 

are used to selectively retain or discard information from the 

previous hidden layer and current input. This allows the SP-

LSTM to combine traffic flow information from the previous 

and current moments, capturing temporal correlations 

effectively. 

Thus, global and local spatial-temporal modules are 

constructed, as illustrated in Figure 2, to obtain the spatio-

temporal relationship of traffic flow information. The global 

module calculates 𝐶 using all features, which is then fed into 

a global spatial relationship module to extract spatial 

relationship. The output is passed through an SP-LSTM to 

extract global temporal correlation (ℎ𝑡
𝑔

). The local module 

uses a FCL to extract link features and a GCN for spatial 

feature aggregation. The output is input into an SP-LSTM to 

extract local temporal correlation (ℎ𝑡
𝑙 ). Moreover, the output 

of these two modules is fused and given to the soft attention 

module to enhance the model’s focus on crucial features and 

improve prediction accuracy.  

3.2.3. Soft Attention Strategy 

The soft attention strategy employed in this study is illustrated 

in Figure 5. 

Suppose there are 𝑘  feature vectors with 𝑑  dimensions, 

represented as ℎ𝑖 = {ℎ𝑖
1, ℎ𝑖

2, … , ℎ𝑖
𝑑}, 𝑖 = 1,2, … 𝑘. The output ℎ̂ 

(also with 𝑑 dimensions) is computed as a weighted average: 

ℎ̂ = ∑ 𝛼𝑖ℎ𝑖
𝑘
𝑖=1      (13) 

In equation (13), 𝛼𝑖 represents the weight of ℎ𝑖. To assess the 

impact of ℎ𝑖 on ℎ̂, it needs to be scored. The FCL is utilized to 

compute a score 𝑠𝑖 for each ℎ𝑖. It is important to mention that 

functions other than neural networks can also be employed for 

this purpose. The network’s output is as follows: 

𝑠𝑖 = 𝛤(ℎ𝑖) = tanh(𝜔𝑇ℎ𝑖 + 𝑏𝑖)   (14) 

In equations (14), 𝑠𝑖 is the correlation coefficient between ℎ𝑖 

and ℎ̂. After that, the softmax function is utilized to regularize 

𝑠𝑖 and obtain the final weight 𝛼𝑖 as in equation (15): 

𝛼𝑖 = softmax(𝑠𝑖) = softmax(𝛤(ℎ𝑖))  (15) 

The attention strategy involves generating a fixed-length 

embedding ℎ̂  of the input sequence ℎ𝑖  by calculating an 

adaptive weight 𝛼𝑖 . The soft attention module output is fed 

into the softmax classifier to predict network congestion 

probabilities. During training, the SPAH-GCN-LSTM model 

uses the following loss function: 

ℒ = ‖𝑦𝑝 − 𝑦𝑟‖ + 𝛽𝐿2    (16) 

In equations (16), 𝐿2  regularization with hyperparameter 𝛽 is 

applied to address overfitting. 𝑦𝑝 and 𝑦𝑟 represent the model’s 

predicted and true values for network congestion, respectively. 

Additionally, the RL model uses the predicted network 

congestion data and real-time network conditions [15] to 

optimize routing paths, reducing latency and improving 

throughput. 

 

Figure 5 Visual Representation of Soft Attention Strategy 

Input: Historical network data 

Parameters: //Model weights and biases 
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𝑙 , 𝑏𝑜

𝑙 , 𝑊𝑢
𝑔

, 𝑏𝑢
𝑔

, 𝑊𝐶
𝑔

, 𝑏𝐶
𝑔

, 𝑊𝑜
𝑔

,

𝑏𝑜
𝑔

; 

Output: Predicted data 𝑦𝑝 

1. Begin 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2025/07                         Volume 12, Issue 1, January – February (2025) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       100 

     

RESEARCH ARTICLE 

2. Construct the topology adjacency matrix A  using 

equation (1); 

3. Calculate the global correlation matrix C using equation 

(7);  

4. Initialize model parameters; 

5. for(each time step t ∈ sequence) 

6. for(each epoch p ∈ maximum training epochs P) 

7. //Local spatial-temporal module 

8. Compute local spatial correlation features using 

equations (5) and (6); 

9. Pass them to the SP-LSTM model; 

10. Obtain local temporal correlation features; 

11. //Global spatial-temporal module 

12. Compute global spatial correlation features using 

equation (8); 

13. Pass them to the SP-LSTM model; 

14. Obtain global temporal correlation features; 

15. Fuse local and global spatial-temporal correlation 

features; 

16. //Soft attention module 

17. Assign weights to fused features; 

18. Predict network congestion probability using softmax 

function; 

19. Calculate loss using equation (16) and update model 

parameters with Adam optimizer; 

20. end for 

21. end for 

22. Use trained SPAH-GCN-LSTM model to predict future 

network congestion; 

23. Provide predictions to the RL-based dynamic routing 

module for optimized routing; 

24. End 

Algorithm 1 SPAH-GCN-LSTM Training Process 

4. RESULTS AND DISCUSSION 

The proposed model demonstrates the advantages of proactive 

AI/ML systems for optimizing resources and enhancing 

network performance in the context of 6G technology. 

Through the utilization of the SPAH-GCN-LSTM network 

and RL, this study facilitates accurate modeling of network 

patterns, prediction of congestion, and prevention of 

disruptions. Real-time data analysis and intelligent routing 

choices contribute to maintaining high network performance, 

handling extensive data loads, and facilitating rapid routing 

decisions within 6G networks. 

4.1. Network Topology 

The Python language tailors the network topology for 6G 

networks, incorporating nodes, links, and key elements. These 

elements include the AMF for access and mobility 

management, the SMF for session controlling and traffic 

tuning, the UPF for managing user-level traffic, and the gNB 

as the base station for signal transfer, delivery, and radio 

resource supervision. Various mobility models are employed 

to user components to execute real mobility situations. 

Technologies like massive MIMO, mmWave 

communications, web slicing, edge systems, SDNs, and VNFs 

are incorporated to enable the assessment of system control 

and adjustment procedures [15]. To enhance realism, the 

experimental setup includes realistic traffic patterns and 

diverse traffic types, which mimic the characteristics of 

emerging 6G uses and facilities, such as ultra-high-definition 

audiovisual flooding, IoT interactions and mission-essential 

infrastructures. 

4.2. Dataset 

The dataset created from the network topology includes 

essential attributes such as link_ID, period, 

moving_mean_throughput, instant_throughput, and 

time_mean_throughput. The link_ID identifies network 

connections between nodes, period tracks temporal data, 

moving_mean_throughput shows average throughput over 

period, instant_throughput displays real-time performance 

variations, and time_mean_throughput indicates time-based 

average throughput. This dataset can be found on GitHub at 

https://github.com/pmushidi2/AI-PoweredPredictive-

Analytics-and-Dynamic-Routing.git. In this experiment, 80% 

features are utilized for training and a residual 20% are 

utilized for testing. 

4.3. Parameter Settings 

The model's performance is validated through multiple neural 

network experiments, resulting in optimized parameters listed 

in Table 2. 

Table 2 Parameter Settings 

Parameters Range 

Number of hidden layers in GCN 2 

Hidden dimension 16 

Number of LSTM units 3 

Training rate 0.0001 

Dropout rate 0.5 
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Number of epochs 120 

Batch size 64 

Optimizer Adam 

𝜹  0.82 

Correlation threshold, 𝒌 0.6 

The tests were conducted on a desktop with an Intel® CoreTM 

i5-4210 CPU @ 3GHz, 8GB RAM, and a 1TB HDD running 

Windows 10 64-bit. To ensure a fair comparison, both the 

proposed and existing models are tested using the dataset 

described in Section 4.2.  

4.4. Performance Analysis for Network Congestion 

Prediction 

The efficiency of predicting network congestions using the 

SPAH-GCN-LSTM model is measured and evaluated against 

existing models such as SP-LSTM [15], ASTGNN [17], VSR-

LSTM [21], and ATS-GRU [22]. From Figure.6 to Figure 10 

presents the results of the SPAH-GCN-LSTM model 

compared to other models for network congestion prediction. 

• Prediction accuracy: It is calculated by in equation (17)  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100 (17) 

 
Figure 6 Comparison of Accuracy for SPAH-GCN-LSTM 

with Existing Models 

Figure 6 displays the prediction accuracy results for SPAH-

GCN-LSTM compared to existing models. The SPAH-GCN-

LSTM outperforms other models in predicting network 

congestion conditions. It shows an accuracy improvement of 

7.32%, 5.74%, 3.95%, and 1.29% over VSR-LSTM, ATS-

GRU, ASTGNN, and SP-LSTM, respectively. 

• Mean Absolute Error (MAE): It represents the mean 

absolute dissimilarity between estimated and observed 

values. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1     (18) 

In equation (18), 𝑛  denotes total observations, 𝑦𝑖  and 𝑦̂𝑖 

denote the observed and predicted values of 𝑖𝑡ℎ  data, 

respectively. 

 

Figure 7 Comparison of MAE for SPAH-GCN-LSTM with 

Existing Models 

Figure 7 plots error metrics MAE for SPAH-GCN-LSTM 

with existing models. The results show that SPAH-GCN-

LSTM outperforms other models in reducing error values for 

predicting network congestion. Specifically, the MAE is 

reduced by 38.71%, 32.62%, 25.78%, and 13.64% compared 

to the VSR-LSTM, ATS-GRU, ASTGNN, and SP-LSTM, 

respectively.  

• Root Mean Square Error (RMSE): It measures the mean 

squared dissimilarity between estimated and observed 

values. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1    (19) 

In equation (19), 𝑛  denotes total observations, 𝑦𝑖  and 𝑦̂𝑖 

denote the observed and predicted values of 𝑖𝑡ℎ  data, 

respectively. 

 
Figure 8 Comparison of RMSE for SPAH-GCN-LSTM with 

Existing Models 

Figure 8 plots error RMSE for SPAH-GCN-LSTM with 

existing models. The results show that SPAH-GCN-LSTM 
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outperforms other models in reducing error values for 

predicting network congestion. The RMSE is reduced by 

38.73%, 32.58%, 25.75%, and 13.6% compared to the VSR-

LSTM, ATS-GRU, ASTGNN, and SP-LSTM, respectively.   

Training time: It is an interval taken by the model to learn 

from the training data during the training phase. 

 
Figure 9 Comparison of Training Time for SPAH-GCN-

LSTM with Existing Models 

Figure 9 illustrates the training time for SPAH-GCN-LSTM 

compared to existing models. The results demonstrate that 

SPAH-GCN-LSTM surpasses other models in reducing 

training times. Specifically, the training time is decreased by 

35%, 31.58%, 24.52%, and 12.69% compared to VSR-LSTM, 

ATS-GRU, ASTGNN, and SP-LSTM, respectively. 

Prediction time: It is an interval needed to generate 

predictions on new, unseen data using the trained model. 

 
Figure 10 Comparison of Prediction Time for SPAH-GCN-

LSTM with Existing Models 

Figure 10 illustrates the prediction time for SPAH-GCN-

LSTM compared to existing the prediction time is lowered by 

27.61%, 24.84%, 18.62%, and 9.23% compared to VSR-

LSTM, ATS-GRU, ASTGNN, and SP-LSTM, respectively. 

4.4.1. Discussion 

Accordingly, it can be concluded that the SPAH-GCN-LSTM 

model outperforms existing models in predicting network 

congestion for 6G networks. Its advanced design captures 

global and local spatial-temporal correlations in network 

traffic data, leading to greater accuracy and reduced error 

metrics. By incorporating global and local spatial-temporal 

modules with a soft attention strategy, this SPAH-GCN-

LSTM model provides precise predictions of network 

congestion. The significant reductions in MAE, MSE, and 

RMSE indicate improved prediction capabilities crucial for 

proactive network management in 6G systems. The model's 

efficiency in training and prediction times makes it a 

promising tool for real-time network optimization and 

management in future 6G networks. 

4.5. Performance Analysis for Network Route Optimization 

Table 3 Network Links Ordered by Congestion Levels: 

Before and After Prediction 

Order 

Link_ID 

(Before 

Prediction) 

Link_ID (After 

Prediction) 

1 8 4 

2 2 9 

3 5 14 

4 10 8 

5 1 6 

6 3 2 

7 14 - 

8 6 - 

9 4 - 

10 9 - 

Analyzing the link order based on moving_mean_throughput 

before and after predictions (as illustrated in Table 3) can be 

used to improve network management. The reordering of 

links suggests potential network congestion issues, enabling 

proactive resource adjustments. In this context, a Q-Learning 

(QL) algorithm is utilized to identify optimal network paths 

based on predicted congestion conditions and real-time 

network data for data transfer. Thus, the efficiency of the QL 
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algorithm is evaluated by considering factors such as average throughput, percentile rate across nodes, resource utilization, 

and computational overhead. A comparative analysis is 

conducted across various prediction models followed by QL 

for path optimization. Table 4 presents the average results of 

the QL model with different prediction models. Figure 11 to 

Figure 14   displays the performance of different models in 

optimizing network routes using outcomes of predicted 

models and real-time network data. 

Table 4 Performance of Network Route Optimization After Congestion Prediction 

Models 

Average 
Throughput 

(Kbps) 

Percentile 
Rate Across 

Nodes (%) 

Resource 

Usage (%) 

Computation 

Overhead (ms) 

VSR-LSTM-QL 850 78 58 45 

ATS-GRU-QL 890 82 52 41 

ASTGNN-QL 940 85 47 35 

SP-LSTM-QL 985 89 40 32 

SPAH-GCN-

LSTM-QL 

1100 93 31 27 

4.5.1. Average Throughput 

• Average Throughput: It is the average amount of data (in 

bits or packets) successfully delivered to the destination 

per unit of time. 

Avg. throughput =    
1

N
 ∑

Di

t

N
i=1    (20) 

In equation (20), N  is the number of successful data 

transmissions, Di  is the amount of data delivered in the ith 

transmission, and t is the time. 

 

Figure 11 Comparison of Average Throughput 

Figure 11 illustrates the Average throughput results for 

various route optimization models. The SPAH-GCN-LSTM-

QL model outperforms others, increasing average throughput 

by 29.41%, 23.6%, 17.02%, and 11.68% compared to VSR-

LSTM-QL, ATS-GRU-QL, ASTGNN-QL, and SP-LSTM-

QL models, respectively. 

• Computation Overhead: It refers to the extra processing 

time required by the RL model to compute routing 

decisions. 

 

Figure 12 Comparison of Computation Overhead 
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Figure 12 illustrates the Computation Overhead results for 

various route optimization models. Additionally, it reduces 

computation overhead by 40%, 34.15%, 22.86%, and 15.63% 

compared to VSR-LSTM-QL, ATS-GRU-QL, ASTGNN-QL, 

and SP-LSTM-QL, respectively. 

• Percentile Throughput Rate Across all Nodes: It refers to 

the percentage of nodes in the network that achieve a 

certain performance threshold, such as throughput. 

 

Figure 13 Comparison of Percentile Throughput Rate for 

Network Route Optimization 

Figure 13 illustrates the percentile rate across nodes for 

various route optimization models. The SPAH-GCN-LSTM-

QL model outperforms the VSR-LSTM-QL, ATS-GRU-QL, 

ASTGNN-QL, and SP-LSTM-QL models by increasing the 

percentile rate across nodes by 19.23%, 13.41%, 9.41%, and 

4.49%, respectively. 

• Resource Usage: It measures the amount of 

computational, memory, and bandwidth resources 

consumed by the RL model during the routing 

optimization process. The total resource usage is 

determined as follows: 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝐶𝑃𝑈 + 𝑅𝑀𝑒𝑚𝑜𝑟𝑦 + 𝑅𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ  (21) 

In equation (21),𝑅𝐶𝑃𝑈 is the CPU resources used, 𝑅𝑀𝑒𝑚𝑜𝑟𝑦  is 

the memory consumed by the RL model, and 𝑅𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ is the 

bandwidth used for communication between nodes. 

 
Figure 14 Comparison of Resource Usage 

Figure 14 illustrates the resource usage results for various 

route optimization models. The SPAH-GCN-LSTM-QL 

model reduces resource usage by 46.55%, 40.38%, 34.04%, 

and 22.5% compared to the VSR-LSTM-QL, ATS-GRU-QL, 

ASTGNN-QL, and SP-LSTM-QL models, respectively. 

Accordingly, the SPAH-GCN-LSTM-QL model excels in 

throughput, congestion prediction, and routing optimization. 

It consistently delivers high performance across the network 

with the highest percentile rate. Its efficient design and 

accurate predictions result in minimal resource usage and low 

overhead for faster routing decisions. 

5. CONCLUSION 

This paper introduces a novel SPAH-GCN-LSTM model for 

predicting network congestion in 6G networks. This model 

combines global and local spatio-temporal correlations in 

network traffic flow data using two modules: global and local. 

Then, a soft attention strategy and softmax function are 

utilized to merge the outputs of these modules and predict 

network congestion probabilities. Moreover, the QL algorithm 

is applied to select the optimal route for data transfer based on 

the predicted congestion conditions and real-time feedback. 

Finally, experimental results proved that SPAH-GCN-LSTM-

QL model achieves higher performance in network congestion 

prediction and route optimization compared to existing 

models in 6G networks. The SPAH-GCN-LSTM achieves a 

prediction accuracy of 0.9716, MAE of 0.095, MSE of 

0.0141, RMSE of 0.1188, training time of 2340s, and 

prediction time of 0.0118s. Similarly, the SPAH-GCN-

LSTM-QL achieves an average throughput of 1100Kbps, 93% 

percentile rate across nodes, 31% resource usage, and 27ms 

computation overhead compared to other models. Hence, this 

model serves as a valuable tool for network operators, 

facilitating efficient prediction of network congestion, 

fundamental for the management and optimization of future 

6G networks. 

REFERENCES 

[1] Ishteyaq, I., Muzaffar, K., Shafi, N., & Alathbah, M. A. (2024). 

Unleashing the power of tomorrow: exploration of next frontier with 6G 

networks and cutting edge technologies. IEEE Access, 12, 29445-
29463. 

[2] Mahmoud, H. H. H., Amer, A. A., & Ismail, T. (2021). 6G: A 

comprehensive survey on technologies, applications, challenges, and 
research problems. Transactions on Emerging Telecommunications 

Technologies, 32(4), e4233. 

[3] Dogra, A., Jha, R. K., & Jain, S. (2020). A survey on beyond 5G 
network with the advent of 6G: Architecture and emerging 

technologies. IEEE access, 9, 67512-67547. 

[4] Ahokangas, P., Gisca, O., Matinmikko-Blue, M., Yrjölä, S., & Gordon, 
J. (2023). Toward an integrated framework for developing European 6G 

innovation. Telecommunications Policy, 47(9), 102641. 

[5] Habibi, M. A., Han, B., Fellan, A., Jiang, W., Sánchez, A. G., Pavón, I. 
L., … & Schotten, H. D. (2023). Towards an open, intelligent, and end-

to-end architectural framework for network slicing in 6G 

communication systems. IEEE Open Journal of the Communications 
Society, 4, 1615-1658. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2025/07                         Volume 12, Issue 1, January – February (2025) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       105 

     

RESEARCH ARTICLE 

[6] Mahmood, M. R., Matin, M. A., Sarigiannidis, P., & Goudos, S. K. 
(2022). A comprehensive review on artificial intelligence/machine 

learning algorithms for empowering the future IoT toward 6G era. IEEE 

Access, 10, 87535-87562. 
[7] Chataut, R., Nankya, M., & Akl, R. (2024). 6G networks and the AI 

revolution—Exploring technologies, applications, and emerging 

challenges. Sensors, 24(6), 1888. 
[8] Shehzad, M. K., Rose, L., Butt, M. M., Kovacs, I. Z., Assaad, M., & 

Guizani, M. (2022). Artificial intelligence for 6G networks: technology 

advancement and standardization. IEEE Vehicular Technology 
Magazine, 17(3), 16-25. 

[9] Salh, A., Audah, L., Shah, N. S. M., Alhammadi, A., Abdullah, Q., 

Kim, Y. H., … & Almohammedi, A. A. (2021). A survey on deep 
learning for ultra-reliable and low-latency communications challenges 

on 6G wireless systems. IEEE Access, 9, 55098-55131. 

[10] Liu, Y., Deng, Y., Nallanathan, A., & Yuan, J. (2023). Machine 

learning for 6G enhanced ultra-reliable and low-latency services. IEEE 

Wireless Communications, 30(2), 48-54. 

[11] Langpoklakpam, B., & Murry, L. K. (2023). Review on machine 
learning for intelligent routing, key requirement and challenges towards 

6G. Computer Networks and Communications, 1(2), 214-230. 
[12] Khan, A., Fouda, M. M., Do, D. T., Almaleh, A., & Rahman, A. U. 

(2023). Short-term traffic prediction using deep learning long short-term 

memory: taxonomy, applications, challenges, and future trends. IEEE 
Access, 11, 94371-94391. 

[13] Abd Elaziz, M., Al‐qaness, M. A., Dahou, A., Alsamhi, S. H., 

Abualigah, L., Ibrahim, R. A., & Ewees, A. A. (2024). Evolution 
toward intelligent communications: impact of deep learning applications 

on the future of 6G technology. Wiley Interdisciplinary Reviews: Data 

Mining and Knowledge Discovery, 14(1), e1521. 
[14] Shi, H., & Wang, C. (2018). LSTM-based traffic prediction in support 

of periodically light path reconfiguration in hybrid data center network. 

In IEEE 4th International Conference on Computer and 
Communications, pp. 1124-1128. 

[15] Tshakwanda, P. M., Arzo, S. T., & Devetsikiotis, M. (2024). Advancing 

6G network performance: AI/ML framework for proactive management 
and dynamic optimal routing. IEEE Open Journal of the Computer 

Society, 5, 303-314. 

[16] Zeb, S., Rathore, M. A., Mahmood, A., Hassan, S. A., Kim, J., & 
Gidlund, M. (2021). Edge intelligence in softwarized 6G: Deep 

learning-enabled network traffic predictions. In IEEE Globecom 

Workshops, pp. 1-6. 
[17] Guo, S., Lin, Y., Wan, H., Li, X., & Cong, G. (2021). Learning 

dynamics and heterogeneity of spatial-temporal graph data for traffic 

forecasting. IEEE Transactions on Knowledge and Data 
Engineering, 34(11), 5415-5428. 

 

 
 

 

 
 

 

 
 

 

 
 

How to cite this article: 
 
 

 

 
 

 

[18] Alnawayseh, S. E., Al-Sit, W. T., & Ghazal, T. M. (2022). Smart 
congestion control in 5g/6g networks using hybrid deep learning 

techniques. Complexity, 2022(1), 1781952. 

[19] Khan, S., Hussain, A., Nazir, S., Khan, F., Oad, A., & Alshehri, M. D. 
(2022). Efficient and reliable hybrid deep learning-enabled model for 

congestion control in 5G/6G networks. Computer 

Communications, 182, 31-40. 
[20] Sun, X., Wei, B., Gao, J., Cao, D., Li, Z., & Li, Y. (2022). Spatio-

temporal cellular network traffic prediction using multi-task deep 

learning for AI-enabled 6G. Journal of Beijing Institute of 
Technology, 31(5), 441-453. 

[21] Peng, R., Fu, X., & Ding, T. (2022). Machine learning with variable 

sampling rate for traffic prediction in 6G MEC IoT. Discrete Dynamics 
in Nature and Society, 2022(1), 8190688. 

[22] Zhang, Y., Zhang, X., Yu, P., & Yuan, X. (2023). Machine learning 

with adaptive time stepping for dynamic traffic load prediction in 6G 

satellite networks. Electronics, 12(21), 4473. 

[23] Song, C., Wu, J., Xian, K., Huang, J., & Lu, L. (2024). Spatio-temporal 

graph learning: Traffic flow prediction of mobile edge computing in 
5G/6G vehicular networks. Computer Networks, 252, 110676. 

[24] Su, J., Cai, H., Sheng, Z., Liu, A. X., & Baz, A. (2024). Traffic 
prediction for 5G: A deep learning approach based on lightweight 

hybrid attention networks. Digital Signal Processing, 146, 104359. 

Authors 

Mr. Nachimuthu Senthil is working as an 

Assistant Professor in Kangeyam Institute of 

commerce. he has completed his M.Sc.,(Computer 
Science) in the year April 2005 and M.Phil in 

networks in the year 2008.he has 17 years of 

academic experience .Currently he is her P.hd in 
networks from KPR College of Arts Science and 

Research, Coimbatore. 

 

Dr. Sumathi Arumugam is an Associate 

Professor and Head of the IT Department at KPR 

College of Arts, Science and Research in 
Coimbatore. She completed her PG degree in 

2003, her M.Phil in 2005, and her Ph.D. in 2019. 

She has 21 years of experience in the teaching 
field, with a specialization in Data Mining and 

Machine Learning. 

 

Nachimuthu Senthil, Sumathi  Arumugam, “Leveraging Global and Local Spatial-Temporal Correlations of Traffic to 

Improve Congestion Prediction and Routing in 6G Networks”, International Journal of Computer Networks and Applications 

(IJCNA), 12(1), PP: 93-105, 2025, DOI: 10.22247/ijcna/2025/07.   

 

 

 

 

 

 


