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Abstract – Vehicle to Vehicle communication (V2V) has taken 

place in research interest for many purposes such as road safety 

and traffic management. An accurate estimation for vehicular 

node position is important for such type of communication. A 

vehicular node can be equipped with Global Positioning Systems 

(GPS) to estimate its position. In practice, many vehicular nodes 

may lose GPS signals in rural regions due to dense foliage, or in 

urban regions due to compact high buildings. In this paper, the 

received signal strength indication (RSSI) is exploited to assist 

vehicular nodes to estimate their locations using inter-vehicle 

communication. High dynamic network topology in V2V is 

expected due to high node mobility. As a result, the localization 

error due to signal strength measurements clearly increases 

compared to low dynamic network topology. The proposed 

scheme is self-correcting solution which studies the network 

topology scenarios that increase localization errors and 

introduces optimal techniques to minimize such errors. 

Performance evaluation and simulation results show that this 

work improves localization accuracy and increases the number of 

vehicular nodes that estimate their locations compared to existing 

localization schemes. 

Index Terms – Vehicular ad-hoc networks, Vehicle to Vehicle 

communication, Localization, Radio ranging, Path loss, 

Shadowing. 

1. INTRODUCTION 

Vehicular ad-hoc networks (VANETs) are greatly dynamic ad-

hoc network topology. VANETs have two types of 

infrastructure: centralized and distributed. The centralized 

architecture merges cellular and ad-hoc technologies (V2I) 

while the distributed architecture is based on ad-hoc 

technology and known as Vehicle to Vehicle communication 

(V2V) [1], [2]. Vehicular ad-hoc technology has derived many 

applications such as road safety, traffic management and 

entertainment [3], [4]. Such applications depend on an accurate 

estimation for vehicular node position. Recently, most vehicles 

come with positioning technology, i.e. Global Positioning 

System (GPS) devices, to precisely estimate their positions [5]. 

In practice, vehicular nodes may suffer from GPS 

unavailability for productive or environmental reasons.  The 

productive reasons include vehicular nodes are not originally 

equipped with GPS device, or have limitations in the GPS 

device. On the other hand, the environmental reasons attenuate 

GPS signals such as dense foliage in rural regions, or compact 

high buildings in urban regions. Therefore, vehicular nodes 

particularly in V2V communication can be classified into two 

types. The first type is that vehicular nodes are denied from 

GPS service to estimate their locations while the other type is 

that vehicular nodes predict their locations due to GPS signals 

(i.e., called vehicular beacon nodes). A vehicular node can 

internally communicate with surrounding beacon nodes to 

estimate its location using a radio ranging technique (i.e., 

RSSI). 

Many research works have been introduced in node 

localization using radio ranging techniques for sensor networks 

such as [6], [7] and [8] and for vehicular ad hoc networks such 

as [9], [10] and [11]. The existing solutions for vehicular ad 

hoc networks estimate node location using basic analytical 

model for received signal strength indicator (RSSI) by different 

manners. In fact, basic RSSI model, as shown below, cannot 

perform well in sparse networks and can be greatly influenced 

by physical environments such as shadowing and multipath 

effects. The work in [12] eliminates basic RSSI limitations in 

sparse networks and improves vehicular node localization 

where the geometric relationship among multiple nodes are 

exploited. However, such scheme suffers from the effect of 

environmental parameters that lead to poor localization 

accuracy when their values increase. 

In this paper, a new node localization scheme, Self-Correcting 

Localization scheme for V2V Networks (SCL-VNET), is 

proposed to enhance the localization accuracy by solving the 

basic RSSI model problems. Firstly, the basic RSSI limitations 

in sparse networks are eliminated. The proposed scheme 

introduces a new method (it is called sampling method) to 

exploit 2-hop beacon nodes as well as previous estimated 

location in compensating the absence of 1-hop beacons. In 

addition, SCL-VNET scheme eliminates the effect of 

environmental parameters by correcting the estimated location. 

The correction method uses the extended RSSI model, 

described below, in improving the localization accuracy. 

Afterwards, the alignment method is proposed to use a 

preloaded map to estimate the proper lane in case of estimating 

a location between or outside road lanes. The proposed scheme 

is evaluated using NS2 simulator, then a comparative study is 

introduced to compare the proposed scheme with the existing 

research works at different traffic densities, different values of 

physical parameters and different beacon nodes densities. The 
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Manhattan mobility model is used in our simulation 

experiments which is more appropriate for urban and suburban 

regions. 

This paper is organized as follows. The existing works of node 

localization for vehicular ad hoc networks are introduced in 

Section 2. The analytical model for radio ranging localization 

is presented in Section 3 explaining the proposed extensions in 

such model. In Section 4, the proposed scheme is introduced 

which the proposed algorithm and the corresponding analytical 

model are illustrated. Simulation results and performance 

comparison are presented in Section 5. Finally, Section 6 

concludes this paper. 

2. RELATED WORK 

Many research works have been introduced for node 

localization in vehicular ad-hoc networks to solve the problems 

of GPS positioning and unavailability. The research works [13] 

and [14] have introduced localization solutions based the 

roadside units. In [13], beacon nodes that are located at 

roadside broadcast messages to vehicular nodes. When a 

vehicular node receives from such beacon nodes, it estimates 

its location. Such solution solves the problem of GPS 

positioning and unavailability in low traffic density. However, 

the end-to-end latency and deployment of roadside units are 

open problems in this work. The authors in [14] have 

introduced another solution which roadside units can 

disseminate the information of a local map over Wi-Fi. The 

destination node is prepared by GPS receiver and Wi-Fi device 

to obtain such map and use matching algorithm to deal with the 

map achieving better localization. Nevertheless, end-to-end 

latency is unreasonable besides the problem of roadside units’ 

cost and deployment.  

In the future, merging roadside to vehicle communication with 

5G networks will solve the problem of end-to-end latency in 

node localization because higher data rates are expected in 5G 

networks in which the latency will be less than one millisecond. 

In addition, 5G networks will provide us with higher capacity, 

reduced cost, consistent Quality of Experience provisioning 

and massive device connectivity [15]. The future networks 

(i.e., 5G networks) will help also in developing autonomous 

vehicles (i.e., self-driving cars) [16], [17].   

Another localization technique in vehicular ad hoc networks 

uses local relative positioning to estimate the distance between 

vehicular nodes such as [18] and [19]. Smart phones with GPS 

are exploited in location-based services, for example finding 

the nearest gas station [20]. However, such solutions still suffer 

from the problem of GPS positioning and unavailability. The 

map matching is considered a way to correct GPS signal errors 

by alignment method [21]. Since GPS data is inaccurate, map 

matching aligns vehicular node locations with the road on a 

digital map. Such work uses a hidden Markov model and an 

extended Kalman filter to achieve better matching. The work 

in [22] is more appropriate to estimate positions of nodes 

moving on freeways. Roadside units are used to collect 

information and dead reckoning method is exploited to 

compute the current position of nodes based on the node's 

initial position. 

Since vehicle to vehicle communication achieves minimum 

localization cost. The works in [9] and [11] have introduced 

localization schemes based on the basic RSSI model. The basic 

RSSI model can only operate well with high density of 

vehicular nodes with GPS; for example, a vehicular node 

requires at least three nearby nodes with GPS to estimate its 

location and that is unguaranteed all the time. In addition, when 

a vehicular node estimates its position based on basic RSSI 

model in the presence of physical changes such as shadowing 

and multipath (noise levels), the localization accuracy rapidly 

decreases. The authors in [12] have introduced a grid based 

scheme (GOT), to eliminate basic RSSI model and improve 

vehicular node localization in sparse networks where a 

vehicular node may not always communicate at least with three 

1-hop beacon nodes. GOT solution exploits 2-hop beacon 

nodes and analyze the geometric relationship among multiple 

nodes. Afterwards, a grid method is used to decrease the 

localization error and increase the number of nodes that can 

estimate their locations. However, GOT scheme suffers from 

the effect of environmental parameters that lead to poor 

localization accuracy when their values increase. 

In what follows, radio ranging limitations in vehicular node 

localization is introduced to show how the loss of received 

signal strength decreases the localization accuracy. Afterwards, 

the proposed scheme is introduced illustrating how it 

overcomes the basic RSSI problems and how it solves those 

problems.  

3. RADIO RANGING LIMITATIONS IN VEHICULAR 

NODE LOCALIZATION 

RSSI based localization is radio ranging technique to estimate 

vehicular node position. This work is based on such 

localization type; accordingly, a free propagation model is 

suggested which only one clear line-of-sight path between the 

transmitter and receiver is assumed. In free space propagation 

model, we can compute the received signal power at distance d 

as follows [23]. 

  Ld

GGP
P rtt

r 22

2

4


                                                                              (1) 

Where L is system loss including path loss, Gt is transmitter 

antenna gain, Gr is receiver antenna gain,  is the wavelength 

and Pt is transmitted signal power. For hypothetical case, the 

parameters Gt, Gr, and L equal one. The communication range 

of vehicular nodes is assumed as a circular disk area around the 

sending node (i.e., beacon node) with radius R in which a 
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vehicular node entering such area can receive from the sending 

node. 

The free space propagation model can be simplified by 

assuming a reference point d0 and a constant (K) as follows. 

2

0










d

d
KPr

                                                                                           (2)  

Particularly, signals in physical environments (i.e. urban and 

suburban) suffer from more noise due to shadowing and 

multipath effect resulting in complex path loss. Accordingly, 

the received power can be described as follows. 

L
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d

d
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


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
 0

0
                                                                         (3) 

Where L is the path loss exponent which equals two in free 

space as shown in Eq. (2). Generally, for physical 

environments as shown in Eq. (3), path loss exponent increases 

to reach a value greater than two and less than 6.5 due to many 

effects such as diffraction, refraction, reflection, propagation 

medium (dry or humid air), absorption, height of antenna and 

distance between transmitter and receiver.  

In what follows, RSSI limitations for vehicular node 

localization are explained. Radio ranging localization is mostly 

related to trilateration analytical model. In such model, when a 

node begins to estimate its location, it first measures signal 

strength (Pr) from three nearby beacons. By choosing a proper 

value for path loss exponent (L) and substituting Pr and L in 

Eq. (3), the measured distances to beacons can be determined 

which are analytically used to estimate the vehicular node 

position. For example, path loss exponent, in urban regions, 

changes from 2.7 to 3.5; accordingly, the average value (3.1) is 

chosen as a particular value for L. The localization accuracy 

decreases due to the expected changes in environmental 

parameters (i.e., path loss, shadowing and multipath) and 

network topology. The change in path loss occurs due to the 

actual shadowing/multipath level (noise level).  

Furthermore, the rapid changes in network topology may lead 

to low localization accuracy. For example, when all beacon 

nodes have few meters spacing to the current node, trilateration 

analytical model achieves high localization accuracy where is 

poorly influenced by environmental parameters. On the other 

hand, when the distance between a beacon node and the current 

node is approximately big enough, localization accuracy 

largely may obviously decrease due to a small change in the 

noise level because this change leads to an error in measured 

distances as shown below.  

Accordingly, RSSI based localization is reasonable to estimate 

a vehicular node position when vehicular beacon nodes are near 

from the current vehicular node by few meters. In practice, 

vehicular beacon nodes randomly move in lanes; accordingly, 

RSSI limitations appear when vehicular beacon nodes 

communicate with the current node and the measured distance 

nears from the maximum communication range.  As shown in 

Figure 1, there are four vehicular beacon nodes B1, B2, B3 and 

B4. Assuming vehicular node V7 is located at (x, y) and 

discovers three 1-hop vehicular beacons B2, B3 and B4 at (x1, 

y1), (x2, y2) and (x3, y3), respectively. Assume the measured 

distances at V7 for signals received from those beacons are m1, 

m2 and m3, respectively.  

 

 

 

 

 

 

 

 

(a) Hypothetical approach  

 

 

 

 

 

 

(b) Physical environment 

Figure 1 RSSI trilateration method (two far 1-hop beacons) 

According to trilateration analytical model, the estimated 

location (xe, ye) for node V7 can be determined as follows. 
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This work extends the trilateration analytical model as follows. 

The estimated distance between V7 and beacons B2, B3 and B4 

are d1, d2 and d3, respectively. 

   22
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Where i  {1, 2, 3}; the estimated distance difference (Si) is 

an absolute value of the difference between V7 estimated 

location and measured distance to beacon (i). 

    ieieiiii myyxxmdS 
22                    (7) 

The total value for distance differences (D) is determined as 

follows. 

321 SSSD                                                            (8) 

Figure 1(a) shows the hypothetical approach (i.e., no noise 

occurs) which no measurement errors are observed in m1, m2 

and m3. As a result, actual and estimated positions for V7 are 

matching (D = 0 due to Si = 0) which means no localization 

error happens. In practice, for physical environments, received 

signal strength is influenced by noise added to the path loss. 

Localization accuracy decreases due to different measurement 

errors in m1, m2 and m3, respectively. 

 

 

 

 

 

 

 

 

 

(a) Hypothetical approach 

 

 

 

 

 

 

 

 

(b) Physical environment. 

Figure 2 RSSI trilateration method (three far 1-hop beacons) 

As shown in Figure 1(b), assume urban area where L is chosen 

(3.1) while the actual path loss due to different noise levels at 

B2, B3 and B4 equals 2.76, 2.98 and 3.02, respectively. B2 is 

more influenced by change in path loss than B3 and B4; 

accordingly, m1 circle radius decrease more than m2 and m3. 

The estimated location of V7, computed by Eq. (4) and Eq. (5), 

is indicated by V7 in Figure 1(b). The localization error can be 

easily detected from D in Eq. (9) where D is greater than 

zero. Generally, D can be used in this work to indicate to the 

localization accuracy which the localization accuracy increases 

as long as D decreases and approaches zero. In this scenario, 

the localization error exceeds half of the maximum 

communication range when comparing the actual position V7 

to estimated location V7 in Figure 1(b).  

The following scenario shows another case, at the same 

environmental parameters, when beacon nodes are close to 

each other and have large spacing with the current node. As 

shown in Figure 2, there are six beacon nodes from B1 to B6. 

Assuming vehicular node V11 discovers three nearby vehicular 

beacons B2, B3 and B5 where are close to each other. For 

hypothetical approach, estimated location and actual position 

for V11 are congruent as shown in Figure 2(a).   

In contrast, when an error occurs in measured distance for one 

or two beacons as shown in Figure 2(b), the estimated position 

V11 is imprecise where localization error increases to values 

greater than R where R represents the maximum 

communication range for vehicular node. In this paper, radio 

ranging limitations in physical environments are taken into 

consideration to improve a vehicular node localization 

accuracy.  

4. THE PROPOSED LOCALIZATION SCHEME 

When radio ranging localization is used in vehicle to vehicle 

communication, the basic RSSI analytical model cannot 

correctly estimate vehicular nodes’ locations due to expected 

noise in physical environments. For high dynamic network 

topology, it is unguaranteed that three close beacons are 

discovered for most vehicular nodes all the time. Furthermore, 

in lightweight traffic (i.e., rural regions or nightly driving), a 

vehicular node may originally fail to communicate with three 

beacons. A vehicular node can exploit farthest beacons (2-hop 

beacons) besides nearest beacons (1-hop beacons) to estimate 

its location. The author of this work in [8] has solved RSSI 

limitations for mobile sensor localization. In this work, many 

extensions and improvements are introduced to reduce the time 

complexity and effectively deal with all expected changes in 

environmental parameters. In what follows, SCL-VNET 

algorithm is introduced to show those extensions and 

improvements. A location packet is broadcasted from a beacon 

node in which each packet contains sender ID and its location 

at time (ti). The sender waits for (t) and when the time interval 

(t) passed, it broadcasts the next location packet. 

SCL-VNET algorithm, for V2V communication, contains three 

phases: communication, estimation, correction and alignment. 

Each vehicular node (VN) separately runs such algorithm to 

estimate its location. The first phase is illustrated in Lines (1-
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6). When a VN receives a location packet from a beacon node, 

beacon ID and its current location are extracted from the 

received packet. The measured distance can be determined 

using the received signal power that can be obtained from 

PHY/MAC layer. A VN node establishes a new data record 

containing beacon ID, beacon location and measured distance 

to save it in a list called (nearest beacon list) as shown in Line 

(3). A VN changes its mode from receiving mode to sending 

mode to broadcast new location packet (it is called here 

forwarded packet) containing nearest beacons information.  

SCL-VNET algorithm  

BN (b) at time (ti) 

1. oneHopBoadcast(ID, LOC);   

2. scheduleNextBroadcast (t); 

 

VN (v) at time (ti) 

Communication phase: 

1. WHILE t < ti + T 

2.    IF msg_recieved THEN 

3.        nearestBeaconList.add (beacon(ID, LOC, mdist));  

4.        oneHopBoroadcast(ID, LOC, mdist, ownerID); 

5.    IF forwarded_msg_recieved THEN 

6.         farthestBeaconList.add (beacon record); 

Estimation phase: 

7.    beaconList = nearestBeaconList;  

8.    IF beaconListSize >= 3 THEN  

9.         selectBestThreeNearestBeacons ( ); 

10.     estimateLocationByTrilateration ( ); 

11. ELSE   /*less than three nearest beacons are discovered*/ 

12.    IF previous_location_is_available THEN  

13.         beaconList.add (previousLocation); 

14.    IF beaconListSize < 3 THEN 

15.         selectedBeacon = chooseBestFarthestBeacons( );   

16.         beaconList.add(selectedBeacons); 

17.         IF beaconListSize = 3 THEN 

18.            sampleList =  

samplingBeaconMeausredCircle(selected_beacons); 

19.            FOREACH sample(i) IN samplesList  

20.               estimateLocationByTrilateration ( ); 

21.     ELSE                       
22.        estimateLocationByTrilateration ( ); 

Correction and alignment phase: 

23.  IF beacon (i) is a nearest beacon and mi > mth THEN  

24.       measuredDistanceList (i) = 

generateNewMeasuredDistance (mi , m); 

25.  visibleSolutionsList = createVisibleSolution 

(measuredDistanceList (i)); 

26.  FOREACH visibleSolution (j) IN visibleSolutionsList 

27.       estimateLocationByTrilateration( ); 

28.  chooseBestSolution( ); 

29.  bestSolutionAlignment( ); 

Finally, a VN returns to receiving mode to receive forwarded 

packets from VN neighbors. Beacon ID, its current location and 

its measured distance to its owner (forwarding node) are 

extracted from forwarded packet.  The measured distance to 

forwarding node can also be determined using received signal 

power from that can be obtained from PHY/MAC layer. A VN 

node establishes a new data record containing five attributes, 

1) beacon ID, 2) beacon location, 3) measured distance 

between beacon and forwarding VN, 4) forwarding VN id, and 

5) measured distance between forwarding VN and receiving 

VN. This record is stored in new list called (farthest beacon list) 

as shown in Line (6). 

The second phase is called an estimation phase, illustrated in 

Lines (7-22), which a new list called (beacon list) is established 

to contain all existing 1-hop beacons. Such phase is performed 

whether the number of 1-hop beacons is greater than, equal, or 

less than three. The first part described in Lines (8-10) shows 

how SCL-VNET works when the number of beacons is greater 

than or equal three. When the number of beacons is greater than 

three, a NV chooses a best three 1-hop beacons.  The best three 

1-hop beacons have the shortest measured distances to the 

current vehicular node. Afterwards, VN location is estimated 

using basic RSSI analytical model, represented by Eq. (4) and 

Eq. (5) as shown in Line (10), whether there are either exactly 

three 1-hop beacons, or more and best three 1-hop beacons are 

chosen. 

When the current vehicular node, that already discovered three 

1-hop beacons, estimates its location, it moves to the correction 

and alignment phase. Such phase is based on the extended 

trilateration analytical model described in equations (6), (7) and 

(8).  When D is examined, a VN decides correcting its 

estimated position when D is greater than zero which means 

measured distances to 1-hop beacons suffer from noise in path 

loss. The correction and alignment phase is described in Lines 

(23-29). A measured distance list is created for each beacon (i) 

where i  {1, 2, 3}, as shown in Line (24). The measured 

distance can be corrected by applying a small change in the 

distance step by step to reach the actual distance (it is called a 

correction step).  A new measured distance for beacon (i) 

equals (mi  kmi); k  {0, 1, 2, …., n} where nmi represents 

the expected maximum correction step based on the maximum 

noise level. Each beacon (i) contains at least one element (at k 

= 0) equals mi. Meanwhile the time complexity of correction 

phase is O(n3), the correction step (CS) parameter (in meters) 

controls the number of visible solutions in which each visible 

solution contains one measured distance (mi  kmi) for each 

beacon (i). 

Figure 3 shows the correction process when SCL-VNET 

scheme is applied. As shown in Figure 3, new measured 

distances are generated from (mi  km). The measured 

distance list size is 7, 5 and 3 for B2, B3 and B4 constrained by 

the maximum expected noise level as shown in Figure 3. The 
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visible solution space contains 105 solutions. After scanning 

such solutions, the optimal solution that achieves minimum D 

is determined and the corrected location for VN is indicated by 

black dot as shown in Figure 3. 

  

 

 

 

 

  

 

 

Figure 3 Correction phase 

After the correction process finishes, SCL-VNET runs the 

alignment process, as shown in Line (29), to achieve more 

localization accuracy. Such process matches the estimated 

location and the preloaded map. When a vehicular node locates 

between lanes or outside the road, SCL-VNET aligns a 

vehicular node and relocates it on the nearest lane.  

The second contribution in this work is to estimate a vehicular 

node position in lightweight traffic density (sparse network). 

When the number of nearest beacons is less than three, the 

trilateration analytical model fails to estimate VN location; 

however, SCL-VNET scheme solves this problem as shown in 

Lines (11-22) of estimation phase. The estimated location that 

obtained at (t-t) is examined. Supposing VN moves with 

regular velocity s during t, when estimated location obtained 

at (t-t) (it called pervious location) is available, the distance 

from such location to current location can be considered with 

value less than or equal st. SCL-VNET generates a virtual 

beacon node at previous location and add it with its measured 

distance to beacon list as 1-hop beacon.  

When the number of 1-hop beacons is still less than three as 

shown in Line (14), 2-hop beacon nodes can be exploited. 

When there are many 2-hop beacon nodes, best three nodes are 

chosen which they have shortest measured distances to 

forwarding VNs. Furthermore, the forwarding VNs have also 

shortest measured distances to current VN. However, there is a 

problem to use 2-hop beacon nodes in trilateration analytical 

model because the direct measured distance between VN and 

2-hop beacons is unavailable.  SCL-VNET solves this problem 

by firstly estimating a forwarding VN position; afterwards, it 

estimates the current VN location as follows.   

Assuming a vehicular node (V1) receives from two 1-hop 

beacon nodes B1 and B2 by measured distances m1 and m2 in 

physical environment (i.e. measured distance may be less than 

actual distances). Assume V1 receives from a 2-hop beacon 

(B3) via a forwarding VN (V2) as shown in Figure 4. 

Meanwhile a circle circumference of beacon node (B3), with a 

radius represented by m23 where m23 is a measured distance 

between a beacon (B3) and VN (V2), is the locus of V2, then 

SCL-VNET scheme takes samples from the circle 

circumference. Sampling a circle circumference means 

considering the integer values that represent the intersection 

points between the circle circumference and the four lanes. 

 

 

 

 

 

 

 

Figure 4 Sampling 2-hop beacon circle circumference 

The number of considered samples represented by small 

circles, as shown in Figure 4, are seven only which reduce the 

proposed algorithm time complexity. SCL-VNET estimates V1 

position by iterative trilateration process for such samples. 

Generally, the number of samples (N) taken over a 2-hop 

beacon circle circumference with measured distance (m) is 

described in Eq. (9) where W is the lane width and R is the 

maximum communication range.  
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When a vehicular node requires two 2-hop beacons to estimate 

its location, the number of pair samples may reach 82 pair 

samples at the worst case. When three 2-hop beacons are used, 

the number of triple samples may increase to reach 83 triple 

samples.  Therefore, further constraint is used to decrease the 

number of iterations by picking candidate samples. Such 

constraint is based on the distance between two 1-hop beacons 

must be less than 2R where R represents the maximum 

communication range. As shown in Figure 5, a vehicular node 

(V1) discovers two 1-hop beacon nodes B1 and B2.  The 

maximum distance between two 1-hop beacons is 2R. 

When applying such constraint on the first scenario (two 1-hop 

beacons and one 2-hop beacon), we assume 1-hop beacons are 

located at  bb yx 11 ,  and  bb yx 22 , , respectively. Also, we assume 
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samples (xj, yj) are taken from 2-hop beacon circle 

circumference where j  {1, 2, …., 8}. The proposed constraint 

can be analytically described as shown in Eq. (10). 

    Ryyxx j

b

ij

b

iji 2
22









                       (10) 

Where i  {1, 2}. The result of applying the constraint is shown 

in Figure 4; seven samples are filtered to three samples only 

indicated by whole circles. The iterative process mentioned in 

correction process can be applied to compute D at each 

sample. The candidate sample achieves minimum D. 

Afterwards, the correction process is applied for 1-hop beacon 

nodes that satisfies the correction conditions to improve the 

localization accuracy as shown above. 

 

 

 

 

 

 

 

Figure 5 Maximum distance between two 1-hop beacons 

Similarly, the second scenario assumes one 1-hop beacon and 

two 2-hop beacons are available. The sampling process is 

performed for two 2-hop beacons to obtain  11 , jj yx  and  22 , jj yx . 

Assume 1-hop beacon is located at (x, y); accordingly, samples 

are filtered as shown in Eq. (11). 
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Where i  {1, 2} and j  {1, 2, ……, 8}. The candidate sample 

pair achieves minimum D and the correction phase can be 

also applied for 1-hop beacon, when satisfying the correction 

conditions, to improve the localization accuracy. 

The final scenario assumes three 2-hop beacons are available. 

The sampling process is performed for three 2-hop beacon 

nodes to obtain  11 , jj yx ,  22 , jj yx  and  33 , jj yx . Samples are filtered 

as shown in Eq. (12). 
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where i  {1, 2, 3}, k  {1, 2, 3} and j  {1, 2, ……, 8}. The 

candidate sample triple achieves minimum D.  

In what follows, the simulation results are introduced to show 

how SCL-VNET scheme decreases the localization error for 

V2V communication in physical environments, and how it 

works in case of lightweight traffic density. In addition, a 

comparative study is illustrated to show how SCL-VNET 

scheme overcomes the existing localization schemes. 

5. PERFORMANCE EVALUATION AND SIMULATION 

RESULTS 

In this section, the effectiveness of SCL-VNET scheme is 

examined and verified by NS2 simulator. Several experiments 

are performed to measure localization accuracy of vehicular 

ad-hoc networks and compute the average values. Beacons and 

vehicular nodes are randomly deployed in a road with four 

lanes for simplicity (two lanes for each direction). The traffic 

density is assumed 20, 40 and 60 vehicles per km per lane for 

low, moderate and high traffic density in which beacon node 

density represents 25% for each. The maximum inter-vehicle 

communication range equals 50 meters. We assume the 

average speed is 54 km/hour (15 m/s) and a time slot is 2 sec. 

The NS2 simulation parameters used in this study are shown in 

Table 1. 

Table 1 Simulation parameters 

Parameter Values 

average speed  15 m/s 

communication range 50 m 

traffic density 20, 40, 60 per km per lane 

path loss exponent 3.1, 5.1 

noise level 0-30% 

correction step (meters) 0.25-2.0 

propagation model two ray ground 

MAC type 802.11p 

antenna model omni antenna 

time slot 2 sec 

field size (km2) 5x5 

In this section, the impact of the correction step (CS) parameter 

is evaluated for the proposed scheme at different performance 

metrics such as localization accuracy and processing time. 

Each metric is studied for urban and suburban regions at low, 

moderate and high traffic density. Afterwards, a comparative 

study is conducted to show the impact of noise level and the 

percentage of vehicular beacon nodes (nodes with GPS) on the 

performance of SCL-VNET scheme and existing solutions for 

V2V communication [9, 11], [12] at different performance 

R R 

B1 V1 B2 

2R 
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metrics such as localization accuracy, and the number of 

vehicular nodes that can estimate their locations. Also, each 

metric is studied at low, moderate and high traffic density for 

urban regions. 

In this work, we use Manhattan mobility model introduced in 

[24] with some enhancements to increase the number of lanes 

per road to four instead of one avoiding frequent collinear 

beacons. Manhattan mobility model is considered more 

appropriate to model the mobility in urban and suburban 

regions. More details for Manhattan mobility model have been 

introduced in [25]. Typically, path loss exponent for urban 

regions changes from 2.7 to 3.5 while it changes from 3.7 to 

6.5 for suburban regions. The noise in path loss is chosen to 

vary from zero to 30%. 

5.1. The impact of correction step parameter 

The first set of experiments show the impact of the correction 

step parameter on SCL-VNET scheme at different performance 

metrics such as localization accuracy and processing time. 

Each metric is studied for urban and suburban regions at high, 

moderate and low traffic density. The path loss exponent is 3.1 

and 5.1 for urban and suburban regions with 30% noise level.  

 

(a) urban area 

 

(b) suburban area 

Figure 6 The impact of correction step (CS) parameter on 

localization accuracy 

As shown in Figure 6, the average localization error ratio is 

evaluated for SCL-VNET scheme at low, moderate and high 

traffic densities in urban region, as shown in Figure 6(a), and 

suburban region, as shown in Figure 6(b), at different CS ratios 

0.02, 0.1, 0.2, 0.3, 0.4 and 0.5.   

The average localization error ratio is defined as the average 

localization error for SCL-VNET divided by the average 

localization error for basic RSSI solution. While CS ratio is 

defined as the correction step (in meters) divided by the 

maximum communication range (in meters) of vehicular node. 

As shown in Figure 6 (a), the minimum average localization 

error ratio occurs at CS ratio of 0.02 which it equals 0.443, 

0.518 and 0.575 for urban region at low, moderate and high 

density traffic, respectively. Also, as shown in Figure 6 (b), the 

average localization error ratio equals 0.429, 0.573 and 0.582 

for suburban region at low, moderate and high density traffic, 

respectively. The average localization error ratio slightly 

increases at low traffic density compared to both moderate and 

high traffic densities. Similarly, the average localization error 

ratio slightly increases at moderate traffic density compared to 

high traffic density.  Such increase occurs as long as more 

virtual beacons are used to compensate the absence of 1-hop 

beacon nodes because small computational errors are expected 

in the estimated locations of virtual beacons.  

 

(a) urban area 

 

(b) suburban area 

Figure 7 The impact of correction step on processing time 

At low traffic density, more virtual beacon nodes are used 

resulting in more increase in average localization error 

compared to other traffic densities. For the same reason, the 
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average localization error ratio at moderate traffic density is 

greater than it at high traffic density. When CS ratio increases 

as shown in Figure 6 (a) and (b), the average localization error 

ratio also increases. When CS parameter increases, the number 

of feasible solution decreases which means reduction in 

processing time. However, the precision of location estimation 

decreases resulting in more increase in average localization 

error. 

Figure (7) shows the impact of CS parameter on the processing 

time of correction process. The processing time is evaluated for 

SCL-VNET scheme at low, moderate and high traffic densities 

in urban region, as shown in Figure 7 (a), and suburban region, 

as shown in Figure 7 (b), at different CS ratios 0.02, 0.1, 0.2, 

0.3, 0.4 and 0.5. The processing time of correction phase is 

defined by the average number of iterations to evaluate all 

feasible solutions. As shown in Figure 7 (a), the maximum 

processing time occurs at CS ratio of 0.02 which the average 

number of iterations are 4790, 4216.87 and 3077.67 for urban 

region at low, moderate and high density traffic, respectively.  

Also, as shown in Figure 7 (b), the average number of iterations 

equals 1211, 2512.24 and 1924.58 for suburban region at low, 

moderate and high density traffic, respectively. Few thousands 

of iterations are required to correct the estimated location when 

CS ratio equals 0.02 (i.e., CS parameter equals one meter when 

the maximum communication range equals 50 meters). When 

CS ratio increases as shown in Figure 7 (a) and (b), the average 

number of iterations obviously decays. As mentioned above, 

SCL-VNET creates the feasible solutions between 0.5mi and 

1.5mi where mi is the original measured distance for beacon (i). 

When the average number of iterations at CS ratio of 0.1 (or a 

CS parameter equals 5 meters), the average number of 

iterations are 62.67, 48.23 and 37.85 for urban region at low, 

moderate and high density traffic, respectively. 

Also, as shown in Figure 7 (b), the average number of iterations 

equals 12, 30.12 and 24.23 for suburban region at low, 

moderate and high density traffic, respectively. Few ten 

iterations are required when the correction step equals 5 meters. 

When the correction step ratio is greater than 0.1 (or CS 

parameter is greater than 5 meters), the number of iterations is 

less than 10 iterations.  

Consequently, there is a tradeoff between the average 

localization error and the processing time. We choose CS ratio 

equals 0.06 (or the correction step equals 3 meters) in our 

comparative study because it achieves a proper average 

localization error and an acceptable processing time which 

such values are reasonable for real time processing. 

5.2. The impact of noise level 

The impact of noise level on the performance of SCL-VNET 

scheme and existing solutions for V2V communication [8, 10], 

[11] are performed in this section at different performance 

metrics such as localization accuracy and the number of 

vehicular nodes that can estimate their locations. Each metric 

is studied for urban regions at high, moderate and low traffic 

density in which the path loss exponent is 3.1 and 25% of 

beacon nodes are available.  

As shown in Figure 8, the average localization error (in meters) 

is evaluated for SCL-VNET scheme, basic RSSI and GOT at 

low traffic density, as shown in Figure 8 (a), moderate traffic 

density, as shown in Figure 8 (b), and high traffic density, as 

shown in Figure 8 (c), at different noise levels from zero to 

30%. Clearly, the average localization error increases when the 

effect of shadowing and multipath (noise level) increases. As 

shown in Figure 8 (a), at low traffic density, the average 

localization error increases from 7.11 meters at zero noise to 

11.32 meters at 30% of noise in basic RSSI solution.

 

 

 

 

 

 

 

 

 

 

 

(a) Low traffic density                        (b) Moderate traffic density                        (c) High traffic density 

Figure 8 The impact of noise level on localization accuracy 
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(a) Low traffic density                        (b) Moderate traffic density                        (c) High traffic density 

Figure 9 The impact of noise level on the number of nodes estimating their locations 

While it increases from 4.14 meters at zero noise to 7.82 meters 

at 30% of noise in GOT scheme. The average localization error 

in SCL-VNET increases from 3.64 meters at zero noise to 4.98 

meters at 30% of noise. Accordingly, the average localization 

accuracy in SCL-VNET scheme is better than the localization 

accuracy of basic RSSI and GOT schemes. Such result reflects 

the role of correction and alignment phase in achieving more 

reduction in the average localization error. Furthermore, the 

average localization error in SCL-VNET scheme records a 

small change (i.e., 1.34 meters) when a noise level changes 

from zero to 30%. While the change in localization error 

reaches 4.21 and 3.68 meters in basic RSSI and GOT schemes, 

respectively.  

At moderate traffic density, as shown in Figure 8 (b), the 

average localization error in all schemes achieves more 

reduction in localization error because the number of nodes 

with GPS increases. A VN has a chance to communicate with 

more than three beacons and chooses three beacon nodes with 

shortest measured distances. SCL-VNET scheme still achieves 

higher localization accuracy and a small change in localization 

error in moderate traffic density.  

Figure 8(c) shows GOT scheme achieves lower localization 

error at zero noise in high traffic density which reaches 1.15 

meters while SCL-VNET scheme reaches 1.63 meters. When a 

noise effect is involved, the proposed scheme outperforms 

GOT scheme which the average localization error reaches 2.58 

meters at 30% noise while it reaches 4.99 meters in GOT 

scheme. 

The impact of noise level on the percentage of nodes that can 

estimate their locations is evaluated, as shown in Figure 9, for 

SCL-VNET scheme, basic RSSI and GOT at low traffic 

density, as shown in Figure 9 (a), moderate traffic density, as 

shown in Figure 9 (b), and high traffic density, as shown in 

Figure 9(c), at different noise levels from zero to 30%. The 

percentage of nodes that can estimate their locations is the 

number of such nodes divided by all vehicular nodes without 

GPS. It is obvious that such percentage slightly decreases when 

the effect of shadowing and multipath increases. 

As shown in Figure 9 (a), at low traffic density, 25% of beacon 

nodes cannot guarantee three beacons for each vehicular node. 

Consequently, the basic RSS scheme records a poor percentage 

of nodes estimating their locations which varies from 12.14% 

at zero noise to 8.87% at 30% of noise. While such percentage 

varies from 36.63% at zero noise to 29.71 at 30% of noise in 

GOT scheme because it exploits a special case of 2-hop 

beacons to enable more vehicular nodes to estimate their 

locations.  The percentage of nodes estimating their locations 

in SCL-VNET varies from 52.14% at zero noise to 44.22% at 

30% of noise. Accordingly, the percentage of nodes estimating 

their locations in SCL-VNET scheme is better than it in basic 

RSSI and GOT schemes. Such results also reflect the role of 

estimation phase in achieving more percentage of nodes 

estimating their locations for most vehicular nodes because it 

exploits 2-hop beacon nodes to compensate the absence of 1-

hop beacon nodes.  

At moderate traffic density, as shown in Figure 9 (b), the 

percentage of nodes estimating their locations in all schemes 

increases because the number of nodes with GPS increases (but 

it is still 25%). SCL-VNET scheme achieves higher percentage 

of nodes estimating their locations in moderate traffic density 

which varies from 75.45% to 68.66%. Similarly, at high traffic 

density, as shown in Figure 9 (c), increasing in traffic density 

increases the number of nodes with GPS.  Therefore, the 

percentage of nodes estimating their locations in SCL-VNET 

varies from 92.44% to 86.18% outperforming other schemes.
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(a) Low traffic density                        (b) Moderate traffic density                        (c) High traffic density 

Figure 10 The impact of vehicular beacon node density on localization accuracy 

5.3. The impact of vehicular beacon node density 

In this section, the impact of vehicular beacon node density 

(nodes with GPS) on the performance of SCL-VNET scheme 

and existing solutions for V2V communication [8, 10], [11] are 

performed at different performance metrics such as localization 

accuracy and the number of vehicular nodes that can estimate 

their locations. Similar to pervious section, each metric is 

studied for urban regions at high, moderate and low traffic 

density in which the path loss exponent is 3.1 with 30% of noise 

level. 

As shown in Figure 10, the average localization error (in 

meters) is evaluated for SCL-VNET scheme, basic RSSI and 

GOT at low traffic density, as shown in Figure 10 (a), moderate 

traffic density, as shown in Figure 10 (b), and high traffic 

density, as shown in Figure 10 (c), at different percentage of 

beacon nodes (20%, 30% and 40%). The average localization 

accuracy evidently increases when the percentage of nodes 

with GPS increases. The percentage of nodes with GPS 

represents the number of such nodes divided by the total 

number of vehicular nodes.  

As shown in Figure 10 (a), at low traffic density, the average 

localization error is 12.77, 8.91 and 5.66 meters at 20% of 

beacon nodes for basic RSSI, GOT and SCL-VNET schemes, 

respectively. At 30% of beacon nodes, it decreases to reach 

9.56, 6.73 and 4.16, respectively. At 40% of beacon nodes, 

more chance to decrease the localization error which reaches 

8.12, 5.69 and 3.52 meters, respectively. Such results show the 

localization accuracy of the proposed scheme is better than 

existing schemes at different percentage of beacon nodes. In 

addition, SCL-VNET scheme achieves minimum change in 

localization error (i.e., 2.14 meters) due to the performance of 

correction process. 

At moderate traffic density, as shown in Figure 10 (b), the total 

number of nodes increase resulting in increase in beacon nodes. 

Moreover, when the percentage of beacon nodes also increases, 

the localization accuracy achieves more improvement. The 

average localization error is 11.86, 8.13 and 4.36 meters at 20% 

of beacon nodes for basic RSSI, GOT and SCL-VNET 

schemes, respectively. At 30% of beacon nodes, it decreases to 

reach 8.94, 6.21 and 3.36, respectively. At 40% of beacon 

nodes, more chance to decrease the localization error which 

reaches 6.41, 4.25 and 2.33 meters, respectively. 

Similarly, at high traffic density, as shown in Figure 10 (c), the 

average localization error is 10.64, 5.12 and 3.12 meters at 20% 

of beacon nodes for basic RSSI, GOT and SCL-VNET 

schemes, respectively. At 30% of beacon nodes, it decreases to 

reach 8.98, 4.53 and 2.15, respectively. At 40% of beacon 

nodes, more chance to decrease the localization error which 

reaches 7.79, 3.74 and 1.18 meters, respectively. 

The impact of percentage of beacon nodes on the percentage of 

nodes that can estimate their locations is evaluated, as shown 

in Figure 11, for SCL-VNET scheme, basic RSSI and GOT at 

low traffic density, as shown in Figure 11 (a), moderate traffic 

density, as shown in Figure 11 (b), and high traffic density, as 

shown in Figure 11 (c), at different percentage of beacon nodes 

and 30% of noise. Clearly, the percentage of nodes that can 

estimate their locations increases when the percentage of nodes 

with GPS increases. 

As shown in Figure 11 (a), at low traffic density, the percentage 

of nodes that can estimate their locations is 7.56%, 28.44% and 

43.24% at 20% of beacon nodes for basic RSSI, GOT and SCL-

VNET schemes, respectively. At 30% of beacon nodes, it 

decreases to reach 17.65%, 41.51% and 59.78%, respectively.  
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(a) Low traffic density                        (b) Moderate traffic density                        (c) High traffic density 

Figure 11 The impact of vehicular beacon node density on the number of nodes estimating their locations

At 40% of beacon nodes, more chance to increase the 

percentage of nodes estimating their locations which reaches 

25.86% 54.76% and 71.69%, respectively. 

Such results show the percentage of nodes estimating their 

locations of the proposed scheme is better than the existing 

schemes at different percentage of beacon nodes. In addition, 

SCL-VNET scheme achieves higher change in such percentage 

(i.e., 28.44%) due to the performance of estimation phase in 

exploiting 2-hop beacon nodes. 

At moderate traffic density, as shown in Figure 11 (b), the 

percentage of nodes estimating their locations increase in all 

schemes. Such percentage is 19.22%, 41.34% and 66.68% at 

20% of beacon nodes for basic RSSI, GOT and SCL-VNET 

schemes, respectively. At 30% of beacon nodes, it increases to 

reach 32.34%, 56.67% and 77.47%, respectively. At 40% of 

beacon nodes, more chance to increase such percentage which 

reaches 43.76%, 61.56% and 82.83%, respectively. SCL-

VNET scheme still achieves higher percentages. 

Similarly, at high traffic density, as shown in Figure 11 (c), as 

long as the percentage of beacon nodes increase, SCL-VNET 

scheme can reach to approximately estimate the locations of all 

nodes. The percentage of nodes estimating their locations is 

28.76%, 65.22% and 76.15% at 20% of beacon nodes for basic 

RSSI, GOT and SCL-VNET schemes, respectively. At 30% of 

beacon nodes, it increases to reach 41.67%, 78.98% and 

92.54%, respectively. At 40% of beacon nodes, we reach 

higher percentages which reach 56.93%, 83.49% and 99.12% 

meters, respectively.  

Finally, simulation results show that SCL-VNET outperforms 

basic RSSI and GOT schemes which effectively corrects the 

localization errors in vehicular ad hoc networks. In addition, it 

can perfectly work at different traffic densities, different noise 

levels and different percentage of beacon nodes.  

6. CONCLUSION 

Node localization in vehicular ad hoc networks is important for 

many purposes such as road safety and traffic management.  

This paper presents a new node localization scheme to solve 

the limitations of current existing schemes. As shown above, 

this work exploits the inter-vehicle communication to enable 

each vehicular node without GPS to estimate its location. A 

new method is proposed to correct an error in the estimated 

location via received signal strength. In addition, 2-hop nodes 

with GPS are exploited to compensate the absence of 1-hop 

nodes with GPS due rapid change in the network topology to 

increase the number of vehicular nodes that can estimate their 

locations. The proposed scheme performance is evaluated at 

high dynamic topology with different environmental changes. 

The simulation results show that three meters for correction 

step parameter is appropriate to achieve proper localization 

accuracy and processing time. The performance evaluation 

conducted in this work shows that for the proposed scheme 

achieves better localization accuracy compared to basic RSSI 

and GOT schemes. For instance, at high traffic density, 30% of 

noise level and 25% of beacon node density, the average 

localization error reaches 2.58 meters while it reaches 10.12 

and 4.99 meters in basic RSSI and GOT schemes respectively. 

In addition, SCL-VNET achieves more percentage of nodes 

that can estimate their locations compared to basic RSSI and 

GOT schemes. The percentage of nodes estimating their 

locations in SCL-VNET reaches 86.18% while it reaches 

29.45% and 75.91% for basic RSSI and GOT schemes at the 

same conditions in the last example. When percentage of 

beacon nodes increase more than 25%, SCL-VNET scheme has 

more chance to enable all vehicular nodes to estimate their 
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locations. Further work will study the proposed scheme with 

many complex mobility models to show its effectiveness in all 

circumstances. 
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