
International Journal of Computer Networks and Applications (IJCNA)

Volume 2, Issue 3, May – June (2015)

ISSN: 2395-0455 ©EverScience Publications 124

RESEARCH ARTICLE

Design and Develop an Approach for Integrating

Compression and Encryption on Textual Data

Amit Jain

Sir Padampat Singhania University, Udaipur, India

Avinash Panwar

Sir Padampat Singhania University, Udaipur, India

Divya Bhatnagar

Sir Padmpat Singhania University, Udaipur, India

Abstract – The primary intention of this research is to design

and develop an approach for integrating compression and

encryption on textual data. This improved approach can provide

the better security with the aid of encryption and also, can

provide better compression with the help of encoding procedure.

The advantage of combining the encoding procedure with the

encryption technique is that the attacks relevant to storage can

be easily avoided since the data is fully within encoded domain

also; the storage space required will be less due to good

compression ratio. With the advantages of this, we have planned

to utilize the dictionary-based encoding procedure and proposed

encryption method to comcryption protocol (Compression +

encryption). For integrating the compression and encryption,

dictionary-based compression and the encryption based on

permutation, sorting and reordering will be used. Dictionary-

based methods are capable of giving better compression rate as

like huffman encoding also follows dictionary-based method.

Also, permutation, sorting and reordering-based methods can

provide better security if these operations are included in the

encryption protocol.

Index Terms – Encoding, Encryption, CHE, CSE, Decoding,

Decryption.

1. INTRODUCTION

The prime function of compression is to acquire methods in

such a way that the actual data consume less space. Therefore,

compressed data is efficient, since lower amount of memory

space is required, also data travel faster from source to

destination from a disk or through network link due to the

lessening in the practice in case of slow devices. Since, now a

days the processor speed is enhanced much faster than

transferring through a disk or through internet transmission

speeds, so the time require to encode and decode the data

(although is quiet low) is not an important factor [1-5].

Transferring compressed data from source to destination is

consisting of two processes: a) Source process, b) Destination

process. The responsibility of the source process is to

compress the required data and then transmit it by

communication network. Then, the responsibility of the

destination process is to accept the compressed data and

decompressed it. The total responsibility is to make an

encoded file to the disk and then to transmit it and at the

receiving end decode it. In some case, encoding and

transferring the data happened faster than receiving and

decoding begin. But in some condition, especially in real-time

transmission applications, where the sender and receiver

processes at the same time, i.e. the data (encoded) transferring

should be started without preprocessing the total file at the

sender end and at the receiving end the data must be decoded

the file as soon as the file arrives [6-10]. The above real-time

data transferring is used when the communication is over a

network. This type of procedure can be used when there is

talk/chat protocols or remote login used, i.e. where short

messages are necessary during the transmission time.

The theory of adding up data compression with encryption

[11-15] of data is quiet useful, while transmission time needed

and optimization of memory space required, due to the

compression the redundancy in the plaintext decreased

making the data resistant to statistical methods of

cryptanalysis. Applying cryptographic characteristics in a

compression algorithm is not a safe option, since the amount

of compression achieved and amount of security cannot be

achieved at the same time [16-21]. Furthermore, due to rise in

computer-related technologies, which helps the cryptanalyst

to make planned attacks with high success rate, also brute

force attacks can be done in a quick period of time. Thus,

according to cryptographic point of view, the security of data

should be higher and should be based on an algorithm where

brute force attack have minimum chance of success.

In this paper we propose an approach for integrating

compression and encryption on textual data. Initially the text

data is preprocessed to consider the repeated letters as one and

assign the corresponding frequency to it. Thereafter the data is

compressed and encoded using our condition based Huffman

encoding (CHE) technique. A dictionary is then formed which

is used to retrieve the original text data. The dictionary is then

encrypted using our complex shuffle encryption (CSE)

International Journal of Computer Networks and Applications (IJCNA)

Volume 2, Issue 3, May – June (2015)

ISSN: 2395-0455 ©EverScience Publications 125

RESEARCH ARTICLE

technique which uses a 128 bit key for encryption. The

encoded data, the encrypted dictionary and the key is send to

the receiver. The receiver first decrypt the dictionary based on

our complex shuffle decryption (CSD) technique that uses the

received key. The decrypted dictionary is then used to decode

the data and the receiver can read the original text. The major

contributions of our work are as follows:

Designing an effective compression technique: The

compression technique is designed using CHE which converts

the generated code based on conditions and the converted

code is used to compress the original data effectively based on

different condition.

Designing an effective encryption technique: The encryption

technique is designed using CSE which uses 128 bit key. The

key is split into three different numbers of bits and the three

separated bits would do different functions each to encrypt the

data effectively and to enhance the security.

Integrating the designed compression and encryption

techniques on textual data: Both the compression and the

encryption techniques were integrated to reduce the storage

and to secure the data effectively.

This paper is organized as follows: the second section shows

the motivation of our work and the third section explains our

proposed technique and the fourth section shows the results

we obtained for our work and the fifth section concludes our

technique.

2. MOTIVATION OF OUR WORK

The encoding of data would reduce the required storage and

the encryption of the data would provide secured

transmission. If we integrate both the techniques, the attacks

relevant to storage can be easily avoided because the data is

fully encoded and the storage space required will be less due

to good compression ratio. The ultimate objective of

improving security and compression can be done through the

following ways. At first, an intelligent dictionary will be

created from the input text data based on the unique strings

and frequency. Then, encoding of the input text data will be

done using intelligent dictionary. Then, the dictionary will be

encrypted in an effective way so that no one can obtain the

original data back without decrypting the dictionary. The

encryption of dictionary and then encoding will be done based

on private key (of 128 bit size) which is essential at the

receiver to retrieve original text data back. This way will be

more secure and compressed against all the attacks except the

stolen attack of key. This stolen key attack can be avoided

with permutation-based encrypting the encoded text data. So,

over all, the original text data will be encoded using the

dictionary-based technique as per the method devised to bring

more compression ratio. Then, the dictionary will be

encrypted and then encoded using the method devised

including the several operations like, permutation, sorting and

reordering. This will give the private key that will be again

used to encrypt the encoded text data. So, in the receiver side,

it has the private key and encrypted dictionary and encoded

text data. Then, the private key will be utilized i) to obtain

the dictionary back to original form and, ii) the encrypted data

back to encoded data. Finally, the original text will be

obtained from decrypted dictionary and decrypted encoded

data using the decoding procedure.

3. PROPOSED METHOD

This section explains the proposed technique of integrating

compression and encryption on textual data. The Figure 1 and

Figure 2 shows the process in transmitter side and receiver

side of our proposed technique.

Figure 1 Process in transmitter side

In this Figure 1, the original data i.e. the given input data is

initially encoded using condition based Huffman encoding

(CHE) technique and a dictionary is created based on it. The

dictionary contains the essential information to retrieve the

encoded data. The dictionary is encrypted using a complex

shuffle encryption (CSE) technique to hide the information.

The CSE technique uses a key to encrypt the data. The

encoded data, the key and the encrypted data are the output

from the transmitter side.

Figure 2 Process in receiver side

International Journal of Computer Networks and Applications (IJCNA)

Volume 2, Issue 3, May – June (2015)

ISSN: 2395-0455 ©EverScience Publications 126

RESEARCH ARTICLE

The Figure 2 explains as follows: the output from the

transmitter i.e. the encoded data, the encrypted dictionary and

the key are received by the receiver side. The encrypted

dictionary is then decrypted using complex shuffle decryption

(CSD) technique based on the key received and using the

decrypted dictionary, the encoded data is decoded based on

condition based Huffman decoding (CHD) technique. The

decoded data is the original data.

3.1. CHE Technique

This section shows the condition based Huffman encoding

(CHE) technique. The original data is encoded using

condition based Huffman encoding technique. The condition

based Huffman encoding technique has three processes which

are Huffman code generation for the original data, code

conversion of condition based sequence and encoding. It is

explained as follows:

Huffman code generation

The Huffman code generation is as follows: initially the

repeated letters from the word is taken and assigned the

frequency value to it. Thereafter, the generation of code is

done by combining the letters of least two frequencies and

giving zero’s and one’s values to it. Assigning zero’s and

one’s values based on two least frequency letters is done step

by step until last combination. After generating zeroes and

ones for every combination, the Huffman code for each letter

is formed from the bottom end of the tree formed.

Code conversion of condition based sequence

The code conversion of condition based sequence is done

after generating Huffman code for each letter in the words.

The process of code conversion of condition based sequence

is as follows: initially the letters used to generate the Huffman

code is arranged in ascending order based on the length of the

code. Thereafter, the code conversion process is done by

taking the letter that has highest length of Huffman code i.e.

the last letter after the arrangement as constant and check with

the least length letters and verify whether the least length

letter is the preceding letter of the constant letter in the

original data. If yes, assign the Huffman code of the least

length letter to the constant letter. If no, check with next least

length letter and if no letters in the series forms the

combination, there would not be any change. Similarly do this

process on the prior highest length Huffman coded letter.

Encoding

The encoding process is done based on the combination of

letters used in the code conversion of condition based

sequence and the preceding letter in the original data. The

encoding process is as follows: initially the combination of

the letters used for the code conversion process and the

preceding letter of the combination of the letters used for the

code conversion process is checked to decide whether the

code formed using code conversion process is to be

considered or not. If the Huffman code of the preceding letter

of the combination of the letters used for code conversion is

ends with zero, then the code formed in the code conversion

process is considered and if it is not ends with zero, we won’t

consider the code formed based on the code conversion

process. After this verification, a code is formed for the

original data. The final code is the encoded data based on

condition based Huffman encoding technique.

3.2. Example of CHE Technique

The whole process of condition based Huffman encoding is

explained by an example as follows: consider ‘optoipoa’ is an

original data and from this original data, the Huffman code is

formed for each letter in the original data. The formation of

code is shown in Figure 3

Figure 3 Formation of Huffman code

The Figure 3 is explained as follows: initially the repeated

letters are considered for one time and mark the frequency of

the letter in the original data i.e. the numeric term 3 below the

letter ‘o’ represents that the letter ‘o’ repeated three times in

the original data. Thereafter, two letters with least frequency

is taken and assigns zero and one to it and represents the total

frequency of two letters below it. Similarly, this process is

done by taking the next two letters and assign zeros and ones

until last step. The Huffman code is then formed for each

letter by considering the corresponding branches of zeros and

ones from the last step to the first. From the Figure 3, the

Huffman code formed for the letter ‘o’ is 10; and the Huffman

code formed for the letter ‘p’ is 00; and the Huffman code

formed for the letter ‘t’ is 01; and the Huffman code formed

for the letter ‘i’ is 110; and the Huffman code formed for the

letter ‘a’ is 111. Eventually, the Huffman code for the original

data ‘optoipoa’ is ‘100001101100010111’. The Figure 4

shows the direction of Huffman code formed for each letter.

International Journal of Computer Networks and Applications (IJCNA)

Volume 2, Issue 3, May – June (2015)

ISSN: 2395-0455 ©EverScience Publications 127

RESEARCH ARTICLE

Figure 4 Direction of Huffman code formation

After generating the Huffman code for each letter, the code

conversion of condition based sequence is done by arranging

the least length letters first. The code conversion of condition

based sequence process is used to compress the data. Here, in

Figure 4 we obtained the least length letters first and we don’t

need to change it. Thereafter, the highest length letters are

compared with the least length letters by checking whether the

least length letter is the preceding letter of the highest length

letter in the original data. Therefore, the highest length letter

‘a’ would compared with the least length letter ‘o’ to check

whether ‘o’ is the previous letter of ‘a’ in the original data

‘optoipoa’. From the original data we can see that the letter

‘o’ which has two length code comes before the letter ‘a’

which has three length code and therefore the Huffman code

of ‘o’ is assigned to the letter ‘a’. The Figure 5 shows the

letters with its code after the code conversion process of the

letters ‘o’ and ‘a’.

Figure 5 After code conversion process

Similarly the code conversion process is done between the

prior highest length letter and the least length letters. When

comparing all the other letters in the original code, the letters

‘i’ and ‘p’ comes sequent in the original data but the three

length coded letter ‘i’ comes before the two length coded

letter ‘p’ and therefore it has not satisfied the condition. So

the code conversion will not do between the letters ‘i’ and ‘p’

of the original code.

After the code conversion process, the encoding is done based

on the Huffman code of the preceding letter of the letters

which are used for code conversion. The encoding is the

process that fixes the code converted in the code conversion

process. The code conversion is done between the sequence of

letter ‘o’ and ‘a’ in the original code ‘optoipoa’. Therefore,

the Huffman code of the previous letter ‘p’ is considered to

fix the converted code between the letters ‘o’ and ‘a’. To fix

the converted code, the value of last length of the letter ‘p’

should be zero i.e. the Huffman code of ‘p’ should ends with

zero. Here, the Huffman code of ‘p’ is 00. Therefore, the code

converted between ‘o’ and ‘a’ after the code conversion

process is considered for encoding the data. If the Huffman

code of ‘p’ ends with 1, then the code converted between ‘o’

and ‘a’ after the code conversion process would not be

considered and the Huffman code obtained which is before

the code conversion process is considered as encoded data.

Finally, the CHE based encoded data for the original data

‘optoipoa’ is ‘10000110110001010’.

3.3. Dictionary formation

A dictionary is generated to retrieve the encoded data and it is

send to the receiver after encrypting it. The dictionary

contains the letters considered to generate the Huffman code

with its frequency in the original data. The original data we

taken for our example is ‘optoipoa’. The Figure 6 shows the

dictionary generated for the original data taken for our

example.

Figure 6 Dictionary generated for the original data

The dictionary word generated from the data given is ‘optia’

that would have its frequency after each letters which is as

‘o3p2t1i1a1’.

3.4. Complex Shuffle Encryption

The dictionary is then encrypted using complex shuffle

encryption (CSE) technique and it is transmitted to the

receiver side. The complex shuffle encryption is done based

on a 128 bit key. The key is split into three different divisions

to do different jobs. The Figure 7 shows the structure of 128

bit key.

Figure 7 Structure of 128 bit key

In this 128 bit key, the first bit to ninety sixth bits are used for

shuffling; and from ninety seventh bit to one twelfth bit is

used to convert the letter based on ASCII code; and the one

thirteenth bit to one twenty eight bits contain the information

about position of the dictionary data after retrieval process.

The encryption of the dictionary word ‘o3p2t1i1a1’ with its

frequency is as follows:

International Journal of Computer Networks and Applications (IJCNA)

Volume 2, Issue 3, May – June (2015)

ISSN: 2395-0455 ©EverScience Publications 128

RESEARCH ARTICLE

Initially, the dictionary word is rotated clockwise based on the

length of the word i.e. if the dictionary word is four length,

then it would be rotated clockwise four times. Thereafter, the

rotated words are sorted based on the alphabet and the last

letter of the sorted words is chosen to form a different word.

This process is called reorder process and it is shown in the

Figure 8

Figure 8 Reorder Process of dictionary word

After a different word is formed from the dictionary word, we

use the 128 bit key to complete the encryption process. The

three different jobs of the key are interchange process,

rotation process and location identification.

Interchange Process (1 to 96 bits):

The zeros and ones are generated randomly in the first ninety

six bits of the 128 bits key. The 96 bits are then split into

twelve cells and each cell has 8 bits and each cell is converted

into integers. Therefore we would get twelve integer values.

The integer values of two after two cells of the twelve cells

are then used to exchange the letters of the corresponding

positions. For instance if the first cell has the integer value as

1 and the second cell has the integer value as 4, then the

corresponding letters in the first and fourth position of the

reordered dictionary word is interchanged i.e. the

‘itapo11132’ is formed as ‘ptaio11132’. Similarly, the letters

are interchanged based on next two integers until the integers

in eleventh and twelfth cells.

 Rotation Process (97 to 112 bits):

The process in 97 to 112 bits is as follows: alike 1 to 96 bits,

the zeros and ones are generated randomly in 97 to 112 bits

and it is split into two cells and each cell has eight bits of

binary data. The binary data in both cells are converted in to

integers and using the integer values the letters in

corresponding positions are changed based on ASCII code.

For instance the word obtained after 1 to 96 bits process is

‘ptaio11132’ and assume that the integer value of the first cell

of 97 to 112 bits is 3, then the ASCII code of the letter in the

third position is taken and added with the integer value and

the solution is then converted into character and placed it on

the same position. Therefore, the letter in the third position

would get changed. In ‘ptaio11132’, the third letter is ‘a’ and

the decimal value of ASCII is 97 which is added with 3 gives

the solution as 100. The character‘d’ has the decimal value of

the ASCII as 100 and therefore, we replace the ‘a’ as‘d’. The

word is then changed as ‘ptdio11132’. Thereafter, the integer

in the second cell is considered and the integer value we

assume as 7. The ASCII code of the letter in the seventh

position is subtracted with it and the solution is converted into

character and placed in the same position. It is explained as

follows: the seventh letter of ‘ptdio11132’ is ‘1’ and the

decimal value of ACII of ‘1’ is 49 which is subtracted with 7

gives the solution as 42. The 42 is the decimal value of the

ASCII character ‘*’ and it is replaced in seventh position.

Eventually, the encrypted dictionary is ‘ptdio1*132’.

Location Identification (113 to 128 bits):

The 113 to 128 bits contains the information about position of

the dictionary word after retrieval process. Therefore, the

retrieval process is also done simultaneously with the

encryption process to identify the position of the dictionary

word. The Figure 9 shows the retrieval process of the

dictionary word ‘o3p2t1i1a1’.

Figure 9 Retrieval process of the dictionary word

The Figure 9 explains as follows: the C1 contains the

reordered dictionary word i.e. ‘itapo11132’ which is arranged

in horizontal order. It is then sorted S1; and the letters in C1

and S1 are merged in C2 and again the letters in the C2 are

sorted in S2. The C3 is obtained by merging the C1 and S2.

Similarly, the process is repeated until the length of the

dictionary word. In our example, the dictionary word is ten

lengths and so, the process is done until S10. In S10, the

dictionary word ‘o3p2t1i1a1’ is obtained in the eighth

position which is italicized. The encryption would be stopped

at this point and the encrypted data with the key and encoded

data is send to the receiver.

International Journal of Computer Networks and Applications (IJCNA)

Volume 2, Issue 3, May – June (2015)

ISSN: 2395-0455 ©EverScience Publications 129

RESEARCH ARTICLE

3.5. Complex Shuffle Decryption

The received encrypted data is then decrypted using complex

shuffle decryption (CSD) technique. It is done by doing the

reverse process of encryption based on the key received. The

decryption process is explained as follows: initially the two

integers in the bits from 97 to 112 is taken and do the reverse

process of the process done while encryption i.e. while

encryption the first integer is added with the ASCII code, but

in decryption we have to subtract it; and the second integer is

subtracted with the ACSII code while encryption, but here it

is added with the ASCII code. Thereafter, the twelve cells

from the bits 1 to 96 are taken to do the reverse process i.e.

instead of taking integers from left to right cells (1st to 12th

cell) in encryption process, the integers from right to left

(12th to 1st cell) is taken to do the decryption process.

Therefore the different word formed from the dictionary word

is obtained and the retrieval process done at the encryption

side is processed at the decryption side. The position

information in the key (113-128 bits) is used to retrieve the

original dictionary which is the decrypted data. The decrypted

dictionary is then used to decode the original data based on

condition based Huffman decoding (CHD) technique. The

CHD would do the reverse process of CHE. The Figure 10

shows the algorithm of the whole process of our proposed

technique; and the Figure 11 shows the algorithm of CSE

technique; and the Figure 12 shows the algorithm of CSD

technique.

Algorithm of our proposed technique:

Input: Original Data

Output: Original Data

Transmitter Side:

1. Start

2. Get the original data
3. For each letter in the original data

4. Check for repeated letters

5. If repeated letter exists
6. Convert the similar repeated letters as one and assign frequency

value

7. Else
8. Keep the letter as it is and assign the frequency as one

9. End if

10. End for
11. Take the letters with its frequency

12. For each two least frequency letters

13. Assign 0’s and 1’s until last combination
14. End for

15. For each letter

16. Generate Huffman code based on 0’s and 1’s from last branch to
first of corresponding letter

17. End for
18. Arrange the letters in ascending order based on the length of the

code

19. For each highest length letter
20. Check with each least length letter

21. If any of the least length letter comes previous to the position of

the highest length letter of original data
22. Assign the code of least length letter to the highest length letter to

compress the data
23. Else

24. Ignore

25. End if
26. If the code of previous letter of the least and highest length letters

used for code conversion ends with zero

27. Fix the converted code for encoding
28. Else

29. Don’t consider the converted code for encoding

30. End if
31. End for

32. Compressed encoded data would be formed

33. Generate a dictionary which is used to decode the encoded data
34. Generate 128 bit key

35. Encrypt the dictionary based on CSE technique

36. Send the compressed encoded data, encrypted dictionary and key
to the receiver

Receiver Side:
37. Decrypt the encrypted dictionary based on CSD technique

38. Decode the encoded original data using the decrypted dictionary

39. Original data would be obtained
40. Stop

Figure 10 Algorithm of our proposed technique

Algorithm of CSE technique:

Input: Dictionary word
Output: Encrypted dictionary

1. Start
2. Get the dictionary word

3. Generate 128 bit key

4. Take the first 96 bits from the 128 bit key
5. For each bit

6. Generate 0’s and 1’s randomly
7. End for

8. Split 8 bits as one cell and therefore we would get 12 cells

9. For each cell
10. Convert binary to decimal

11. End for

12. Take two after two cells from left to right
13. For each two cells

14. Interchange the letters in the corresponding positions of the

decimal value
15. End for

16. Take 97 to 112 bits

17. For each bit
18. Generate 0’s and 1’s

19. End for

20. Split 8 bits as one cell and therefore 2 cells would be obtained
21. Convert binary to decimal

22. Take the ASCII code of the letter of the corresponding position to

the first decimal value
23. Add the decimal value with ASCII code and convert it to character

and place the new character on the same position

24. Take the ASCII code of the letter of the corresponding position to
the second decimal value

25. Subtract the decimal value with ASCII code and convert it to

character and place the new character on the same position
26. The 113 to 128 bits contain the information about the position of

the original dictionary based on retrieval process

27. Encrypted dictionary would be obtained based on the 128 bit key
28. Stop

International Journal of Computer Networks and Applications (IJCNA)

Volume 2, Issue 3, May – June (2015)

ISSN: 2395-0455 ©EverScience Publications 130

RESEARCH ARTICLE

Figure 11 Algorithm of CSE technique

Algorithm of CSD technique:

Input: Encrypted dictionary

Output: Dictionary word

1. Start
2. Get the encrypted dictionary

3. Take the two decimal values of 97 to 112 bits

4. Take the ASCII code of the letter of the corresponding position to
the first decimal

5. Subtract the decimal value with the ASCII code and convert it to

character
6. Take the ASCII code of the letter of the corresponding position to

the second decimal

7. Add the decimal value with the ASCII code and convert it to

character

8. Take the twelve decimal values of the first 96 bits

9. Take two after two cells from right to left
10. For each two cells

11. Interchange the letters in the corresponding positions of the

decimal value
12. End for

13. Do retrieval process

14. Use 113 to 128 bits of the key to identify the correct position
15. Original dictionary word would be obtained

16. stop

Figure 12 Algorithm of CSD technique

4. RESULTS AND DISCUSSIONS

This section shows the experimental outcomes of our

proposed technique. The proposed technique is experimented

based on execution time for encoding and decoding,

compression ratio, execution time for encryption and

decryption, and the number of words identified by hacker. We

experimented the encoding and the encryption processes

separately, because we don’t have any existing techniques that

uses encoding and encryption techniques together. The

encoding process is compared with an existing encoding

technique and the encryption process is compared with an

existing encryption technique. Finally, we compared our

proposed technique with the existing encoding and encryption

techniques together in terms of execution time and memory

consumption. We used jdk 1.7 with system configuration as

follows: i3 processor that clocks at 3.06GHz with 4GB of

RAM.

4.1. Experimental Setup

To experiment the proposed technique, we took ten different

sentences as input from two different documents. The ten

different sentences are then encoded using our proposed

condition based Huffman encoding (CHE) technique and

using existing normal Huffman encoding technique. After

encoding the documents based on our proposed encoding

technique and the existing Huffman encoding technique, the

compression ratio is calculated for both the techniques and

compared. This is the first phase of comparison. In the second

phase of comparison, we compared the number of words a

hacker identified from the encrypted data based on randomly

generated key. It is done as follows: the ten different

sentences we given as input for encode process is taken as

input for the encryption process in our experimentation. The

ten different sentences are encrypted using our proposed

technique and using the existing AES technique. The

proposed encryption technique and the existing AES

technique is compared using a randomly generated key by

considering a hacker knows the length of the key and trying to

decrypt the encrypted data to see the original data. In the third

phase of comparison, the proposed technique is compared

with the existing encoding technique and the existing

encryption technique together.

4.2. Performance comparison

This section shows the performance comparison of our

proposed technique. The performance is compared for three

phases which are encoding, encryption and combining both.

For encoding, we compared our proposed encoding technique

with the existing Huffman encoding technique in terms of

execution time and compression ratio; and for encryption, we

compared our proposed encryption technique with the

existing AES technique in terms of execution time and total

word retrieved by randomly generated key. In the third phase,

we compared our proposed technique with the existing

technique (i.e. by combining the existing encoding and

existing encryption techniques) in terms of execution time and

memory consumption.

4.2.1 Evaluation metric

This section explains the evaluation of compression ratio used

for our comparison. The compression ratio is the ratio of total

memory taken by the input original data to the total memory

taken after encoding it. It is shown by a formula given below:

 
 encoded

input

DM

DM
CR 

In the above equation, CR denotes the compression ratio; and

 inputDM
denotes the memory taken by the input data; and

 encodedDM
denotes the memory taken after encoding the

original input data. If
 encodedDM

is less, then the value of

CR would be high. This denotes that the data is compressed

well.

4.2.2 Comparison based on encoding

International Journal of Computer Networks and Applications (IJCNA)

Volume 2, Issue 3, May – June (2015)

ISSN: 2395-0455 ©EverScience Publications 131

RESEARCH ARTICLE

This section shows the comparison between the proposed

(CHE) encoding technique and the existing Huffman

encoding technique. The comparisons are done based on

execution time and compression ratio.

Documents

Encoding time (in ms) Decoding time (in ms)

Normal

Huffman
Encoding

Proposed

Encoding
Technique

Normal

Huffman
Decoding

Proposed

Decoding
Technique

1 21 30 44 98

2 17 32 31 43

3 30 35 114 159

4 25 34 31 119

5 25 41 52 101

6 17 41 17 63

7 44 48 64 67

8 19 20 46 90

9 25 40 125 148

10 30 61 59 157

Table.1 Execution time for encoding and decoding

The Table.1 shows the execution time taken for encoding and

decoding using our proposed CHE technique and using the

existing Huffman encoding technique. Here, the ten

documents represent the ten different sentences we taken for

our experimentation. The time calculated for our

experimentation is in ms and this Table.1 shows that our

proposed technique took more time to execute for both

encoding and decoding. This is because our proposed

technique does more process than the normal Huffman

encoding technique to compress the data. The Table.2 shows

the compression ratio obtained between the proposed

encoding technique and the existing Huffman encoding

technique.

Documents

Compression ratio

Normal Huffman
Encoding

Proposed Encoding
Technique

1 0.7323 0.7337

2 0.7431 0.7444

3 0.7251 0.7257

4 0.7328 0.734

5 0.7272 0.7288

6 0.7312 0.7325

7 0.734 0.7355

8 0.7345 0.7365

9 0.7309 0.7319

10 0.7387 0.7399

Table.2 Compression ratio comparison

The Table.2 contains the compression ratio values using our

proposed encoding technique and the existing Huffman

encoding technique for the ten different sentences we gave as

input. It clearly shows that our proposed technique

compressed the data better than the existing technique for all

the ten different sentences we given as input.

4.2.3 Comparison based on encryption

This section shows the comparison between our proposed

(CSE) encryption technique and the existing AES encryption

technique. The comparisons are done based on execution time

and the number of words retrieved by a hacker using

randomly generated key.

Documents

Encryption time (in ms)
Decryption time (in

ms)

AES
Algorithm

Proposed
Technique

AES
Algorithm

Proposed
Technique

1 1224 284 729 128

2 1201 255 578 99

3 2217 422 913 200

4 1176 243 705 121

5 1856 328 919 176

6 989 215 739 134

7 1962 364 501 82

8 1006 221 596 97

9 1257 288 701 124

10 1293 260 796 139

Table.3 Execution time for encryption and decryption

The Table.3 shows the execution time taken for encryption

and decryption using our proposed technique and the existing

AES technique. The execution time values shown in this table

are measured in milliseconds and it is calculated for all the ten

different sentences we given as input. While decrypting the

International Journal of Computer Networks and Applications (IJCNA)

Volume 2, Issue 3, May – June (2015)

ISSN: 2395-0455 ©EverScience Publications 132

RESEARCH ARTICLE

encrypted data, the system would use different numbers of

randomly generated keys and if it identified any words, the

system would check with the dictionary and so the processing

time would get increase. If different words are identified

using different keys, it would also increase the processing

time. For instance, consider the first and second documents

are of same size and assume in the first document two

different words are identified by two different keys and in the

second document two different words are identified using

same key. Here, the execution time for decrypting the first

document would be more than the execution time of the

second document. The Table.4 shows the number of words

identified by the hacker based on randomly generated key.

Documents

max words discovered

AES
Algorithm

Proposed Encryption
Technique

1 27 14

2 21 0

3 28 12

4 26 0

5 27 0

6 14 0

7 13 0

8 16 0

9 26 0

10 24 0

Table.4 Number of words identified by hacker

The number of words identified by the hacker shown in this

Table.4 is taken by considering the words after decryption

present in the dictionary as original word. The process of

using a randomly generated key is as follows: Initially ten

keys are generated based on the length and based on the

genetic algorithm the generated keys are given for crossover

process and it is then given for mutation process. Therefore,

we would get thirty keys and the thirty keys are used to

decrypt the encrypted data to get the original data. The fitness

is calculated for each key and the fitness is the number of

decrypted words present in the general dictionary using

corresponding keys. Thereafter, ten best keys are selected

from the thirty keys based on the fitness and the process is

repeated until the iteration number we set. A best key is

chosen based on the best fitness to finally decrypt the

encrypted data.

Here in this Table.4 when using the first sentence, the hacker

identified 27 words on the encrypted data that used AES

encryption technique and the hacker identified 14 words on

the encrypted data that used our proposed technique. When

the second sentence is given as input for encryption, the

hacker identified 21 words using AES encryption technique

and he couldn’t find any words using our proposed technique.

When the third sentence is given as input for encryption, the

hacker identified 28 words using AES encryption technique

and the hacker identified 12 words using our proposed

technique. When all the other sentences are given as input, the

hacker identified some words on the AES based encrypted

data, but the hacker could not find any word on the encrypted

data that used our proposed encryption technique. The Table.4

clearly shows that our proposed technique is better compared

to the existing AES technique.

4.2.4 Comparison based on encoding and encryption together

This section shows the comparison between our proposed

technique and the existing encoding and encryption

techniques together based on execution time and memory

taken for execution. In the previous two comparisons, we

compared the proposed encoding with the existing encoding

technique and the proposed encryption with the existing

encryption technique to compare the effectiveness of our

proposed technique. But here, the proposed technique is

compared with the existing technique (i.e. by combining the

existing encoding and the existing encryption techniques).

The Table.5 shows the execution time comparison between

our proposed technique and the existing technique (combining

existing encoding and encryption techniques).

Documents
Execution Time (in ms)

Existing Technique Proposed Technique

1 2018 540

2 1827 429

3 3274 816

4 1937 517

5 2852 646

6 1762 453

7 2571 561

8 1667 428

9 2108 600

10 2178 617

Table.5 Execution time comparison

International Journal of Computer Networks and Applications (IJCNA)

Volume 2, Issue 3, May – June (2015)

ISSN: 2395-0455 ©EverScience Publications 133

RESEARCH ARTICLE

This Table.5 shows that our proposed technique consumed

more time than the existing technique (existing encoding

technique and existing encryption technique together),

because our proposed technique do more process than the

existing technique to effectively compress the data and for

secured transmission. The Table.6 shows the memory taken

for our proposed technique and the existing technique

(combining existing encoding and encryption techniques).

Documents
Memory (in bits)

Existing Technique Proposed Technique

1 5044840 4231112

2 4882600 3647000

3 5452472 2994912

4 4669000 1440728

5 4160352 3454616

6 5494464 1987456

7 3664272 2536912

8 4636816 1585256

9 4108432 1178904

10 3740720 2466184

Table.6 Memory consumption comparison

The Table.6 clearly shows that our proposed technique

consumed less memory than the existing technique. This

indicates that our technique compressed the data effectively.

5. CONCLUSION

In this paper we have proposed an approach to integrate

compression and encryption for textual data to reduce the

required space and to enhance the security. Here, initially the

text data is preprocessed by considering the repeated letters as

one and assigned corresponding frequency to it. Thereafter,

our proposed condition based Huffman encoding (CHE)

technique is applied to compress and encode the data and a

dictionary that contains essential information to retrieve the

original data is formed based on it. The dictionary is then

encrypted based on our proposed complex shuffle encryption

(CSE) technique using a 128 bit key. The encoded data, the

encrypted dictionary and the key is then sent to the receiver.

The receiver first decrypted the dictionary based on complex

shuffle decryption (CSD) technique that uses the received key

for decryption; and the original data is decoded based on

condition based Huffman decoding (CHD) technique that uses

the decrypted dictionary to decode the original data. Our

proposed encoding technique is compared with the existing

Huffman encoding technique based on compression ratio and

it showed that our technique is better than the existing

technique. We also compared our proposed encryption

technique with the existing AES technique based on number

of words retrieved by a hacker and it showed that our

technique performed better. The performance is also

compared between the proposed technique and the existing

technique (by combining the existing Huffman encoding and

existing AES techniques) based on execution time and

memory consumption and it showed that our technique

consumed less memory than the existing technique. In terms

of compression ratio, in terms of hacking and in terms of

memory usage, our technique performed better than the

existing techniques and showed that our technique reduced

the storage space and enhanced the security.

REFERENCES

[1] Tamar Shoham, David Malah and Slava Shechtman, “Quality

Preserving Compression of a Concatenative Text-To-Speech Acoustic
Database”, IEEE TRANSACTIONS ON AUDIO, SPEECH, AND

LANGUAGE PROCESSING, VOL. 20, NO. 3, PP. 1056-1068, 2012.

[2] M. Mitra, J.N. Bera and R. Gupta, "Electrocardiogram compression
technique for global system of mobile-based offline telecardiology

application for rural clinics in India", IET Science, Measurement and

Technology, Vol. 6, No. 6, PP. 412–419, 2012.
[3] L. Robert and R. Nadarajan, "Simple lossless preprocessing algorithms

for text compression", IET Software, Vol. 3, No. 1, PP. 37–45, 2009.

[4] Sebastian Wandelt and Ulf Leser, "FRESCO: Referential Compression
of Highly Similar Sequences", IEEE/ACM TRANSACTIONS ON

COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10,

NO. 5, PP. 1275-1288, 2013.

[5] Shuhui Wang and Tao Lin, "Compound image compression based on

unified LZ and hybrid coding", IET Image Processing, Vol. 7, No. 5,

PP. 484–499, 2013.
[6] Miguel A. Martínez-Prieto, Joaquín Adiego and Pablo de la Fuente,

"Natural Language Compression on Edge-Guided text preprocessing",

Information Sciences, Vol. 181, PP. 5387-5411, 2011.
[7] W. Oliveira Jr., E. Justino and L.S. Oliveira, "Comparing compression

models for authorship attribution", Forensic Science International, Vol.

228, PP. 100-104, 2013.
[8] Ashutosh Gupta and Suneeta Agarwal, "A fast dynamic compression

scheme for natural language texts", Computers and Mathematics with

Applications, Vol. 60, PP. 3139-3151, 2010.
[9] Ana Granados, David Camacho and Francisco Borja Rodríguez, "Is the

contextual information relevant in text clustering by compression?",

Expert Systems with Applications, Vol. 39, PP. 8537-8546, 2012.
[10] M.Baritha Begum and Y.Venkataramani, "LSB Based Audio

Steganography Based On Text Compression", Procedia Engineering,

Vol. 30, PP. 703-710, 2012.

[11] Ranjan Bose and Saumitr Pathak, "A Novel Compression and

Encryption Scheme Using Variable Model Arithmetic Coding and

Coupled Chaotic System", IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS—I, VOL. 53, NO. 4, PP. 848-857, 2006.

[12] Deep Vardhan Bhatt and Gerhard P. Hancke, "Secure Internet Access to

Gateway Using Secure Socket Layer", IEEE TRANSACTIONS ON
INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 3, PP.

793-800, 2006.

[13] Maruti Satti and Subhash Kak, "Multilevel Indexed Quasigroup
Encryption for Data and Speech", IEEE TRANSACTIONS ON

BROADCASTING, Vol. 55, No. 2, PP. 270-281, 2009.

[14] Neri Merhav, "Perfectly Secure Encryption of Individual Sequences",
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59,

NO. 3, PP. 1302-1310, 2013.

International Journal of Computer Networks and Applications (IJCNA)

Volume 2, Issue 3, May – June (2015)

ISSN: 2395-0455 ©EverScience Publications 134

RESEARCH ARTICLE

[15] Frédérique Oggier and Miodrag J. Mihaljevi´, "An Information-

Theoretic Security Evaluation of a Class of Randomized Encryption
Schemes", IEEE TRANSACTIONS ON INFORMATION

FORENSICS AND SECURITY, VOL. 9, NO. 2, PP. 158-168, 2014.

[16] Francisco Salcedo-Campos, Jesús Díaz-Verdejo and Pedro García-
Teodoro, "Segmental parameterisation and statistical modelling of e-

mail headers for spam detection", Information Sciences, Vol. 195, PP.

45-61, 2012.
[17] Sherif Sakr, "XML compression techniques: A survey and comparison",

Journal of Computer and System Sciences, Vol. 75, PP. 303-322, 2009.

[18] Nir Nissim, Robert Moskovitch, Lior Rokach and Yuval Elovici,
[19] "Novel active learning methods for enhanced PC malware detection in

windows OS", Expert Systems with Applications, 2014.

[20] Simson L. Garfinkel, "Digital media triage with bulk data analysis and
bulk_extractor", Computers & Security, Vol. 32, PP. 56-72, 2013.

[21] Baiying Lei, Ee-Leng Tan, Siping Chen, Dong Ni, Tianfu Wang and

Haijun Lei, "Reversible watermarking scheme for medical image based

on differential evolution", Expert Systems with Applications, Vol. 41,

PP. 3178-3188, 2014.

[22] Osama Ahmed Khashan and Abdullah Mohd Zin, "An Efficient
Adaptive of Transparent Spatial Digital Image Encryption", Procedia

Technology, Vol. 11, PP. 288-297, 2013.

