
International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 1

RESEARCH ARTICLE

Distributed File Systems Implementation on an Edge

Router using GlusterFS for Cloud Applications

Souryendu Das

Department of Electrical and Electronics Engineering

BITS Pilani K.K.Birla Goa Campus, Zuarinagar, Goa, India

souryendu@gmail.com

Abstract – A distributed file system (DFS) is a client/server-based

application that allows clients to access and process data stored on

the server as if it were on their own computer. An edge router has

series of data cards, to handle data inflow and outflow which can

be of the form of email headers, data packets, etc. Each of these

data cards have their own file system architecture. This paper

implements a distributed file system approach on all these data

cards, so as to make it a centrally controlled one file system and

not having parallel many file systems. Convenience of usage and

file handling capacity is also looked in this paper. The servers are

portrayed as the data cards of an edge router and the client access

points are the router processor cards. The DFS on Edge Router is

implemented using GlusterFS which is a scale-out network-

attached storage file system.

Index Terms – DFS, GlusterFS, Edge Router, File-system Mount

point, Cloud, Networking

1. INTRODUCTION

Client-server architectural models for communication and

storage of data are increasingly becoming popular in today’s

world [1]. In client/server model, file server acts as a parent

node which allows multiple child nodes to connect with it. It is

responsible for central storage and data management so that

other computers are enable to access the file under the same

network. In a distributed computer network environment, a

user program can access both local files, i.e., files stored on

secondary storage systems directly connected to the processor,

as well as remote files, i.e., files stored on secondary storage

systems that are accessed by a distributed network. As the

popularity of distributed computer networks has increased, the

demand to sore ever increasing volumes of data as remote files

has also increased. This is where distributed file system steps

in making the task of storage of data easier to accomplish.

Distributed File Systems (DFS) are network file systems based

on a client-server architecture which give improved scalability

and performance than individual file systems present on

different servers [2]. DFS has gained importance in the past

years over individual file systems, as it gives a more uniform

control and ease of access as a singular file system in a scalable

environment escalating over many servers. It also gives

advantage of slight modifications in its implementation in the

forms of a replicated, distributed-replicated and striped file

system which has enormous uses in cloud environments [3-4].

DFS also increases transparency and reduces the bottleneck of

file transfer queue and data rates when accessing files from

servers. It also ensures file security and backup as there would

be multiple copies of the files in various server locations in that

particular network. The files cold be stored distributed,

replicated striped or any combination of these in the network

locations. Early versions of DFS used File Replication Service

(FRS) which provides basic file replication capability between

servers. FRS identifies changed or new files, and copies the

latest version of the entire file to all servers. Then there was

introduction of “DFS Replication” (DFSR) which improves on

FRS by only copying those parts of files which have changed,

by using data compression to reduce network traffic, and by

allowing administrators flexible configuration options for

limiting network traffic with a customizable schedule. DFS has

already been tested and used successfully in cloud

environments for machine learning and data mining [5] and

also is exascale computing [6]. Having DFS implemented on

cloud applications such as edge router also has an advantage

over multiple file systems. It makes the system more secure

from eclipse attacks on overlay networks [7].

GlusterFS is an open source file system application which can

be used to implement DFS. It can automatically copy files and

provide file sharing service to solve the virtual machine

dynamic migration bottleneck [8] and can be used as the

underlying storage devices in a cloud environment. It has also

found applications in networking, IP and other cloud

applications [9].

In this paper I have used GlusterFS to implement a DFS over

and edge router and have discussed its benefits and

applications. The paper has been organized into many sections,

Section 2 talks about DFS in general and Section 3 shows basic

functionalities of GlusterFS. Section 4 depicts the various

architectural components of a typical edge router and its

functionalities. Section 5 illustrates the DFS implementation

over an edge router. Section 6 discusses the applications of

DFS in an edge router, and its various performance related

features. Section 7 shows the results of implementing this DFS,

on an edge router simulator, and then discusses the probability

of implementation on an edge router chassis.

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 2

RESEARCH ARTICLE

2. DISTRIBUTED FILE SYSTEMS

DFS allows users of physically distributed computers to share

data and storage resources by using a common file system over

different individual file systems [10]. It provides location

transparency and redundancy to improve data availability in the

face of failure or heavy load by allowing shares in multiple

different locations to be logically grouped under one folder, or

DFS root. It achieves reliability by replicating the data across

multiple servers. It ensures proper management of files and

communication between clients and servers in terms of file

processing downloads and uploads. DFS requirements in a

network are transparency, concurrency, replication,

heterogeneity, fault tolerance, consistency, security and

efficiency. A typical implementation of DFS is a collection of

workstations and mainframes connected by LAN, illustrated in

Fig. 1. For a DFS to exist functionally a minimum of two

servers and one client is required, however there isn’t any upper

bound to the limits here defined by DFS. The upper bound

usually depends upon the quality and load handling capacity of

the connectivity framework. DFS is also a key building block

for cloud computing applications [11]. In such file systems,

nodes simultaneously server computing and storage functions

and a file is partitioned into a number of chunks allocated in

distinct nodes. In networks based file systems where data can

exist on various nodes in different servers, it is more convenient

to have a centralized file system which can be uniformly

accessed and controlled. This centralized file system would

manage to store the data in the various nodes at the server

locations. Thus DFS makes it more convenient to control and

access files stored in a network as it eliminates the usage of

multiple file systems and the control and coordination

protocols employed between them. Research previously has

shown that various implementations of DFS in networks,

cloud, routers, etc. have improved stability of the system in

overall [12-15]. DFS also ensures network transparency and

high availability in a system of connected servers in a network.

It dynamically resizes and redistributes stripes on the storage

servers, supports varying size of stripes on the storage servers

to obtain finer concurrency, granularity on accessing the data

stripes [16]. This stripe management mechanism reduces I/O

response time and boosts I/O data throughput significantly for

applications with complicated access patterns. Architecturally

DFS falls into major categories, Fully Distributed and Client-

Server Model. Fully distributed means that files are distributed

to all sites which leads to issues on performance and

implementation complexity. In a client-server model there are

two players, file servers and clients depicted in Fig. 1. File

servers are dedicated sites strong files and perform storage and

retrieval operation. Clients are rest of the sites which use

servers to access files. DS is used in the client architectural

model in this paper.

Figure 1. Distributed File Systems Architecture

3. GLUSTERFS

GlusterFS is an open source distributed file system. It has a

linear scale-out and supports several petabytes and thousands

of parallel connections. There is no metadata structure, it

employs elastic hashing algorithm to distribute data efficiently

and implements a fully distributed architecture. It also has a

global namespace to support POSIX and high reliability on the

grounds of data replication and data self-heal. The open source

GlusterFS application comes in two packages, one is

GlusterFS-server which runs on the server side and the other is

GlusterFS-client which runs on the client side. The server side

access is through bricks which store data in EXT3/EXT4/XFS

format and the client side access file system is through

TCP/NFS/SAMBA. Its design and implementation is based on

a stackable modular user space. Each functional module in this

design is called a translator and all such translators constitute a

tree. Such a tree is depicted in Fig. 2. All translators support a

common API and can be stacked on top of each other in layers

[17-18]. The translator at each layer can decide to service the

call, or pass it to a lower-level translator. This modular design

enables translators to be composed into many unique

configurations. The available translators include: a server

translator, a client translator, a storage translator, and several

performance translators for caching, threading, prefetching,

etc. It uses hashing to distribute files among nodes. This greatly

reduces the complexity of the system functions. A typical

GlusterFS architecture diagram is depicted in Fig. 3 which

shows a simplified version of GlusterFS implementation of

DFS with two servers and one client. The two servers which

are the two nodes in the figure makes it distributed and there

are further two bricks inside these servers which are replicate

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 3

RESEARCH ARTICLE

copies of each other making the file system a distributed-

replicated file system [19]. Bricks are physical storage units

which are allocated for DFS and when a client accesses the

data, it mounts a particular brick on its network device’s mount

point. The file system is built from a cluster of data nodes, each

of which serves blocks of data over the network using a block

protocol [20]. These data nodes can talk (communicate) to each

other for rebalancing data distribution, to move copies around

and to keep the replication of data high.

Figure 2. Tree diagram for GlusterFS on client side and server

side

From Fig. 3 glusterfsd and glusterd are two daemons which run

on server side and stand for gluster file system daemon and

gluster daemon respectively and help in archiving the files, in

providing the command line interface and executing the server

side commands in the backend when a client accesses the file

system which is also called a gluster volume. A distributed-

replicated file system is much beneficial in this case as it gives

more backup and file security in case of mismatched files as it

makes a copy of the file in each of the nodes. The DFS which

is proposed in this paper for Edge Router application is also of

the distributed-replicated type for the obvious above mentioned

reasons.

Figure 3. Architecture Diagram of a two node GlusterFS

Cluster and a native client

4. EDGE ROUTER AND ITS ARCHITECTURE

An edge router routes data packets between one or more LANs

and an ATM (asynchronous transfer mode) backbone network.

It is also referred to as a boundary router which is in contrast to

a core router, whose primary function is to forward packets to

computer hosts within a network. Edge routers are also flexible

for interconnection between wireless technologies and IP based

networks [21]. The architecture of an edge router is not much

different from core router i.e., the former is between two

networks and the later works within a network. As in any other

case an edge router is also built of a slotted chassis and into

those slots cards are inserted. The slotted chassis arrangement

helps in simplifying repairs and upgrade of components. There

are three kinds of basic cards which can be inserted in a chassis,

interface/line cards, route processor (RP) cards and data cards.

The interface cards are the cards which actually involve

themselves in routing, have the network and mask information

and also have an Ethernet interface, and are commonly known

as NIC (Network Interface Card). For the purpose of DFS

implementation interface cards have no role to play in it. The

RP card is the card which controls the functioning in a router.

Just as in case of any device like computer and laptops, a router

also has fans, alarms and other things which are part of its

hardware and also a software which runs on the router which

can be called as the operating system of the router. The RP card

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 4

RESEARCH ARTICLE

has the OS of the router and controls the hardware peripherals.

The data cards is used for storage of file systems and other

temporary data like cache memory and flash memory of a

router, etc. The information is basically in the form of IP

headers, email headers, temporary packets of data used while

routing etc. which depends upon the amount of data being

queued at the router gateway at that particular time. Fig. 4

shows the architecture of the slotted chassis of an edge router.

The number of slots differ for different edge routers which are

product specifications done by its manufacturing company. For

DFS to work on an edge router, it should have atleast one RP

card and two data cards. Since a router needs an interface card

to communicate with the outside network, so an interface card

is also required in this case. Having more RP cards or data cards

is always possible and there is no maximum limit defined by

DFS, however there might be hardware and network speed

constraints which would be given by the manufacturer.

Figure 4. Slotted Chassis Arrangement of an Edge Router

5. DFS IMPLEMENTATION IN EDGE ROUTER USING

GLUSTERFS

The client-server architecture described so far in DFS is

implemented in the same way in an edge router. In this model

the RP card acts as the client where GlusterFS-client will run

and the data cards act as servers where GlusterFS-server runs

having the bricks, volumes and DFS implemented over them.

As described in the edge router architecture, DFS would work

efficiently on a minimum of one RP card and two data cards.

The data cards will also have a GlusterFS client application

running inside them for client level applications running locally

inside them and to handle the server access requests from the

client at the RP side. The file system being implemented here

is of the kind of distributed-replicated, and from Fig. 2, the

distribution happen first and the replication happens at the next

step. Hence, four bricks which are created are done in a two-

step process, first the distribution divides it into two servers and

then replication inside the servers allows two copies of the file

inside each server making it four. In an edge router the

distribution into two occurs into the two data cards, and for the

replication inside each of the data cards, there are daughter

cards. Each data card has two daughter cards in this case.

Daughter cards don’t physically exist as hardware, it is just a

name given to a certain partitioned disk (fragment) space which

is a part of the parent data card. Hence the total disk space of a

daughter card is the number of daughter cards multiplied by the

disk space of each of those daughter cards. Fig. 5 shows the

server side working of GlusterFS on data cards. It shows the

interfacing of a data card with the fabric interface and how we

control it. The fabric interface is IPoF (IP over fabric), i.e., IPv6

packets are sent over a fabric interface. A similar technology to

this one is VoIP (Voice over IP). CLI (Command Line

Interface) is actually a backend process which handles all the

service requests being raised by clients on data card and issues

server responses to the clients from data card, in other words it

is the control unit similar to our brain. The DFS exists as a

distributed-replicated having four bricks, two each on the two

data cards. When some file gets automatically or manually

added, changed, modified or deleted in this file system, the

commands are given at the CLI. The CLI commands are

accepted by DFS Manager who has the ability to interpret these

commands and execute necessary actions based on these

commands. The actions are executed in the data cards through

the help of DFS client handler which handles all the requests

coming from the client side at RP for specific file access

requests and other similar requests. The DFS client handler

processes these requests and passes them on the gluster client

application running on data card, which then allows mounting

the file system and other specific requests to the Ethernet

interface of the data card which is then passed on to the

Ethernet fabric from where the client can pick up these data

packets. Once the client requests have been processed and

approved then, there is a gluster-client application running on

data card which then actually pushes the data over the Ethernet

interface which is normally a GiGe (Gigabit Ethernet) and then

finally to IPoF from where the gluster client application of RP

picks it up and sends it to the application running on RP to

transform it to a form which an user can readily access it from.

The most interesting part of this architecture is that the client

won’t know the file is coming from which brick of which data

card. The file may also be sent in parts from different bricks, or

as a whole from one particular brick, depending upon interface

availability and the traffic at each of the individual brick mount

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 5

RESEARCH ARTICLE

points. Since the whole file system is one complete DFS, the

client needs to mount only one of the bricks of any of the data

cards on its directory, as the other bricks are already connected

to this one in a unified file system [22]. If there were individual

file systems with individual bricks, then the client would have

had to mount all the bricks as separate directories for accessing

the files, making the process complicated and cumbersome.

Since here the files can come in many parts from any of the

bricks in parallel, it makes the access faster and easier at the

client side. Also if any file is changed, modified, added or

deleted then it needs to be done at one brick only, the

corresponding and respective changes at the other brick points

would be automatically reflected and handled by GlusterFS as

everything is just one particular file system.

Figure 5. GlusterFS on data card

GlusterFS can’t be used as it is on an edge router, as the original

source code works on servers and computers with a different

sort of addressing scheme. A router and its card have different

addressing scheme and also extra features which are

exclusively for networking. Hence GlusterFS is built

(packaged) separately for edge router from its original source

code, and a minimum of two such builds are required for DFS.

One build is for RP card and another build is for data card. This

build also accommodates some additional support for edge

routers e.g., IPv6 address support. For a basic DFS this much

is sufficient enough to function, however a data card can have

more functions for which GlusterFS would be needed

separately. These functions are for any application running

separately on data card, which requires the resources of the data

card. A data card has three main virtual machines running on

them, application VM, platform VM, and main domain.

Application VM is for running any application specific service

which is discussed later. Platform VM is used for running the

applications which fetch and store any data centric applications

which are based on the data card. Main Domain can be

regarded as the CPU of the data card of an edge router, it has

the typical functionalities and CLI interpreters for any request

running on a data card.

For the purpose of DFS only platform VM and main domain

are of importance as DFS doesn’t use any application specific

processes, however any application running on data card might

require GlusterFS. Hence GlusterFS needs to be packaged

separately into four different packages for Platform VM, Main

Domain, Application VM and one package running on RP card.

This is depicted in Fig. 6. In case of an Edge Router simulator

there is no Main Domain, as its running in a virtual

environment and there is physically no existence of kernel.

Figure 6. Gluster packages in edge router

6. APPLICATION OF DFS ON EDGE ROUTER

To understand applications of DFS on Edge Router, first a look

into how edge routers deliver services to users in cloud

computing scenario needs to be taken. Infrastructure as a

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 6

RESEARCH ARTICLE

service (IaaS), platform as a service (PaaS) and software as a

service (SaaS) are the major three kinds of cloud computing

services delivered to the users [23]. In IaaS computing

resources are provided in the form of virtual machines (VMs)

and a VM gives the user a view to a dedicated server. PaaS

provides access to the resources in the form of application

programming interface (API). Here the user doesn’t have

access to the system resources, and the resource allocation is

done by the platform. SaaS provides application level software

services from the internet. The three modes of cloud computing

services along with their applications are described more

clearly in Fig. 7, from where it is quite clear that DFS on edge

router is applicable to the PaaS mode of cloud computing. The

platform is itself the edge router, whose console output is the

API which is provided to any particular user whenever he logs

in to the edge router for accessing any data from the data cards.

Live usage of DFS in the PaaS mode could be in analyzing

network traffic itself, where the network data could be stored

in the DFS and there are live examples of such applications too

e.g., Service Aware Support Node (SASN). SASN is a PaaS

application developed by Ericsson and it provides advanced

functionality that makes it possible to identify and categorize

different types of traffic. As part of a complete charging and

policy control solution, the benefits include better service

performance and improved network utilization. SASN uses

DFS extensively for the obvious reasons mentioned above and

runs on application VM of data card. Such similar applications

running on edge routers are also on the phase of development

if not already deployed by other such market leaders in the edge

router business. For this IPv6 functionality is required which is

incorporated additionally inside GlusterFS.

Figure 7. Services in cloud computing

DFS Manager can also be regarded as the master, and it pushes

the work out to available task nodes (brick mount points at

respective data cards) and it knows which node contains the

data, and which other hosts are nearby. If the task cannot be

hosted on the node where the data is stored, priority is given to

the nodes in the same data card. In this way network traffic on

the main backbone is reduced, further increasing throughput. If

by chance DFS manager fails to function then after restart it

can continue resuming the tasks from where it had left at the

least point. Confidentiality (secure data access) is achieved by

cryptographic protocols and auditability (whether security

settings of applications has been tampered or not) is achieved

by remote attestation techniques [20].

7. DFS SIMULATION

DFS is simulated and implemented in a step by step manner.

Before one can jump onto testing DFS on an edge router, a

thorough testing of GlusterFS was done on local laptop/server.

This is achieved by booting up multiple Linux distributions on

a virtual box where two Linux machines were made as servers

and one as client and a replicated file system of our own was

configured. The only issue here is that all the three Linux need

to run simultaneously along with the parent windows laptop;

hence RAM requirements are quite high, essentially 1GB RAM

each for the three VMs and whatever is required for running

the parent windows laptop. To be on safe side successful testing

can be easily achieved in systems with 8GB RAM. Mount

points on the servers were successfully accessed by clients and

changes were made in the file system volume’s bricks.

Edge router simulator software is available licensed from

Cisco, Ericsson, Juniper, etc. Before DFS can be implemented

on a real edge router, it needs to be tested on a simulator. A

chassis is basically the physical externals of a router without

any functionality. It becomes functional with the cards installed

in it. The difference between a simulator and a real router

chassis is that a simulator only provides the environment of the

router, but there is no chassis or hardware or physical cards in

a simulator. It also simulates the connections of the real world

in exactly the same way how a router works but in a virtual

environment. There is an assumption that is something works

on simulator, then it would also work on the original and real

router hardware. This statement is true to most of its extent;

however certain functionalities might get affected. Hence the

first step in a simulator includes creation of a chassis with the

required number of cards and slots, and then starting the chassis

on the simulator. The below source code shows creation of a

chassis with one line/interface card, two data cards and one RP

card and then inserting them into the chassis and starting the

chassis. At the end there is a show command to check the status

of the chassis created, so that one can verify all the cards and

slots correctly. Data cards have storage disk capacities in them

and in this simulation tow data cards with 50 GB capacity have

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 7

RESEARCH ARTICLE

been taken. In general the minimum size of a data card should

be 10 GB i.e., 5 GB for each daughter card.

 prepare

 create chassis dfs_data_ch

 create rpsw dfs_data_rp1

 create data_card dfs_data_1 dfsdisk 50

 create data_card dfs_data_2 dfsdisk 50

 create ge-40-port dfs_data_lc1

 insert dfs_data_rp1 dfs_data_ch RP_CARD-1

 insert dfs_data_1 dfs_data_ch 1

 insert dfs_data_2 dfs_data_ch 2

 insert dfs_data_lc1 GE_40_Port-1

 start dfs_data_ch

 show

A point to be noted is that a chassis can’t be created without a

line card, as no routing will happen without line card. Therefore

a line card is also created in the chassis even though DFS

doesn’t require the usage of line cards. After the creating of

chassis on simulator, the gluster packages are moved in the

simulator separately for each of the components, and tested.

Test results show functionalities of IPv6, aliasing, robustness

and increase in stability of the system. Theoretically if there are

N different file systems on different servers and each of their

throughput capacity is C and file backup capacity be B. Then

robustness of the file system is given by

 𝑅 ∝ 𝐵 ∗ 𝐶 (1)

However in case of a DFS with N servers in the same file

system, the robustness is given by

 𝑅 ∝ 𝑁2 ∗ 𝐵 ∗ 𝐶 (2)

This is also shown by the simulator results, when tested against

file redundancy, and error rates in loss of files in the file

system. A factor of N2 comes because each of the quantities,

i.e., throughput capacity and file backup capacity get multiplied

by a factor of N.

8. CONCLUSION

This paper talks about DFS implementation on an edge router

using GlusterFS. It follows the client-server architecture with

the various cards in the edge router being the servers and

clients. DFS enhances file security, backup, ease of access and

GlusterFS increases confidentiality and auditability. There are

many options available for workflow storage in the cloud, and

the performance of storage systems such as GlusterFS [24] is

quite good. The bottleneck of reduced throughput is removed

by using the GlusterFS architecture; the data card features and

the stability and robustness of the system is increased. DFS

finds lots of applications where data needs to be stored and

accessed in an edge router and one of them being keeping a

data record of network traffic and calculating tariffs according

to it. Further applications of DFS would be studied, and ways

to improve GlusterFS performance on edge router with other

upgrades would be the course of study in further works. Also

DFS would be implemented on a real chassis of an edge router,

after more enhancement and betterment of performance and

stability in simulator results. Applications of DFS on core

routers would also be explored subsequently.

REFERENCES

[1] C.W. Zhao, J. Jegatheesan, and S. C. Loon, “Exploring IOT Application

Using Raspberry Pi,” in International Journal of Computer Networks and
Applications, vol. 2(1), pp. 27–34, Feb 2015.

[2] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M.

Satyanarayan, R. N. Sidebotham, and M. J. West, “Scale and
performance in a distributed file system,” in ACM Transactions on

Computer Systems, vol. 6(1), pp. 51–81, Feb 1998.
[3] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethining Erasure

Codes for Cloud File Systems: Minimizing I/O for Recovery and

Degraded Reads,” in FAST 2012, pp. 1–14, 2012.
[4] D. Sun, G. Chang, S. Gao, L. Jin, and X. Wang, “Replication Strategy ti

Increase System Availability in Cloud Computing Environments,” in

Journal of Computer Science and Technology, vol. 27(2), pp. 256–272,
March 2012.

[5] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.

Hellerstein, “Distributed Graphlah: a framework for machine learning
and data mining in the cloud,” in Proceedings of the VLDB Endowment,

vol. 5(8), pp. 716–727, April 2012.

[6] D. Zhao, and I. Raicu, “Distributed File Systems for Exascale

Computering,” in IEEE/ACM Supercomputing Doctoral Showcase, pp.

1–2, 2012.

[7] A. Singh, T. W. Ngan, P. Druschel, and D. S. Wallach, “Eclipse attacks
on overlay networks: Threats and Defenses,” in 25th IEEE INFOCOM,

pp. 1–12, 2006.

[8] D. Xiao, C. Zhang, X. Li, “The Performance Analysis of GlusterFS in
Virtual Storage,” in International Conference on Advances in

Mechanical Engineering and Industrial Informatics, pp. 199–203, 2015.

[9] M. Kumar, “Characterizing the GlusterFS distributed file system for
software defined networks research,” in Proquest Dissertation and

Theses, pp. 1–43, 2015.

[10] E. Levy, and A. Silberschatz, “Distributed file systems: concepts and
examples,” in ACM Computing Surveys, vol. 22(4), pp. 321–374, Dec

1990.

[11] Hsiao, and Hung-Chang, “Load Rebalancing for Distributed File Systems
in Clouds,” in IEEE Transactions on Parallel and Distributed Systems,

vol. 25(5), pp. 951–962, 2012.

[12] B. Shao, H. Wang, and Y. Li, “Trinity: a distributed graph engine on a

memory cloud,” in ACM SIGMOD International Conference on

Management of Data, pp. 505–516, 2013.

[13] L. Wang, J. Tao, R. Ranjan, H. Martin, A. Streit, J. Chen, and D. Chen,
“G-Hadoop: MapReduce across distributed data centers for data-

intensive computing,” in Future Generation Computer Systems, vol.

29(3), pp. 739–750, March 2013.
[14] M. Vrable, S. Savage, and G. M. Voelkar, “BlueSky: a cloud-backed file

system for the enterprise,” in 10th USENIX conference on File and

Storage technologies, pp. 19–19, 2012.
[15] J. Zhang, G. Wu, X. Hu, and X. Wu, “A Distributed Cache for hadoop

Distributed File System in Real-Time Cloud Services,” in ACM/IEEE

13th International Conference on Grid Computing, pp. 12–21, 2012.

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 8

RESEARCH ARTICLE

[16] J. Liao, G. Xiao, X. Liu, and L. Zhu, “Dynamic Stripe Management

Mechanism in Distributed File Systems,” in 11th IFIP WG 10.3
International Conference NPC, vol. 8707, pp. 497–509, 2014.

[17] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman, and

P. Maechling, “Data Sharing Options for Scientific Workflows on
Amazon EC2,” in ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis, pp. 1–9,

2010.
[18] E. Deelman, G. B. Berriman, B. P. Berman, and P. Maechling, “An

Evaluation of the Cost and Performance of Scientific Workflows on

Amazon EC2,” in Journal of Grid computing, vol. 10(1), pp. 5–21, March
2012.

[19] A. Davies, and A. Orsaria, “Scale out with GlusterFS,” in Linux Journal,

vol. 2013(235), 2013.
[20] Q. Zhang, L. Cheng, R. Boutaba, “Cloud computing: state of the art and

research challenges,” in Brazilian Computer Society, Journal of Internet

Server Application, vol. 1, pp. 7–18, April 2010.

[21] W. Louati, B. Jouaber, and D. Zeghlache, “Configurable software-based

edge router architechture,” in Computer Communications, vol. 28(14),

pp. 1692–1699, September 2005.
[22] I. Raicu, I. T. Foster, and P. Beckman, “Making a case for disturbed file

system at Exascale,” in Third International Workshop on Large-scale
system and application performance, pp. 11-18, 2011.

[23] A. Beloglazoy, S. F. Piraghaj, M. Alrokayam, and R. Buyya, “Deploying

OpenStack on CentOS Using the KVM Hypervisor and GlusterFS
Distributed File System,” Cloudbus.org, 2012.

[24] Gluster, Inc., “GlusterFS,” in http://www.gluster.org

Author

Souryendu Das was born in Howrah, India,

in 1994. He is doing his B.E.(Hons) degree
in Electrical and Electronics Engineering

from BITS Pilani K. K. Birla Goa Campus

and will graduate in 2016. His current
research interests include antenna design, IP

& Networking, Internet of Things, Wireless

Communication, Cloud Computing, and
network security. He has published 2 papers

in the field of antenna design, and this is his

3rd publication. He works with Ericsson
R&D, in the field of Cloud & IP.

http://www.gluster.org/

