1.
Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J., Yadwadkar, N. J., Popa, R. A., & Patterson, D. A. (2021). What serverless computing is and should become: the next phase of cloud computing. Communications of the ACM, 64(5), 76-84.
2.
Bello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M., Delgado, J. M. D., Akanbi, L. A., ... & Owolabi, H. A. (2021). Cloud computing in construction industry: use cases, benefits and challenges. Automation in Construction, 122, 1-18.
3.
Atieh, A. T. (2021). The next generation cloud technologies: a review on distributed cloud, fog and edge computing and their opportunities and challenges. ResearchBerg Review of Science and Technology, 1(1), 1-15.
4.
Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A., & Alzain, M. A. (2021). A load balancing algorithm for the data centres to optimize cloud computing applications. IEEE Access, 9, 41731-41744.
5.
Mishra, S. K., Sahoo, B., & Parida, P. P. (2020). Load balancing in cloud computing: a big picture. Journal of King Saud University-Computer and Information Sciences, 32(2), 149-158.
6.
Imran, M., Ibrahim, M., Din, M. S. U., Rehman, M. A. U., & Kim, B. S. (2022). Live virtual machine migration: a survey, research challenges, and future directions. Computers and Electrical Engineering, 103, 1-18.
7.
Houssein, E. H., Gad, A. G., Wazery, Y. M., & Suganthan, P. N. (2021). Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends. Swarm and Evolutionary Computation, 62, 1-41.
8.
Bittencourt, L. F., Goldman, A., Madeira, E. R., da Fonseca, N. L., & Sakellariou, R. (2018). Scheduling in distributed systems: a cloud computing perspective. Computer Science Review, 30, 31-54.
9.
Asghari, A., Sohrabi, M. K., & Yaghmaee, F. (2020). Online scheduling of dependent tasks of cloud’s workflows to enhance resource utilization and reduce the makespan using multiple reinforcement learning-based agents. Soft Computing, 24(21), 16177-16199.
10.
Jamil, B., Ijaz, H., Shojafar, M., Munir, K., & Buyya, R. (2022). Resource allocation and task scheduling in fog computing and internet of everything environments: a taxonomy, review, and future directions. ACM Computing Surveys, 10(1), 1-35.
11.
Murad, S. A., Muzahid, A. J. M., Azmi, Z. R. M., Hoque, M. I., & Kowsher, M. (2022). A review on job scheduling technique in cloud computing and priority rule based intelligent framework. Journal of King Saud University-Computer and Information Sciences, 34, 2309-2331.
12.
Al-Arasi, R., & Saif, A. (2020). Task scheduling in cloud computing based on metaheuristic techniques: a review paper. EAI Endorsed Transactions on Cloud Systems, 6(17), 1-19.
13.
Alsadie, D. (2021). TSMGWO: optimizing task schedule using multi-objectives grey Wolf optimizer for cloud data centers. IEEE Access, 9, 37707-37725.
14.
Abd Elaziz, M., Xiong, S., Jayasena, K. P. N., & Li, L. (2019). Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution. Knowledge-Based Systems, 169, 39-52.
15.
Xu, J., Hao, Z., Zhang, R., & Sun, X. (2019). A method based on the combination of laxity and ant colony system for cloud-fog task scheduling. IEEE Access, 7, 116218-116226.
16.
Chen, X., Cheng, L., Liu, C., Liu, Q., Liu, J., Mao, Y., & Murphy, J. (2020). A WOA-based optimization approach for task scheduling in cloud computing systems. IEEE Systems Journal, 14(3), 3117-3128.
17.
Jia, L., Li, K., & Shi, X. (2021). Cloud computing task scheduling model based on improved whale optimization algorithm. Wireless Communications and Mobile Computing, 2021, 1-13.
18.
Wang, Y., & Zuo, X. (2021). An effective cloud workflow scheduling approach combining PSO and idle time slot-aware rules. IEEE/CAA Journal of Automatica Sinica, 8(5), 1079-1094.
19.
Dubey, K., & Sharma, S. C. (2021). A novel multi-objective CR-PSO task scheduling algorithm with deadline constraint in cloud computing. Sustainable Computing: Informatics and Systems, 32, 1-20.
20.
Ajmal, M. S., Iqbal, Z., Khan, F. Z., Ahmad, M., Ahmad, I., & Gupta, B. B. (2021). Hybrid ant genetic algorithm for efficient task scheduling in cloud data centers. Computers and Electrical Engineering, 95, 1-15.
21.
Calzarossa, M. C., Della Vedova, M. L., Massari, L., Nebbione, G., & Tessera, D. (2021). Multi-objective optimization of deadline and budget-aware workflow scheduling in uncertain clouds. IEEE Access, 9, 89891-89905.
22.
Kumar, M. S., Tomar, A., & Jana, P. K. (2021). Multi-objective workflow scheduling scheme: a multi-criteria decision making approach. Journal of Ambient Intelligence and Humanized Computing, 12(12), 10789-10808.
23.
Oudaa, T., Gharsellaoui, H., & Ahmed, S. B. (2021). An agent-based model for resource provisioning and task scheduling in cloud computing using DRL. Procedia Computer Science, 192, 3795-3804.
24.
Sharma, N., & Garg, P. (2022). Ant colony based optimization model for QoS-based task scheduling in cloud computing environment. Measurement: Sensors, 24, 1-9.
25.
Mahmoud, H., Thabet, M., Khafagy, M. H., & Omara, F. A. (2022). Multiobjective task scheduling in cloud environment using decision tree algorithm. IEEE Access, 10, 36140-36151.
26.
Kruekaew, B., & Kimpan, W. (2022). Multi-objective task scheduling optimization for load balancing in cloud computing environment using hybrid artificial bee colony algorithm with reinforcement learning. IEEE Access, 10, 17803-17818.
27.
Xie, L., Han, T., Zhou, H., Zhang, Z. R., Han, B., & Tang, A. (2021). Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization. Computational Intelligence and Neuroscience, 2021, 1-22.