1.
Khan, A. R., Kashif, M., Jhaveri, R. H., Raut, R., Saba, T., & Bahaj, S. A. (2022). Deep Learning for Intrusion Detection and Security of Internet of Things (IoT): Current Analysis, Challenges, and Possible Solutions. Security and Communication Networks, 2022.
2.
Hyde, P., Ulianov, C., Liu, J., Banic, M., Simonovic, M., & Ristic-Durrant, D. (2022). Use cases for obstacle detection and track intrusion detection systems in the context of new generation of railway traffic management systems. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 236(2), 149-158.
3.
Singh, A., Amutha, J., Nagar, J., Sharma, S., & Lee, C. C. (2022). AutoML-ID: automated machine learning model for intrusion detection using wireless sensor network. Scientific Reports, 12(1), 1-14.
4.
Echeberria-Barrio, X., Zola, F., Segurola-Gil, L., & Orduna-Urrutia, R. (2021, September). SmartWarden: Automated Intrusion Detection System for Smart Contracts. In 2021 3rd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS) (pp. 51-52). IEEE.
5.
Pasikhani, A. M., Clark, J. A., Gope, P., & Alshahrani, A. (2021). Intrusion detection systems in RPL-based 6LoWPAN: a systematic literature review. IEEE Sensors Journal, 21(11), 12940-12968.
6.
Bui, H. K., Lin, Y. D., Hwang, R. H., Lin, P. C., Nguyen, V. L., & Lai, Y. C. (2021). CREME: A toolchain of automatic dataset collection for machine learning in intrusion detection. 193, 103212.
7.
M. Aljabri et al., "Detecting Malicious URLs Using Machine Learning Techniques: Review and Research Directions," in IEEE Access, vol. 10, pp. 121395-121417, 2022,doi:10.1109/ACCESS.2022. 3222307.
8.
Hughes, K., McLaughlin, K., & Sezer, S. (2021, July). Towards Intrusion Response Intel. In 2021 IEEE International Conference on Cyber Security and Resilience (CSR) (pp. 337-342). IEEE.
9.
J. Lee, J. Kim, I. Kim and K. Han, "Cyber Threat Detection Based on Artificial Neural Networks Using Event Profiles," in IEEE Access, vol. 7, pp. 165607-165626, 2019. doi: 10.1109/ACCESS.2019.2953095
10.
P. A. Legg, O. Buckley, M. Goldsmith and S. Creese, "Automated Insider Threat Detection System Using User and Role-Based Profile Assessment," in IEEE Systems Journal, vol. 11, no. 2, pp. 503-512, June 2017. doi: 10.1109/JSYST.2015.2438442
11.
Otapo, A. T., Saliu, L. A., Sodiq, K. A., Tokunbo-Cole, M. O., & Okia, F. U. OFFICE-AUTOMATED intrusion DETECTION SYSTEM (O-AIDS).
12.
Hammar, K., & Stadler, R. (2021, October). Learning intrusion prevention policies through optimal stopping. In 2021 17th International Conference on Network and Service Management (CNSM) (pp. 509-517). IEEE.
13.
Tripathi, D., Tripathi, A. K., Singh, L. K., & Chaturvedi, A. (2022). Towards analyzing the impact of intrusion prevention and response on cyber-physical system availability: A case study of NPP. Annals of Nuclear Energy, 168, 108863.
14.
Pani, A. K., Manohar, M., & Kumar, R. (2021). An efficient algorithmic technique for feature selection in IoT-based intrusion detection system. Indian J. Sci. Technol, 14, 76-85.
15.
Alavizadeh, H., Alavizadeh, H., & Jang-Jaccard, J. (2022). Deep Q-Learning based Reinforcement Learning Approach for Network Intrusion Detection. Computers, 11(3), 41.
16.
Chou, D., & Jiang, M. (2021). A survey on data-driven network intrusion detection. ACM Computing Surveys (CSUR), 54(9), 1-36.
17.
E. Anthi, L. Williams, M. S?owi?ska, G. Theodorakopoulos and P. Burnap, "A Supervised Intrusion Detection System for Smart Home IoT Devices," in IEEE Internet of Things Journal, vol. 6, no. 5, pp. 9042-9053, Oct. 2019. doi: 10.1109/JIOT.2019.2926365
18.
W. -C. Hong, D. -R. Huang, C. -L. Chen and J. -S. Lee, "Towards Accurate and Efficient Classification of Power System Contingencies and Cyber-Attacks Using Recurrent Neural Networks," in IEEE Access, vol. 8, pp. 123297-123309, 2020. doi: 10.1109/ACCESS.2020.3007609
19.
Mohamed, T. S., & Aydin, S. (2021). IoT-Based Intrusion Detection Systems: A Review. Smart Science, 1-18.
20.
R. Ishibashi, K. Miyamoto, C. Han, T. Ban, T. Takahashi and J. Takeuchi, "Generating Labeled Training Datasets Towards Unified Network Intrusion Detection Systems," in IEEE Access, vol. 10, pp. 53972-53986, 2022. doi: 10.1109/ACCESS.2022.3176098
21.
Ge, M., Fu, X., Syed, N., Baig, Z., Teo, G., & Robles-Kelly, A. (2019, December). Deep learning-based intrusion detection for IoT networks. In 2019 IEEE 24th pacific rim international symposium on dependable computing (PRDC) (pp. 256-25609). IEEE.
22.
S. Pan, T. Morris and U. Adhikari, "Developing a Hybrid Intrusion Detection System Using Data Mining for Power Systems," in IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 3104-3113, Nov. 2015. doi: 10.1109/TSG.2015.2409775
23.
Saranya, T., Sridevi, S., Deisy, C., Chung, T. D., & Khan, M. A. (2020). Performance analysis of machine learning algorithms in intrusion detection system: a review. Procedia Computer Science, 171, 1251-1260.
24.
Gassais, R., Ezzati-Jivan, N., Fernandez, J. M., Aloise, D., & Dagenais, M. R. (2020). Multi-level host-based intrusion detection system for Internet of things. Journal of Cloud Computing, 9, 1-16.
25.
Nagaraja, U. Boregowda, K. Khatatneh, R. Vangipuram, R. Nuvvusetty and V. Sravan Kiran, "Similarity-Based Feature Transformation for Network Anomaly Detection," in IEEE Access, vol. 8, pp. 39184-39196, 2020. doi: 10.1109/ACCESS.2020.2975716
26.
M. Zeeshan et al., "Protocol-Based Deep Intrusion Detection for DoS and DDoS Attacks Using UNSW-NB15 and Bot-IoT Data-Sets," in IEEE Access, vol. 10, pp. 2269-2283, 2022. doi: 10.1109/ACCESS.2021.3137201
27.
Krishna, A. M., & Tyagi, A. K. (2020, February). Intrusion detection in intelligent transportation system and its applications using blockchain technology. In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE) (pp. 1-8). IEEE.
28.
P. Krishnamurthy, F. Khorrami, S. Schmidt and K. Wright, "Machine Learning for NetFlow Anomaly Detection With Human-Readable Annotations," in IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 1885-1898, June 2021.
29.
Rajagopal, S., Kundapur, P. P., & Hareesha, K. S. (2021). Towards effective network intrusion detection: from concept to creation on Azure cloud. IEEE Access, 9, 19723-19742.
30.
Y. Li et al., "Automated Anomaly Detection via Curiosity-Guided Search and Self-Imitation Learning," in IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 6, pp. 2365-2377, June (2022). doi: 10.1109/TNNLS.2021.3105636
31.
W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei and F. Sabrina, "Improving Performance of Autoencoder-Based Network Anomaly Detection on NSL-KDD Dataset," in IEEE Access, vol. 9, pp. 140136-140146, 2021. doi: 10.1109/ACCESS.2021.3116612
32.
J. Pacheco, V. H. Benitez, L. C. Félix-Herrán and P. Satam, "Artificial Neural Networks-Based Intrusion Detection System for Internet of Things Fog Nodes," in IEEE Access, vol. 8, pp. 73907-73918, 2020. doi: 10.1109/ACCESS.2020.2988055
33.
M. Poongodi, V. Vijayakumar, F. Al-Turjman, M. Hamdi and M. Ma, "Intrusion Prevention System for DDoS Attack on VANET With reCAPTCHA Controller Using Information Based Metrics," in IEEE Access, vol. 7, pp. 158481-158491, 2019. doi: 10.1109/ACCESS.2019.2945682
34.
D. Vallejo-Huanga, M. Ambuludi and P. Morillo, "Empirical Exploration of Machine Learning Techniques for Detection of Anomalies Based on NIDS," in IEEE Latin America Transactions, vol. 19, no. 5, pp. 772-779, May 2021. doi: 10.1109/TLA.2021.9448311
35.
F. van Wyk, Y. Wang, A. Khojandi and N. Masoud, "Real-Time Sensor Anomaly Detection and Identification in Automated Vehicles," in IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 3, pp. 1264-1276, March 2020. doi: 10.1109/TITS.2019.2906038
36.
R. K. Sharma, B. Issac and H. K. Kalita, "Intrusion Detection and Response System Inspired by the Defense Mechanism of Plants," in IEEE Access, vol. 7, pp. 52427-52439, 2019. doi: 10.1109/ACCESS.2019.2912114