1.
B. J. Chang, Y. H. Liang, and Y. M. Lin, “Distributed route repair for increasing reliability and reducing control overhead for multicasting in wireless MANET,” Inf. Sci. (Ny)., vol. 179, no. 11, pp. 1705–1723, 2009, doi: 10.1016/j.ins.2009.01.013.
2.
Z. A. Younis, A. M. Abdulazeez, S. S. R. M. Zeebaree, R. R. Zebari, and D. Q. Zeebaree, “Mobile Ad Hoc Network in Disaster Area Network Scenario; A Review on Routing Protocols,” Int. J. online Biomed. Eng., vol. 17, no. 3, pp. 49–75, 2021, doi: 10.3991/ijoe.v17i03.16039.
3.
M. U. Farooq and M. Zeeshan, “Connected dominating set enabled on-demand routing (CDS-OR) for wireless mesh networks,” IEEE Wirel. Commun. Lett., vol. 10, no. 11, pp. 2393–2397, 2021, doi: 10.1109/LWC.2021.3101476.
4.
R. J. Shimonski, W. Schmied, T. W. Shinder, V. Chang, D. Simonis, and D. Imperatore, “DMZ Router and Switch Security,” in Building DMZs For Enterprise Networks, R. J. Shimonski, W. Schmied, T. W. Shinder, V. Chang, D. Simonis, and D. B. T.-B. Dmz. F. E. N. Imperatore, Eds., Rockland: Syngress, 2003, pp. 369–430. doi: 10.1016/b978-193183688-3/50012-2.
5.
U. Srilakshmi, S. A. Alghamdi, V. A. Vuyyuru, N. Veeraiah, and Y. Alotaibi, “A Secure Optimization Routing Algorithm for Mobile Ad Hoc Networks,” IEEE Access, vol. 10, pp. 14260–14269, 2022, doi: 10.1109/ACCESS.2022.3144679.
6.
I. Martins, J. S. Resende, P. R. Sousa, S. Silva, L. Antunes, and J. Gama, “Host-based IDS: A review and open issues of an anomaly detection system in IoT,” Futur. Gener. Comput. Syst., vol. 133, pp. 95–113, 2022, doi: 10.1016/j.future.2022.03.001.
7.
S. N. G. Aryavalli and H. Kumar, “Top 12 layer-wise security challenges and a secure architectural solution for Internet of Things,” Comput. Electr. Eng., vol. 105, p. 108487, 2023, doi: 10.1016/j.compeleceng.2022.108487.
8.
A. Chourasia and A. Namdev, “Improved wireless mobile ad hoc network using security schemes against black-hole attack,” Int. J. Emerg. Technol. Adv. Eng., vol. 10, no. 11, pp. 61–69, 2020, doi: 10.46338/ijetae1120_07.
9.
S. Sargunavathi and J. Martin Leo Manickam, “Enhanced trust based encroachment discovery system for Mobile Ad-hoc networks,” Cluster Comput., vol. 22, pp. 4837–4847, 2019, doi: 10.1007/s10586-018-2405-7.
10.
S. Gopinath, N. A. Natraj, D. Bhanu, and N. Sureshkumar, “Reliability integrated intrusion detection system for isolating black hole attack in MANET,” J. Sci. Ind. Res. (India)., vol. 79, no. 10, pp. 905–908, 2020, doi: 10.56042/jsir.v79i10.43535.
11.
N. Rajendran, P. K. Jawahar, and R. Priyadarshini, “Makespan of routing and security in Cross Centric Intrusion Detection System (CCIDS) over black hole attacks and rushing attacks in MANET,” Int. J. Intell. Unmanned Syst., vol. 7, no. 4, pp. 162–176, 2019, doi: 10.1108/IJIUS-03-2019-0021.
12.
M. Prasad, S. Tripathi, and K. Dahal, “An intelligent intrusion detection and performance reliability evaluation mechanism in mobile ad-hoc networks,” Eng. Appl. Artif. Intell., vol. 119, 2023, doi: 10.1016/j.engappai.2022.105760.
13.
E. A. Shams, A. Rizaner, and A. H. Ulusoy, “Flow-based intrusion detection system in Vehicular Ad hoc Network using context-aware feature extraction,” Veh. Commun., vol. 41, p. 100585, 2023, doi: 10.1016/j.vehcom.2023.100585.
14.
R. P. P and S. shankar, “Secure intrusion detection system routing protocol for mobile ad?hoc network,” Glob. Transitions Proc., vol. 3, no. 2, pp. 399–411, 2022, doi: 10.1016/j.gltp.2021.10.003.
15.
S. B. Ninu, “An intrusion detection system using Exponential Henry Gas Solubility Optimization based Deep Neuro Fuzzy Network in MANET,” Eng. Appl. Artif. Intell., vol. 123, p. 105969, 2023, doi: 10.1016/j.engappai.2023.105969.
16.
M. kumar Pulligilla and C. Vanmathi, “An authentication approach in SDN-VANET architecture with Rider-Sea Lion optimized neural network for intrusion detection,” Internet of Things (Netherlands), vol. 22, p. 100723, 2023, doi: 10.1016/j.iot.2023.100723.
17.
N. Omer, A. H. Samak, A. I. Taloba, and R. M. Abd El-Aziz, “A novel optimized probabilistic neural network approach for intrusion detection and categorization,” Alexandria Eng. J., vol. 72, pp. 351–361, 2023, doi: 10.1016/j.aej.2023.03.093.
18.
A. Mabrouk and A. Naja, “Intrusion detection game for ubiquitous security in vehicular networks: A signaling game based approach,” Comput. Networks, vol. 225, p. 109649, 2023, doi: 10.1016/j.comnet.2023.109649.
19.
J. L. Webber et al., “An efficient intrusion detection framework for mitigating blackhole and sinkhole attacks in healthcare wireless sensor networks,” Comput. Electr. Eng., vol. 111, p. 108964, 2023, doi: 10.1016/j.compeleceng.2023.108964.
20.
S. Ullah et al., “TNN-IDS: Transformer neural network-based intrusion detection system for MQTT-enabled IoT Networks,” Comput. Networks, vol. 237, p. 110072, 2023, doi: 10.1016/j.comnet.2023.110072.
21.
M. V. B. M. K. M, C. A. Ananth, and N. Krishnaraj, “Detection of intrusions in clustered vehicle networks using invasive weed optimization using a deep wavelet neural networks,” Meas. Sensors, vol. 28, p. 100807, 2023, doi: 10.1016/j.measen.2023.100807.
22.
M. V. Rajesh, “Intensive analysis of intrusion detection methodology over Mobile Adhoc Network using machine learning strategies,” Mater. Today Proc., vol. 51, pp. 156–160, 2021, doi: 10.1016/j.matpr.2021.05.066.
23.
F. S. Al-Anzi, “Design and analysis of intrusion detection systems for wireless mesh networks,” Digit. Commun. Networks, vol. 8, no. 6, pp. 1068–1076, 2022, doi: 10.1016/j.dcan.2022.05.013.
24.
J. Ramkumar, S. S. Dinakaran, M. Lingaraj, S. Boopalan, and B. Narasimhan, “IoT-Based Kalman Filtering and Particle Swarm Optimization for Detecting Skin Lesion,” in Lecture Notes in Electrical Engineering, K. Murari, N. Prasad Padhy, and S. Kamalasadan, Eds., Singapore: Springer Nature Singapore, 2023, pp. 17–27. doi: 10.1007/978-981-19-8353-5_2.
25.
R. Jaganathan, V. Ramasamy, L. Mani, and N. Balakrishnan, “Diligence Eagle Optimization Protocol for Secure Routing (DEOPSR) in Cloud-Based Wireless Sensor Network,” 2022, doi: 10.21203/rs.3.rs-1759040/v1.
26.
L. Mani, S. Arumugam, and R. Jaganathan, “Performance Enhancement of Wireless Sensor Network Using Feisty Particle Swarm Optimization Protocol,” ACM Int. Conf. Proceeding Ser., pp. 1–5, Dec. 2022, doi: 10.1145/3590837.3590907.
27.
S. Mirjalili, “Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems,” Neural Comput. Appl., vol. 27, no. 4, pp. 1053–1073, 2016, doi: 10.1007/s00521-015-1920-1.