1.
Abella, C. S., Bonina, S., Cucuccio, A., D’Angelo, S., Giustolisi, G., Grasso, A. D., Scuderi, A. (2019). Autonomous Energy-Efficient Wireless Sensor Network Platform for Home/Office Automation. IEEE Sensors Journal, 19(9), 3501–3512. doi:10.1109/jsen.2019.2892604
2.
Alghamdi, T. A. (2020). Energy efficient protocol in wireless sensor network: optimized cluster head selection model. Telecommunication Systems, 74(3), 331–345. doi:10.1007/s11235-020-00659-9
3.
Amutha, J., Sharma, S., & Nagar, J. (2020). WSN Strategies Based on Sensors, Deployment, Sensing Models, Coverage and Energy Efficiency: Review, Approaches and Open Issues. Wireless Personal Communications. 111(4), 1089-1115. doi:10.1007/s11277-019-06903-z
4.
Ben-Ghorbel, M., Rodriguez-Duarte, D., Ghazzai, H., Hossain, M. J., &Menouar, H. (2019). Joint Position and Travel Path Optimization for Energy Efficient Wireless Data Gathering using Unmanned Aerial Vehicles. IEEE Transactions on Vehicular Technology, 68(3), 2165-2175. doi:10.1109/tvt.2019.2893374
5.
Ekpenyong, M. E., Asuquo, D. E., &Umoren, I. J. (2019). Evolutionary Optimisation of Energy-Efficient Communication in Wireless Sensor Networks. International Journal of Wireless Information Networks, 26(40), 344–366. https://doi.org/10.1007/s10776-019-00450-x
6.
Jaiswal, K., &Anand, V. (2019). EOMR: An Energy-Efficient Optimal Multi-path Routing Protocol to Improve QoS in Wireless Sensor Network for IoT Applications. Wireless Personal Communications, 111(4), 2493–2515. doi:10.1007/s11277-019-07000-x
7.
Kaur, A., Kumar, P., & Gupta, G. P. (2019). A weighted centroid localization algorithm for randomly deployed wireless sensor networks. Journal of King Saud University - Computer and Information Sciences. 31(1), 82-91. doi:10.1016/j.jksuci.2017.01.007
8.
Lee, J.-H., & Moon, I. (2014). Modeling and optimization of energy efficient routing in wireless sensor networks. Applied Mathematical Modelling, 38(7-8), 2280–2289. doi:10.1016/j.apm.2013.10.044
9.
Mittal, N. (2018). Moth Flame Optimization Based Energy Efficient Stable Clustered Routing Approach for Wireless Sensor Networks. Wireless Personal Communications .104(1), 677-694. doi:10.1007/s11277-018-6043-4
10.
Parvin, J. R., &Vasanthanayaki, C. (2019). Particle Swarm Optimization-based Energy Efficient Target Tracking in Wireless Sensor Network. Measurement, 147, 106882. doi:10.1016/j.measurement.2019.106882
11.
Ramesh, M. V. (2014). Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Networks, 13(A), 2–18. doi:10.1016/j.adhoc.2012.09.002
12.
Rao, P. C. S., Jana, P. K., & Banka, H. (2016). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks, 23(7), 2005–2020. doi:10.1007/s11276-016-1270-7
13.
Rathee, M., Kumar, S., Gandomi, A. H., Dilip, K., Balusamy, B., &Patan, R. (2019). Ant Colony Optimization Based Quality of Service Aware Energy Balancing Secure Routing Algorithm for Wireless Sensor Networks. IEEE Transactions on Engineering Management, 68(1), 170-182. doi:10.1109/tem.2019.2953889
14.
Reddy, D. L., C., P., & Suresh, H. N. (2021). Merged glowworm swarm with ant colony optimization for energy efficient clustering and routing in Wireless Sensor Network. Pervasive and Mobile Computing, 71, 101338. doi:10.1016/j.pmcj.2021.101338
15.
Sahoo, B. M., Amgoth, T., &Pandey, H. M. (2020). Particle Swarm Optimization Based Energy Efficient Clustering and Sink Mobility in Heterogeneous Wireless Sensor Network. Ad Hoc Networks, 106, 102237. doi:10.1016/j.adhoc.2020.102237
16.
Sharma, V., & Grover, A. (2016). A modified ant colony optimization algorithm (mACO) for energy efficient wireless sensor networks. Optik - International Journal for Light and Electron Optics, 127(4), 2169–2172. doi:10.1016/j.ijleo.2015.11.117
17.
Singh, O., Rishiwal, V., &Yadav, M. (2021). Multi-objective lion optimization for energy-efficient multi-path routing protocol for wireless sensor networks. International Journal of Communication Systems. 34(17), 4969. doi:10.1002/dac.4969
18.
Srinivas, M., &Amgoth, T. (2020). EE-hHHSS: Energy-efficient wireless sensor network with mobile sink strategy using hybrid Harris hawk-salp swarm optimization algorithm. International Journal of Communication Systems, 33(16), e4569. doi:10.1002/dac.4569
19.
Tuna, G., &Gungor, V. C. (2017). A survey on deployment techniques, localization algorithms, and research challenges for underwater acoustic sensor networks. International Journal of Communication Systems, 30(17), e3350. doi:10.1002/dac.3350
20.
Zhang, W., Wei, X., Han, G., & Tan, X. (2018). An Energy-Efficient Ring Cross-Layer Optimization Algorithm for Wireless Sensor Networks. IEEE Access, 6, 16588–16598. https://doi.org/10.1109/ACCESS.2018.2809663
21.
Gou, P., Guo, B., Guo, M., & Mao, S. (2023). VKECE-3D: Energy-Efficient coverage Enhancement in Three-Dimensional Heterogeneous Wireless Sensor Networks based on 3D-Voronoi and K-means Algorithm. Sensors, 23(2), 573. doi:10.3390/s23020573
22.
Muthurajkumar, S., Ganapathy, S., Vijayalakshmi, M., & Kannan, A. (2017). An Intelligent Secured and Energy Efficient Routing Algorithm for MANETs. Wireless Personal Communications, 96(2), 1753–1769. doi.10.1007/s11277-017-4266-4
23.
Amarlingam, M., Mishra, P. K., Rajalakshmi, P., Channappayya, S. S., & Sastry, C. S. (2018). Novel Light Weight Compressed Data Aggregation using sparse measurements for IoT networks. Journal of Network and Computer Applications. 121(C), 119-134. doi:10.1016/j.jnca.2018.08.004
24.
Zhang, W., Wang, J., Han, G., Zhang, X., & Feng, Y. (2019). A cluster sleep-wake scheduling algorithm based on 3D Topology control in underwater sensor networks. Sensors, 19(1), 156. https://doi.org/10.3390/s19010156
25.
Peruzzi, G., &Pozzebon, A. (2020). A review of Energy Harvesting Techniques for Low Power Wide Area Networks (LPWANs). Energies, 13(13), 3433. https://doi.org/10.3390/en13133433
26.
Khalid, S., Hwang, H., & Kim, H. S. (2021). Real-world data-driven machine-learning-based optimal sensor selection approach for equipment fault detection in a thermal power plant. Mathematics, 9(21), 2814. https://doi.org/10.3390/math9212814
27.
Kevin P., Dian viely., Samarakoon UT. (2019). Performance analysis of wireless sensor network localization algorithms. International Journal of Computer Networks and Applications (IJCNA). 2019; Dec: 6(6), 92-99. doi:10.22247/ijcna/2019/189009
28.
Mageid SA. (2017). Connectivity based positioning system for underground vehicular Ad Hoc networks. International Journal of Computer Networks and Applications (IJCNA). 2017; 4(1):1-14. doi:10.22247/ijcna/2017/41285
29.
N. Kumar, P. Rani, V. Kumar, S. V. Athawale and D. Koundal. (2022). THWSN: Enhanced Energy-Efficient Clustering Approach for Three-Tier Heterogeneous Wireless Sensor Networks, IEEE Sensors Journal, 22(20) , 20053-20062. doi: 10.1109/JSEN.2022.3200597.
30.
Z. Yao, Y. Desmouceaux, J. -A. Cordero-Fuertes, M. Townsley and T. Clausen. (2022). HLB: Toward Load-Aware Load Balancing, IEEE/ACM Transactions on Networking, 30(6), 2658-2673, https://doi.org/10.1109/TNET.2022.3177163.
31.
Nagarajan, M. (2014). A New Approach to Improve Life Time Using Energy Based Routing in Wireless Sensor Network. International Journal of Science and Research (IJSR). 3(7), 1734-1738.
32.
Nagarajan, M., and S. Karthikeyan. (2012). A new approach to increase the life time and efficiency of wireless sensor network. International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012). IEEE, 2012. 231-235. https://doi.org/10.1109/ICPRIME.2012.6208349.