International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

International Journal of Computer Networks and Applications (IJCNA)

International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

An Application-Layer Framework for Privacy Blockchain Transactions and Smart Contract

Author NameAuthor Details

Souhail Mssassi, Anas Abou El Kalam

Souhail Mssassi[1]

Anas Abou El Kalam[2]

[1]National School of Applied Sciences, Cadi Ayyad University, Morocco.

[2]National School of Applied Sciences, Cadi Ayyad University, Morocco.

Abstract

While offering transparency and decentralization, Open blockchain networks inadvertently expose user identities and sensitive transaction details. Existing privacy solutions often focus on simple token transfers (e.g., mixers) but fail to protect more complex operations such as smart contract executions. This paper tackles these challenges by introducing a novel application-layer framework anonymizing token transactions and smart contract calls. Building on the principles of Tornado Cash, the approach pools user transactions off-chain, obscuring the link between senders, recipients, and contract interactions. Zero-knowledge proofs were integrated to ensure verifiability without revealing underlying data, all without altering network or consensus mechanisms. Further, a sustainable incentive model is proposed that compensates relayers and executors for gas fees and computational effort, maintaining economic viability. The results indicate that the framework is scalable and platform-agnostic and significantly improves privacy for decentralized applications, mitigating identity exposure and transaction traceability in modern blockchain ecosystems.

Index Terms

Blockchain Privacy

Zero-Knowledge Proof

Blockchain Security

Smart Contract Privacy

Anonymity

Transaction Mixing

Off-Chain Transaction Pooling

Incentive Mechanisms

Multi-Party Computation

Reference

  1. 1.
    Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. In: 2017 IEEE International Congress on Big Data (BigData Congress). pp. 557–564 (2017). https://doi.org/10.1109/BigDataCongress.2017.85.
  2. 2.
    Sedlmeir, J., Lautenschlager, J., Fridgen, G., Urbach, N.: The transparency challenge of blockchain in organizations. Electron Markets. 32, 1779–1794 (2022). https://doi.org/10.1007/s12525-022-00536-0.
  3. 3.
    Biryukov, A., Tikhomirov, S.: Deanonymization and Linkability of Cryptocurrency Transactions Based on Network Analysis. In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P). pp. 172–184 (2019). https://doi.org/10.1109/EuroSP.2019.00022.
  4. 4.
    Beres, F., Seres, I.A., Benczúr, A.A., Quintyne-Collins, M.: Blockchain is Watching You: Profiling and Deanonymizing Ethereum Users. In: 2021 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS). pp. 69–78 (2021). https://doi.org/10.1109/DAPPS52256.2021.00013.
  5. 5.
    Pillai, A., Saraswat, V., Vasanthakumary Ramachandran, A.: Attacks on Blockchain Based Digital Identity. In: Prieto, J., Partida, A., Leitão, P., and Pinto, A. (eds.) Blockchain and Applications. pp. 329–338. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-86162-9_33.
  6. 6.
    Tatar, U., Gokce, Y., Nussbaum, B.: Law versus technology: Blockchain, GDPR, and tough tradeoffs. Computer Law & Security Review. 38, 105454 (2020). https://doi.org/10.1016/j.clsr.2020.105454.
  7. 7.
    Pertsev, A., Semenov, R., Storm, R.: Tornado Cash Privacy Solution Version 1.4, https://crebaco.com/planner/admin/uploads/whitepapers/2982941Tornado.cash_whitepaper_v1.4.pdf, (2019).
  8. 8.
    De Santis, Alfredo, and Giuseppe Persiano. "Zero-knowledge proofs of knowledge without interaction." In Proceedings., 33rd Annual Symposium on Foundations of Computer Science, pp. 427-436. IEEE Computer Society, 1992.
  9. 9.
    Tang, Y., Xu, C., Zhang, C., Wu, Y., Zhu, L.: Analysis of Address Linkability in Tornado Cash on Ethereum. In: Lu, W., Zhang, Y., Wen, W., Yan, H., and Li, C. (eds.) Cyber Security. pp. 39–50. Springer Nature, Singapore (2022). https://doi.org/10.1007/978-981-16-9229-1_3.
  10. 10.
    Quesnelle, J.: On the linkability of Zcash transactions, http://arxiv.org/abs/1712.01210, (2017). https://doi.org/10.48550/arXiv.1712.01210.
  11. 11.
    Fujisaki, E., Suzuki, K.: Traceable Ring Signature. In: Okamoto, T. and Wang, X. (eds.) Public Key Cryptography – PKC 2007. pp. 181–200. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_13.
  12. 12.
    Cao, T., Yu, J., Decouchant, J., Luo, X., Verissimo, P.: Exploring the Monero Peer-to-Peer Network. In: Bonneau, J. and Heninger, N. (eds.) Financial Cryptography and Data Security. pp. 578–594. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_31.
  13. 13.
    Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 workshop on New security paradigms. pp. 13–22. Association for Computing Machinery, New York, NY, USA (2001). https://doi.org/10.1145/508171.508174.
  14. 14.
    Darby, M.L., Harmse, M., Nikolaou, M.: MPC: Current Practice and Challenges. IFAC Proceedings Volumes. 42, 86–98 (2009). https://doi.org/10.3182/20090712-4-TR-2008.00014.
  15. 15.
    Fuchsbauer, G.: Subversion-Zero-Knowledge SNARKs. In: Abdalla, M. and Dahab, R. (eds.) Public-Key Cryptography – PKC 2018. pp. 315–347. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_11.
  16. 16.
    Gueron, S., Persichetti, E., Santini, P.: Designing a Practical Code-Based Signature Scheme from Zero-Knowledge Proofs with Trusted Setup. Cryptography. 6, 5 (2022). https://doi.org/10.3390/cryptography6010005.
  17. 17.
    Andola, N., Raghav, Yadav, V.K., Venkatesan, S., Verma, S.: Anonymity on blockchain based e-cash protocols—A survey. Computer Science Review. 40, 100394 (2021). https://doi.org/10.1016/j.cosrev.2021.100394.
  18. 18.
    Averin, A., Samartsev, A., Sachenko, N.: Review of Methods for Ensuring Anonymity and De-Anonymization in Blockchain. In: 2020 International Conference Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). pp. 82–87 (2020). https://doi.org/10.1109/ITQMIS51053.2020.9322974.
  19. 19.
    Lawson, N.: Side-Channel Attacks on Cryptographic Software. IEEE Security & Privacy. 7, 65–68 (2009). https://doi.org/10.1109/MSP.2009.165.
  20. 20.
    Marchesi, L., Marchesi, M., Destefanis, G., Barabino, G., Tigano, D.: Design Patterns for Gas Optimization in Ethereum. In: 2020 IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE). pp. 9–15 (2020). https://doi.org/10.1109/IWBOSE50093.2020.9050163.
  21. 21.
    Han, R., Yan, Z., Liang, X., Yang, L.T.: How Can Incentive Mechanisms and Blockchain Benefit with Each Other? A Survey. ACM Comput. Surv. 55, 136:1-136:38 (2022). https://doi.org/10.1145/3539604.
  22. 22.
    Khan, M.M.A., Sarwar, H.M.A., Awais, M.: Gas consumption analysis of Ethereum blockchain transactions. Concurrency and Computation: Practice and Experience. 34, e6679 (2022). https://doi.org/10.1002/cpe.6679.
  23. 23.
    Mssassi, S., Abou El Kalam, A.: Game Theory-Based Incentive Design for Mitigating Malicious Behavior in Blockchain Networks. Journal of Sensor and Actuator Networks. 13, 7 (2024). https://doi.org/10.3390/jsan13010007.
  24. 24.
    Li, Wenbai, Mengwen Cao, Yue Wang, Changbing Tang, and Feilong Lin. "Mining pool game model and nash equilibrium analysis for pow-based blockchain networks." Ieee Access 8 (2020): 101049-101060.
  25. 25.
    Dwivedi, A.D., Singh, R., Ghosh, U., Mukkamala, R.R., Tolba, A., Said, O.: Privacy preserving authentication system based on non-interactive zero knowledge proof suitable for Internet of Things. J Ambient Intell Human Comput. 13, 4639–4649 (2022). https://doi.org/10.1007/s12652-021-03459-4.
  26. 26.
    Li, S.-N., Spychiger, F., Tessone, C.J.: Reward Distribution in Proof-of-Stake Protocols: A Trade-Off Between Inclusion and Fairness. IEEE Access. 11, 134136–134145 (2023). https://doi.org/10.1109/ACCESS.2023.3336418.
  27. 27.
    Cason, D., Fynn, E., Milosevic, N., Milosevic, Z., Buchman, E., Pedone, F.: The design, architecture and performance of the Tendermint Blockchain Network. In: 2021 40th International Symposium on Reliable Distributed Systems (SRDS). pp. 23–33 (2021). https://doi.org/10.1109/SRDS53918.2021.00012.
  28. 28.
    Dam, D.-T., Tran, T.-H., Hoang, V.-P., Pham, C.-K., Hoang, T.-T.: A Survey of Post-Quantum Cryptography: Start of a New Race. Cryptography. 7, 40 (2023). https://doi.org/10.3390/cryptography7030040.
  29. 29.
    Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., Cammarota, R.: Post-Quantum Lattice-Based Cryptography Implementations: A Survey. ACM Comput. Surv. 51, 129:1-129:41 (2019). https://doi.org/10.1145/3292548.