1.
F. Tang, H. Zhang, L. Fu and X. Li, "Distributed Stable Routing with Adaptive Power Control for Multi-Flow and Multi-Hop Mobile Cognitive Networks," IEEE Transactions on Mobile Computing, vol. 18, no. 12, pp. 2829-2841, 2019. https://doi.org/10.1109/TMC.2018.2885762
2.
J. Singh and M. Rai, "CROP: Cognitive radio ROuting Protocol for link quality channel diverse cognitive networks", Journal of Network and Computer Applications, vol. 104, pp. 48-60, 2018. https://doi.org/10.1016/j.jnca.2017.12.014
3.
H. Salameh, S. Otoum, M. Aloqaily, R. Derbas, I. Ridhawi and Y. Jararweh, "Intelligent jamming-aware routing in multi-hop IoT-based opportunistic cognitive radio networks", Ad Hoc Networks, vol. 98, p. 102035, 2020. https://doi.org/10.1016/j.adhoc.2019.102035
4.
R. Yadav, R. Misra and D. Saini, "Energy aware cluster based routing protocol over distributed cognitive radio sensor network", Computer Communications, vol. 129, pp. 54-66, 2018. https://doi.org/10.1016/j.comcom.2018.07.020
5.
I. Akyildiz, W. Lee and K. Chowdhury, "CRAHNs: Cognitive radio ad hoc networks", Ad Hoc Networks, vol. 7, no. 5, pp. 810-836, 2009. https://doi.org/10.1016/j.adhoc.2009.01.001
6.
J.Ramkumar and R.Vadivel, "Improved frog leap inspired protocol (IFLIP) – for routing in cognitive radio ad hoc networks (CRAHN)", World Journal of Engineering, vol. 15, no. 2, pp. 306-311, 2018. https://doi.org/10.1108/WJE-08-2017-0260
7.
J.Ramkumar and R.Vadivel, "CSIP—Cuckoo Search Inspired Protocol for Routing in Cognitive Radio Ad Hoc Networks", Advances in Intelligent Systems and Computing, Vol. 556, pp. 145-153, 2017. https://doi.org/10.1007/978-981-10-3874-7_14
8.
J.Ramkumar and R.Vadivel, "Intelligent Fish Swarm Inspired Protocol (IFSIP) For Dynamic Ideal Routing in Cognitive Radio Ad-Hoc Networks", International Journal of Computing and Digital Systems, Vol. 10, pp. 2-11. 2020. https://journal.uob.edu.bh:443/handle/123456789/3961
9.
X. Tang, J. Zhou, S. Xiong, J. Wang and K. Zhou, "Geographic Segmented Opportunistic Routing in Cognitive Radio Ad Hoc Networks Using Network Coding," IEEE Access, vol. 6, pp. 62766-62783, 2018. https://doi.org/10.1109/ACCESS.2018.2875566
10.
R. Sahu, S. Sharma, M.A. Rizvi, "ZBLE: Zone Based Leader Election Energy Constrained AOMDV Routing Protocol", International Journal of Computer Networks and Applications, Vol. 6, no. 3, pp. 39-46, 2019. https://doi.org/10.22247/ijcna/2019/49643
11.
J.Ramkumar and R.Vadivel, "Performance Modeling of Bio-Inspired Routing Protocols in Cognitive Radio Ad Hoc Network to Reduce End-to-End Delay", International Journal of Intelligent Engineering and Systems, Vol.12, No.1, pp. 221-231, 2019. https://doi.org/10.22266/ijies2019.0228.22
12.
X. Jin, R. Zhang, J. Sun and Y. Zhang, "TIGHT: A Geographic Routing Protocol for Cognitive Radio Mobile Ad Hoc Networks", IEEE Transactions on Wireless Communications, vol. 13, no. 8, pp. 4670-4681, 2014. https://doi.org/10.1109/TWC.2014.2320950
13.
H. Riasudheen, K. Selvamani, S. Mukherjee and I. Divyasree, "An efficient energy-aware routing scheme for cloud-assisted MANETs in 5G", Ad Hoc Networks, vol. 97, p. 102021, 2020. https://doi.org/10.1016/j.adhoc.2019.102021
14.
A. Mesodiakaki, E. Zola, R. Santos and A. Kassler, "Optimal user association, backhaul routing and switching off in 5G heterogeneous networks with mesh millimeter wave backhaul links", Ad Hoc Networks, vol. 78, pp. 99-114, 2018. https://doi.org/10.1016/j.adhoc.2018.05.008
15.
L. Martin, Dooley and K. Wong, "5G multi-layer routing strategies for TV white space secondary user access", IET Communications, vol. 13, no. 12, pp. 1801-1807, 2019. https://doi.org/10.1049/iet-com.2018.5848
16.
Z. Li, Y. Hu, T. Hu and R. Ma, "PARS-SR: A scalable flow forwarding scheme based on Segment Routing for massive giant connections in 5G networks", Computer Communications, vol. 159, pp. 206-214, 2020. https://doi.org/10.1016/j.comcom.2020.05.014
17.
F. Palmieri, "A Reliability and latency-aware routing framework for 5G transport infrastructures", Computer Networks, vol. 179, p. 107365, 2020. https://doi.org/10.1016/j.comnet.2020.107365
18.
J. Mu, "An improved AODV routing for the zigbee heterogeneous networks in 5G environment", Ad Hoc Networks, vol. 58, pp. 13-24, 2017. https://doi.org/10.1016/j.adhoc.2016.12.002
19.
M. Abolhasan, M. Abdollahi, W. Ni, A. Jamalipour, N. Shariati and J. Lipman, "A Routing Framework for Offloading Traffic From Cellular Networks to SDN-Based Multi-Hop Device-to-Device Networks", IEEE Transactions on Network and Service Management, vol. 15, no. 4, pp. 1516-1531, 2018. https://doi.org/10.1109/TNSM.2018.2875696
20.
H. Rastegarfar, T. Svensson and N. Peyghambarian, "Optical Layer Routing Influence on Software-Defined C-RAN Survivability", Journal of Optical Communications and Networking, vol. 10, no. 11, p. 866, 2018. https://doi.org/10.1364/JOCN.10.000866
21.
P. Yan, S. Choudhury, F. Al-Turjman and I. Al-Oqily, "An energy-efficient topology control algorithm for optimizing the lifetime of wireless ad-hoc IoT networks in 5G and B5G", Computer Communications, vol. 159, pp. 83-96, 2020. https://doi.org/10.1016/j.comcom.2020.05.010
22.
Z. Ma, B. Li, Z. Yan and M. Yang, "Remaining bandwidth based multipath routing in 5G millimeter wave self-backhauling network", Wireless Networks, vol. 25, no. 7, pp. 3839-3855, 2019. https://doi.org/10.1007/s11276-018-01919-y
23.
Z. Khan, P. Fan, F. Abbas, H. Chen and S. Fang, "Two-Level Cluster Based Routing Scheme for 5G V2X Communication", IEEE Access, vol. 7, pp. 16194-16205, 2019. https://doi.org/10.1109/ACCESS.2019.2892180
24.
R. Rahim, S. Murugan, S. Priya, S. Magesh and R. Manikandan, "Taylor Based Grey Wolf Optimization Algorithm (TGWOA) For Energy Aware Secure Routing Protocol", International Journal of Computer Networks and Applications, vol. 7, no. 4, p. 93, 2020. https://doi.org/10.22247/ijcna/2020/196041