1.
Mishra, K., & Majhi, S. (2020). A state-of-art on cloud load balancing algorithms. International Journal of computing and digital systems, 9(2), 201-220.
2.
Zhang, Z., Zhao, M., Wang, H., Cui, Z., & Zhang, W. (2022). An efficient interval many-objective evolutionary algorithm for cloud task scheduling problem under uncertainty. Information Sciences, 583, 56-72.
3.
Ghafari, R., Kabutarkhani, F. H., & Mansouri, N. (2022). Task scheduling algorithms for energy optimization in cloud environment: a comprehensive review. Cluster Computing, 25(2), 1035-1093.
4.
Mahapatra, A., Mishra, K., Pradhan, R., & Majhi, S. K. (2023). Next Generation Task Offloading Techniques in Evolving Computing Paradigms: Comparative Analysis, Current Challenges, and Future Research Perspectives. Archives of Computational Methods in Engineering, 1-70. https://doi.org/10.1007/s11831-023-10021-2
5.
Zade, B. M. H., Mansouri, N., & Javidi, M. M. (2022). A two-stage scheduler based on New Caledonian Crow Learning Algorithm and reinforcement learning strategy for cloud environment. Journal of Network and Computer Applications, 202, 103385.
6.
Manikandan, N., Gobalakrishnan, N., & Pradeep, K. (2022). Bee optimization based random double adaptive whale optimization model for task scheduling in cloud computing environment. Computer Communications, 187, 35-44.
7.
Pradhan, A., Bisoy, S. K., & Das, A. (2022). A survey on PSO based meta-heuristic scheduling mechanism in cloud computing environment. Journal of King Saud University-Computer and Information Sciences, 34(8), 4888-4901.
8.
Ullman, J. D. (1975). NP-complete scheduling problems. Journal of Computer and System sciences, 10(3), 384-393.
9.
Kalra, M., & Singh, S. (2015). A review of metaheuristic scheduling techniques in cloud computing. Egyptian informatics journal, 16(3), 275-295.
10.
Xu, L., Wang, K., Ouyang, Z., & Qi, X. (2014, August). An improved binary PSO-based task scheduling algorithm in green cloud computing. In 9th International Conference on Communications and Networking in China (pp. 126-131). IEEE.
11.
Kaur, G., & Sharma, E. S. (2014). Optimized utilization of resources using improved particle swarm optimization based task scheduling algorithms in cloud computing. International Journal of Emerging Technology and Advanced Engineering, 4(6), 110-115.
12.
Rao, R. V. (2019). Jaya: an advanced optimization algorithm and its engineering applications, 770-780.
13.
Mishra, K., & Majhi, S. K. (2023). A novel improved hybrid optimization algorithm for efficient dynamic medical data scheduling in cloud-based systems for biomedical applications. Multimedia Tools and Applications, 1-35. https://doi.org/10.1007/s11042-023-14448-4
14.
Zahedi Fard, S. Y., Ahmadi, M. R., & Adabi, S. (2017). A dynamic VM consolidation technique for QoS and energy consumption in cloud environment. The Journal of Supercomputing, 73(10), 4347-4368.
15.
Zhang, X., Wu, T., Chen, M., Wei, T., Zhou, J., Hu, S., & Buyya, R. (2019). Energy-aware virtual machine allocation for cloud with resource reservation. Journal of Systems and Software, 147, 147-161.
16.
Mishra, K., Pati, J., & Majhi, S. K. (2022). A dynamic load scheduling in IaaS cloud using binary JAYA algorithm. Journal of King Saud University-Computer and Information Sciences, 34(8), 4914-4930.
17.
Ilager, S., Ramamohanarao, K., & Buyya, R. (2019). ETAS: Energy and thermal?aware dynamic virtual machine consolidation in cloud data center with proactive hotspot mitigation. Concurrency and Computation: Practice and Experience, 31(17), e5221.
18.
Azizi, S., Zandsalimi, M. H., & Li, D. (2020). An energy-efficient algorithm for virtual machine placement optimization in cloud data centers. Cluster Computing, 23, 3421-3434.
19.
Yavari, M., Ghaffarpour Rahbar, A., & Fathi, M. H. (2019). Temperature and energy-aware consolidation algorithms in cloud computing. Journal of Cloud Computing, 8(1), 1-16.
20.
Abdessamia, F., Zhang, W. Z., & Tian, Y. C. (2020). Energy-efficiency virtual machine placement based on binary gravitational search algorithm. Cluster Computing, 23, 1577-1588.
21.
Abualigah, L., & Diabat, A. (2021). A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Cluster Computing, 24, 205-223.
22.
Mishra, K., & Majhi, S. K. (2021). A binary Bird Swarm Optimization based load balancing algorithm for cloud computing environment. Open Computer Science, 11(1), 146-160.
23.
Singh, S., & Vidyarthi, D. P. (2023). An integrated approach of ML-metaheuristics for secure service placement in fog-cloud ecosystem. Internet of Things, 22, 100817. https://doi.org/10.1016/j.iot.2023.100817
24.
Hussain, A., & Aleem, M. (2018). GoCJ: Google cloud jobs dataset for distributed and cloud computing infrastructures. Data, 3(4), 38.